首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platelet-leukocyte interactions represent an important determinant of the inflammatory response. Although mechanisms of platelet-neutrophil adhesion were studied extensively, little is known on the mechanisms of platelet-eosinophil interactions. The aim of the present study was to analyze the involvement of adhesion molecules and lipid mediators in platelet-eosinophil adhesion as compared to platelet-neutrophil adhesion. For that purpose human platelets, eosinophils and neutrophils were isolated and platelet-eosinophil and platelet-neutrophil adhesion induced by thrombin (30 mU/ml), LPS (0.01 microg/ml) and fMLP (1 microM) was quantified using the "rosettes" assay. The involvement of adhesion molecules such as selectin P, glycoprotein IIb/IIIa (GPIIb/IIIa) and lipid mediators such as of thromboxane A2 (TXA2), platelet activating factor (PAF) and cysteinyl leukotrienes (cysLTs) were studied using monoclonal antibodies and pharmacological inhibitors, respectively. Thrombin (30 mU/ml), LPS (0.01 microg/ml) and fMLP (1 microM) each of them induced platelet-eosinophil adhesion that was even more pronounced as compared with platelet-neutrophil adhesion induced by the same stimulus. Anti-CD62P antibody (1 microg/ml) and anti-GP IIb/IIIa antibody (abciximab-3 microg/ml) strongly inhibited platelet-eosinophil as well as platelet-neutrophil adhesion. Aspirin inhibited platelet-eosinophil adhesion, while MK 886-a FLAP inhibitor (10 microM), or WEB 2170-a PAF receptor antagonist (100 microM) were less active. On the other hand aspirin, MK 886 and WEB 2170 all three of them inhibited platelet-neutrophil adhesion. In summary, platelets adhered avidly to eosinophils both after activation of platelets by thrombin, eosinophils by fMLP or simultaneous activation of platelets and eosinophils by LPS. Similarly to platelet-neutrophil interaction adhesion of platelets to eosinophils involved not only adhesion molecules (selectin P, GPIIb/IIIa), but also lipid mediators such as TXA2. The involvement of PAF and cysteinyl leukotrienes in platelet-eosinophil adhesion was less pronounced as compared to platelet-neutrophil adhesion.  相似文献   

2.
The platelet fibrinogen (Fg) receptor (GPIIb/IIIa) is an integrin which plays a critical role in hemostasis by recognizing at least the four adhesive ligands: Fg, fibronectin (Fn), vitronectin (Vn), and von Willebrand factor (vWf). We reported that residues 309-312 of GPIIb alpha appear to comprise at least part of a Fg binding site on the Fg receptor (Gartner, T. K., and Taylor, D. B. (1990) Thromb. Res. 60, 291-309). Here we report that the peptide GPIIb alpha 300-312 (G13) inhibits platelet aggregation and binds Fg and Vn. Significantly, this peptide inhibits the adhesion of stimulated platelets to Fg, Fn, Vn, and vWf, but not the adhesion of resting platelets to Fn. Thus, GPIIb 300-312 may constitute a specific but common recognition site on GPIIb/IIIa for both LGGAKQAGDV- and RGD-containing ligands.  相似文献   

3.
Chitosan enhances platelet adhesion and aggregation   总被引:6,自引:0,他引:6  
In this study, chitosan (MW=50,000) was tested for its enhancing platelet activity in rabbit platelet suspensions and the possible mechanisms involved were further investigated. Our results showed that after initial (5 min) and long-term (30 min) contact of platelets with chitosan, the platelet adhesion to chitosan-coated microtiter plates was dose-dependently increased compared to that of solvent control. Similarly, chitosan also dose-dependently increased the platelet aggregation and the intracellular free Ca(2+) rise of Fura-2-AM loaded platelets. Additionally, in the presence of FITC-labeled anti-CD41/CD61, chitosan significantly enhanced the expression of platelet glycoprotein IIb/IIIa complex assayed by a flow cytometer. It is concluded that chitosan is an effective inducer for platelet adhesion and aggregation and the mechanisms of action of chitosan may be associated, at least partly, with the increasing [Ca(2+)](i) mobilization and enhancing expression of GPIIb/IIIa complex on platelet membrane surfaces.  相似文献   

4.
A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis.  相似文献   

5.
Platelet C1q receptor interactions with collagen- and C1q-coated surfaces   总被引:5,自引:0,他引:5  
We recently described specific binding sites for C1q on human blood platelets. Structural similarities between the amino-terminal of C1q and collagen have suggested that receptors for both molecules on platelets might be the same. The present study thus compared the interaction of purified C1q receptors (C1qR) and whole platelets with collagen- and C1q-coated polystyrene surfaces. Surfaces coated with BSA or gelatin served as controls. Purified 125I-labeled C1qR recognized both C1q- and collagen-coated surfaces in a divalent, cation-independent manner. This adhesion was inhibited by polyclonal or monoclonal (II1/D1) anti-C1qR antibodies. Although C1qR adhered preferentially to C1q-coated surfaces, adhesion to bovine and human type I collagen, as well as to human type III and V collagen, was also noted. In parallel studies, 51Cr-labeled platelets bound equally well to collagen- or C1q-coated surfaces, albeit in a magnesium-dependent manner. Partial inhibition of platelet adhesion was observed in the presence of RGDS, despite the inability of RGDS to modify C1qR interaction with C1q or collagen. Moreover, anti C1qR antibodies selectively inhibited platelet adhesion to C1q-coated surfaces, whereas antibodies specific for the GPIa/IIa collagen receptor (6F1) preferentially inhibited platelet collagen interactions. These data support the presence of distinct platelet membrane C1qR, which may cross-react with collagen, and suggest that C1qR are necessary but not sufficient for platelet adhesion to C1q-coated surfaces. Additional divalent cation and/or RGD-sensitive binding sites may participate.  相似文献   

6.
Glycoprotein (GP) IIb and IIIa are major constituents of the platelet membrane which are involved in forming the fibrinogen receptor on activated platelets. We used flow cytometry to study the effects of ethylene-diamine tetraacetic acid (EDTA) on the membrane GPIIb/IIIa complexes of platelets and microparticles, and to study the effects of cations on dissociated GP complexes. Microparticles were detected by both the volume signal and by fluorescence using an FITC-conjugated anti-GPIb antibody (NNKY5-5). When platelets were stimulated with ADP, calcium ionophore A23187, or thrombin, fibrinogen binding to the platelet surface increased markedly. However, fibrinogen binding to microparticles showed little increase in response to such agonists. Microparticle GPIIb/IIIa complexes were dissociated by incubation with EDTA at 37 degrees C but did not reassociate after treatment with divalent cations (Ca2+, Mg2+, and Mn2+) in contrast to platelet GPIIb/IIIa complexes. These results suggest that some interaction of GPIIb/IIIa and linked structures like the platelet cytoskeleton may be involved in the reassociation of dissociated GPIIb and GPIIIa, perhaps explaining the failure of reassociation of microparticle GPIIb/IIIa (i.e., the fibrinogen binding to microparticles).  相似文献   

7.
Piscivostatin, a novel dimeric disintegrin containing Arg-Gly-Asp (RGD) and Lys-Gly-Asp (KGD) sequences, was isolated from the venom of Agkistrodon piscivorus piscivorus. The molecule consisted of two chains designated as the alpha and beta chains, comprising 65 and 68 amino acid residues, respectively. Piscivostatin had two binding motifs recognized by platelet glycoprotein IIb/IIIa (GPIIb/IIIa), and the biological activity of dimeric disintegrin piscivostatin toward platelet aggregation differed from those of other monomeric disintegrins such as trimestatin and echistatin. We measured platelet aggregation by the laser light scattering method during the process of ADP-induced platelet aggregation. Both dimeric and monomeric disintegrins inhibited the formation of small (9 to 25 microm in diameter), medium-sized and large aggregates (25 to 70 microm in diameter) in a dose-dependent manner. The platelet aggregates disaggregated after reaching a maximal number on either treatment with ADP alone or monomeric disintegrin/ADP. However, the small aggregates did not disaggregate on treatment with piscivostatin/ADP even when applied over time. When washed platelets were incubated with an anti-GPIIb/IIIa monoclonal antibody, PT25-2, which induces conformational changes of GPIIb/IIIa to a form accessible to fibrinogen and other adhesion proteins without platelet activation, piscivostatin induced a platelet shape change alone with no aggregate formation. The present study indicated that piscivostatin has two unique contradictory activities; acting as a double inhibitor of platelet aggregation and platelet aggregate dissociation.  相似文献   

8.
Staphylococcus aureus is a leading cause of infective endocarditis (IE). Platelet activation promoted by S. aureus resulting in aggregation and thrombus formation is an important step in the pathogenesis of IE. Here, we report that the fibrinogen/fibronectin-binding proteins FnBPA and FnBPB are major platelet-activating factors on the surface of S. aureus from the exponential phase of growth. Truncated derivatives of FnBPA, presenting either the fibrinogen-binding A domain or the fibronectin-binding BCD region, each promoted platelet activation when expressed on the surface of S. aureus or Lactococcus lactis, indicating two distinct mechanisms of activation. FnBPA-promoted platelet activation is mediated by fibrinogen and fibronectin bridges between the A domain and the BCD domains, respectively, to the low affinity form of the integrin GPIIb/IIIa on resting platelets. Antibodies recognizing the FnBPA A domain or the complex between the FnBPA BCD domains and fibronectin were essential for activation promoted by bacteria expressing the A domain or the BCD domain respectively. Activation was inhibited by a monoclonal antibody (IV-3) specific for the FcgammaRIIa IgG receptor on platelets. We propose that the activation of quiescent platelets by bacteria expressing FnBPs involves the formation of a bridge between the bacterial cell and the platelet surface by (i) fibronectin and fibrinogen interacting with the low affinity form of GPIIb/IIIa and (ii) by antibodies specific to FnBPs that engage the platelet Fc receptor FcgammaRIIa. Platelet activation by S. aureus clinical IE isolates from both the exponential and stationary phases of growth was completely inhibited by monoclonal antibody IV-3 suggesting that the IgG-FcgammaRIIa interaction is of fundamental importance for platelet activation mediated by this organism. This suggests new avenues for development of therapeutics against vascular infections.  相似文献   

9.
Abciximab (Abci) and eptifibatide (Epti) are antiaggregate drugs which may reduce thrombotic complications in acute coronary syndromes. The aim of this work was the investigation of the interaction between the phospholipid-GPIIb/IIIa glycoprotein complex and Abci or Epti, and the influence of these drugs on the phospholipid ratio in the platelet membrane. The interaction between the phospholipid-GPIIb/IIIa glycoprotein complex and antiaggregate drugs were investigated using the Surface Plasmon Resonance Imaging technique (SPRI). Phospholipids phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM) were first immobilized onto the gold chip surface. The phospholipid ratio in the platelet membrane was determined by the HPLC. Only PI, PS, PE and PC were determined. Human platelets treated 'in vitro' with Abci or Epti exhibit changes in the phospholipid ratio in the platelet membrane. The ratio of PS decreases and PC rises. The SPRI distinctly shows interactions between phospholipids and glycoprotein GPIIb/IIIa, and between the phospholipid-glycoprotein GPIIb/IIIa complex and Abci or Epti. The interaction between phospholipids and glycoprotein GPIIb/IIIa is growing in the sequence: PI相似文献   

10.
The interaction of platelets with collagen plays an important role in primary hemostasis. Glycoprotein Ia/IIa (GPIa/IIa, integrin alpha(2)beta(1)) is a major platelet receptor for collagen. The binding site for collagen has been mapped to the I domain within the alpha(2) subunit (GPIa). In order to assess the role of the alpha(2)-I domain structure in GPIa/IIa binding to collagen, a recombinant I domain (amino acids 126-337) was expressed in Escherichia coli. The alpha(2)-I protein bound human types I and III collagen in a saturable and divalent cation-dependent manner and was blocked by the alpha(2)beta(1) function blocking antibody 6F1. The alpha(2)-I protein inhibited collagen-induced platelet aggregation (IC(50) = 600 nM). Unexpectedly, 6F1, an antibody that fails to inhibit platelet aggregation in platelet-rich plasma, blocked the inhibitory effect of the alpha(2)-I protein. The alpha(2)-I protein was able to prevent platelet adhesion to a collagen surface exposed to flowing blood under low shear stress. Interestingly, it inhibited platelet adhesion to extracellular matrix at high shear stress. These results, taken together, provide firm evidence that GPIa/IIa directly mediates the first contact of platelets with collagen under both stirring and flow conditions.  相似文献   

11.
A series of ring constrained analogues of the GPIIb/IIIa receptor antagonist XR299 (1) was investigated as potential inhibitors of glycoprotein IIb/IIIa, a platelet receptor that plays a key role in platelet aggregation and platelet adhesion. Ring size was found to have a large effect on in vitro potency. Selected compounds showed good in vitro activity, a preference for binding to activated platelets, and modest duration of action when dosed i.v. as a racemate in a canine model.  相似文献   

12.
《The Journal of cell biology》1987,105(4):1885-1892
On platelets the membrane glycoprotein IIb/IIIa complex (GPIIb/IIIa) functions in adhesive interactions with fibrinogen, von Willebrand factor, and fibronectin. However, the function of GPIIb/IIIa-like proteins on endothelial cells, as well as the ligand(s) the complex binds, is unknown. Using a highly specific polyclonal antibody we have explored the function of GPIIb/IIIa-like proteins on human umbilical vein endothelial cells (HUVE). Analysis by immunoblotting shows that this antiserum recognizes the endothelial GPIIIa-like protein of the complex. The IgG fraction of the polyclonal antiserum and its Fab' fragments detach confluent and subconfluent HUVE from extracellular substrata. The effect of the anti-GPIIb/IIIa IgG is not toxic as the detached cells maintain their viability after trypsinization and replating. Anti-GPIIb/IIIa IgG does not inhibit HUVE binding to extracellular matrix or purified fibronectin in an attachment assay despite the presence of intact GPIIb/IIIa on HUVE detached from substrate by various methods. Apparently, the GPIIb/IIIa-like protein on HUVE is important in normal HUVE adhesion to the extracellular matrix, but it is not required in the initial attachment of HUVE to extracellular matrix.  相似文献   

13.
A bispecific F(ab')2 monoclonal antibody which recognizes both the platelet GPIIb/IIIa receptor and human tissue plasminogen activator was produced to target tPA to platelets for enhancement of thrombolysis. A stable, thioether-cross-linked bispecific F(ab')2 (7E3 X P4B6) combining the GPIIb/IIIa-specific monoclonal antibody 7E3, which inhibits platelet aggregation, and a nonneutralizing anti-tPA monoclonal antibody (P4B6) was produced. This was performed by coupling each of the parental Fab' moieties with the homobifunctional cross-linker bis(maleimido methyl) ether (BMME). 7E3 X P4B6 was sequentially purified using gel-filtration chromatography and hydrophobic interaction (HIC) HPLC. HIC was shown to completely resolve each of the parental F(ab')2 species from the bispecific one. 7E3 X P4B6 was shown to retain completely each of the parental immunoreactivities in GPIIb/IIIa and tPA binding EIA's. The bispecific antibody inhibited platelet aggregation in vitro at levels comparable to those for 7E3 Fab. Recruitment of tPA activity to washed human platelets was demonstrated using the S-2251 chromogenic substrate assay. 7E3 X P4B6 recruited 12-fold more tPA to the washed platelets than a mixture of the parental F(ab')2 molecules used as controls.  相似文献   

14.
The platelet membrane glycoprotein IIb X IIIa heterodimer complex (GPIIb X IIIa) is the platelet receptor for adhesive proteins, containing binding sites for fibrinogen, von Willebrand factor, and fibronectin on activated platelets. GPIIb X IIIa also appears to be a member of a family of membrane adhesive protein receptors that plays a major role in cell-cell and cell-matrix interactions. GPIb is the larger component of this platelet receptor and is composed of two disulfide-linked subunits. In this report we describe the analysis of cDNA clones for human GPIIb that were isolated from a lambda gt11 expression library prepared using RNA from HEL cells. A total of 3.3 kilobases of cDNA was sequence, revealing a continuous open reading frame encoding both GPIIb subunits. The cDNA encodes 1039 amino acids: 137 constituting the smaller subunit, 871 constituting the larger subunit, and 30 constituting an NH2-terminal signal peptide. No homology was found between the larger and smaller subunits. The smaller subunit contains a 26-residue hydrophobic sequence near its COOH terminus that represents a potential transmembrane domain. Four stretches of 12 amino acids present in the larger subunit are homologous to the calcium binding sites of calmodulin and troponin C. Northern blot analysis using HEL cell RNA indicated that the mature mRNA coding for GPIIb is 4.1 kilobases in size. A comparison of the GPIIb coding region with available cDNA sequences of the alpha-chains of the vitronectin and fibronectin receptors revealed 41% DNA homology and 74% and 63% amino acid homology, respectively. Our data establish the amino acid sequence for the human platelet glycoprotein IIb and provide additional evidence for the existence of a family of cellular adhesion protein receptors.  相似文献   

15.
The heterodimer GPIIb/IIIa, formed by the Ca(2+)-dependent association of glycoproteins IIb (GPIIb) and IIIa (GPIIIa), is the major integrin at the platelet surface, where it serves as the receptor for fibrinogen and other adhesive proteins and plays a central role in platelet aggregation and in platelet adhesion to the subendothelium. Here we describe a procedure for the isolation of GPIIb/IIIa using as starting material either the whole particulate fraction, obtained by differential centrifugation after hypoosmotic lysis of glycerol-loaded platelets, or any of the fractions obtained by density gradient centrifugation of the whole particulate fraction. The procedure consists simply of differential extraction with Triton X-100 of the starting particulate fraction, anion-exchange chromatography of the 4% Triton X-100 supernatant, and size-exclusion chromatography of the GPIIb/IIIa-rich fraction retained in the ion-exchange column. The use of particulate fractions instead of whole platelets as the starting material for extraction together with differential extraction with Triton X-100 (two steps that are simple and inexpensive to perform) results in the early removal of many unwanted proteins, which otherwise would have to be removed at later stages at the expense of severely impairing the final yield of GPIIb/IIIa. Pure GPIIb/IIIa is obtained with a yield of about 48%, the highest so far reported, calculated with respect to the GPIIb and GPIIIa content in the starting particulate fraction. The final product can be stored in freeze-dried form without apparent changes in its physical and chemical properties.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A chemical cross-linking approach has been used to characterize the interaction of platelets with small peptides of 7 and 14 residues containing the arginyl-glycyl-aspartic acid (RGD) sequence recognized by a variety of cellular adhesion receptors. The radioiodinated peptides were bound to platelets, and chemical cross-linking was attained by subsequent addition of bifunctional reagents. Three different cross-linking reagents coupled the RGD-containing peptides to platelet membrane glycoprotein IIb-IIIa (GPIIb-IIIa), and both subunits of this platelet membrane glycoprotein became radiolabeled with the RGD peptides. Platelet stimulation with agonists including thrombin, phorbol myristrate acetate, and ADP increased the extent of cross-linking by predominantly enhancing the coupling of the RGD peptides to the GPIIIa subunit. Cross-linking of the labeled RGD peptides to GPIIb and GPIIIa on stimulated and nonstimulated platelets exhibited structural specificity and was inhibited by excess nonlabeled RGD peptides. The interactions were inhibited by nonlabeled RGD peptides and a peptide with an amino acid sequence corresponding to the carboxyl terminus of the gamma chain of fibrinogen but less effectively by an arginyl-glycyl-glutamic acid peptide. Cross-linking of the RGD peptides to GPIIb-IIIa was divalent ion-dependent and, on stimulated platelets, was inhibited by the adhesive proteins fibrinogen and fibronectin, but not by albumin. These results indicate that the RGD-binding sites on platelets reside in close proximity to both subunits of GPIIb-IIIa and that platelet stimulation alters the topography of these sites such that the peptides become more efficiently cross-linked to GPIIIa.  相似文献   

17.
The attachment of platelets to collagen-coated microtiter plates at 20 degrees C was inhibited strongly by depletion of metabolic energy or by addition of cytochalasins and was slightly inhibited by the intracellular Ca2+ chelator BAPTA. In keeping with their respective potencies as inhibitors of actin polymerization, cytochalasins D and H were the most potent inhibitors of adhesion, while cytochalasin B was the least potent. Energy depletion, cytochalasin D or, to a much lesser extent, BAPTA also inhibited platelet adhesion to collagen in a suspension assay system at 37 degrees C. Collagen-induced platelet cytosolic Ca2+ mobilization was inhibited up to 70% by cytochalasin D and abolished by energy depletion or BAPTA. Elevation of intracellular platelet calcium by treatment with ionomycin had little effect on platelet adhesion to collagen. We propose that rapid platelet spreading along collagen fibers is both energy- and actin-dependent and necessary to produce maximal adhesion needed to elicit Ca2+ mobilization required for subsequent responses.  相似文献   

18.
In the present report we describe the platelet-binding characteristics of applaggin and echistatin, potent inhibitors of fibrinogen-dependent platelet aggregation derived from Agkistrodon piscivorus piscivorus and Echis carinatus snake venoms, respectively. Both molecules bound to unstimulated platelets in a specific and saturable manner. At saturation there were 37,100 +/- 3,150 (mean, +/- S.D.) molecules of applaggin and 27,200 +/- 2,816 molecules of echistatin bound/platelet, with dissociation constants (Kd) of 1.4 +/- 0.6 x 10(-7) M and 4.9 +/- 1.2 x 10(-7) M, respectively. Stimulation of platelets with ADP (10 microM) + epinephrine (2 microM) resulted in an increase in the number of molecules bound at saturation to 42,300 +/- 2,105 for applaggin and 32,185 +/- 3,180 for echistatin, with a Kd of 5.6 +/- 0.3 x 10(-8) M and 1.8 +/- 0.6 x 10(-7) M, respectively. The synthetic peptide (Arg)8-Gly-Asp-Val was a competitive antagonist of applaggin and echistatin binding to unstimulated platelets (Ki = 25 and 36 microM, respectively). Applaggin and echistatin inhibited the binding of fibrinogen to stimulated platelets in a dose-dependent manner, with an IC50 of 9 and 25 nM, respectively. In concert with inhibition of platelet aggregation, applaggin and echistatin inhibited platelet secretion and synthesis of thromboxane A2 induced by ADP, collagen, and human gamma-thrombin. The monclonal antibody, LJ-CP3, which inhibits the binding of Arg-Gly-Asp containing ligands to platelet GPIIb.IIIa, also inhibited applaggin binding to unstimulated platelets in a competitive manner (Ki = 4.5 microM). Thus, applaggin and echistatin bind to the platelet GPIIb.IIIa complex, and the Arg-Gly-Asp sequence plays a central role in mediating this interaction.  相似文献   

19.
BACKGROUND: The effect of non-steroidal anti-inflammatory drugs (NSAIDs) for reduced platelet aggregation and thromboxane A2 synthesis has been well documented. However, the influence on platelet function is not fully explained. Aim of this study was to examine the influence of the COX-1 inhibiting NSAIDs, diclofenac and metamizol on platelet activation and leukocyte-platelet complexes, in vitro. Surface expression of GPIIb/IIIa and P-selectin on platelets, and the percentage of platelet-leukocyte complexes were investigated. METHODS: Whole blood was incubated with three different concentrations of diclofenac and metamizol for 5 and 30 minutes, followed by activation with TRAP-6 and ADP. Rates of GPIIb/IIIa and P-selectin expression, and the percentage of platelet-leukocyte complexes were analyzed by a flow-cytometric assay. RESULTS: There were no significant differences in the expression of GPIIb/IIIa and P-selectin, and in the formation of platelet-leukocyte complexes after activation with ADP and TRAP-6, regarding both the time of incubation and the concentrations of diclofenac and metamizol. CONCLUSIONS: Accordingly, the inhibitory effect of diclofenac and metamizol on platelet aggregation is not related to a reduced surface expression of P-selectin and GPIIb/IIIa on platelets.  相似文献   

20.
H M Rinder  E L Snyder 《Blood cells》1992,18(3):445-56; discussion 457-60
This review will discuss how stored platelets become activated and will examine their ability to function and survive in vivo, posttransfusion. Experimental methods which have been shown to alter platelets during storage will be detailed. Using beta-thromboglobulin (beta-TG) and surface adhesion receptors as markers, investigators have examined the activation changes in platelet concentrates during preparation and storage. Resuspension of the platelet pellet after isolation of platelet-rich plasma appears to play a major role in producing platelet activation and beta-TG release during preparation. However, there is a significant amount of interdonor variability in platelet activation even at this early stage of storage. Over 5 days of storage, platelets release approximately 50% of their beta-TG contents. Furthermore, between 40% and 60% of the platelets express the alpha-granule membrane protein, P-selectin (GMP-140), during storage, which is also indicative of platelet activation. These activation changes correlate to some degree with platelet recovery posttransfusion but clearly do not explain the full lesion of platelet storage. The surface density of two platelet membrane receptors, glycoproteins (GP) Ib and IIb/IIIa, also change with activation, although in opposite directions. Platelet surface GPIb decreases initially with storage and then recovers, perhaps due to its relocation to the platelet surface from an intracellular pool. In contrast to GPIb, mean platelet surface GPIIb/IIIa increases slightly during storage, probably as a consequence of platelet activation and release of alpha-granule GPIIb/IIIa to the surface. Some hypotheses are offered regarding how these activated platelets can continue to circulate after transfusion. Further exploration of the platelet storage lesion will hopefully provide needed answers and thus permit better treatment of hemostatic disorders in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号