首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
Multiphasic titanium dioxide (TiO2) possessing abundant heterophase junctions have been widely used for various photocatalytic applications. Current synthesis of multiphasic TiO2 mainly involves the process of thermal treatment and multiple steps of rigorous reactions, which is adverse to controlling the crystal phases and phase ratios of multiphasic TiO2. Meanwhile, the resulting products have relatively low surface area and nonporous structure. Here, a facile polymer‐assisted coordination‐mediated self‐assembly method to synthesize mesoporous TiO2 polymorphs with controllable heterophase junctions and large surface area by using polyethylenimine as the porogen in an acidic aqueous synthesis system is reported. Using this approach, the crystal phases (triphase, biphase, and monophase) and phase compositions (0–100%) are easily tailored by selecting the suitable acidic media. Furthermore, the specific surface areas (77–228 m2 g?1) and pore sizes (2.9–10.1 nm) are readily tailored by changing the reaction temperature. The photocatalytic activity of mesoporous TiO2 polymorphs is evaluated by photocatalytic hydrogen evolution. The triphasic TiO2 exhibits an excellent photocatalytic H2 generation rate of 3.57 mmol h?1 g?1 as compared to other polymorphs, which is attributed to the synergistic effects of heterophase junctions and mesostructure. The band diagram of possible electron transfer pathway for triphasic TiO2 is also elucidated.  相似文献   

2.
A facile synthesis strategy to control the porosity of ionothermal nitrogen doped carbons is demonstrated. Adenine is used as cheap and biomass based precursor and a mixture of NaCl/ZnCl2 as combined solvent‐porogen. Variation of the ratio between the two salt influences the pore structure over a wide range. The eutectic mixture leads to micro‐ and mesoporous material with high total pore volume (TPV) of 3.0 cm3 g?1 and very high surface area of 2900 m2 g?1 essentially rendering the product an “all‐surface‐area” nitrogen doped carbon. Increasing NaCl contents cause a continuous increase of the mesopore size and the formation of additional macropores resulting in a very high maximal TPV of 5.2 cm3 g?1, showing 2540 m2 g?1 specific surface area using 60 mol% NaCl. Interestingly, the electrocatalytic activity of the samples toward oxygen reduction is strongly affected by the detailed pore structure. The different—however, chemically equivalent—catalysts vary up to 70 mV in their half wave potentials (E 1/2).The sample with optimized pore system shows a high selectivity toward the favored four electron process and an outstanding E 1/2 of ≈880 mV versus reversible hydrogen electrode (RHE), which is one of the best values reported for nitrogen doped carbons so far.  相似文献   

3.
Novel ordered hierarchical mesoporous/microporous carbon (OHMMC) derived from mesoporous titanium‐carbide/carbon composites was prepared for the first time by synthesizing ordered mesoporous nanocrystalline titanium‐carbide/carbon composites, followed by chlorination of titanium carbides. The mesostructure and microstructure can be conveniently tuned by controlling the TiC contents of mesoporous TiC/C composite precursor, and chlorination temperature. By optimal condition, the OHMMC has a high surface area (1917 m2g?1), large pore volumes (1.24 cm3g?1), narrow mesopore‐size distributions (centered at about 3 nm), and micropore size of 0.69 and 1.25 nm, and shows a great potential as electrode for supercapacitor applications: it exhibits a high capacitance of 146 Fg?1 in noaqueous electrolyte and excellent rate capability. The ordered mesoporous channel pores are favorable for retention and immersion of the electrolyte, providing a more favorable path for electrolyte penetration and transportation to achieve promising rate capability performance. Meanwhile, the micropores drilled on the mesopore‐walls can increase the specific surface area to provide more sites for charge storage.  相似文献   

4.
Sandwich‐type hybrid carbon nanosheets (SCNMM) consisting of graphene and micro/mesoporous carbon layer are fabricated via a double template method using graphene oxide as the shape‐directing agent and SiO2 nanoparticles as the mesoporous guide. The polypyrrole synthesized in situ on the graphene oxide sheets is used as a carbon precursor. The micro/mesoporous strcutures of the SCNMM are created by a carbonization process followed by HF solution etching and KOH treatment. Sulfur is impregnated into the hybrid carbon nanosheets to generate S@SCNMM composites for the cathode materials in Li‐S secondary batteries. The microstructures and electrochemical performance of the as‐prepared samples are investigated in detail. The hybrid carbon nanosheets, which have a thickness of about 10–25 nm, high surface area of 1588 m2 g?1, and broad pore size distribution of 0.8–6.0 nm, are highly interconnected to form a 3D hierarchical structure. The S@SCNMM sample with the sulfur content of 74 wt% exhibits excellent electrochemical performance, including large reversible capacity, good cycling stability and coulombic efficiency, and good rate capability, which is believed to be due to the structure of hybrid carbon materials with hierarchical porous structure, which have large specific surface area and pore volume.  相似文献   

5.
Carbonaceous materials are attractive supercapacitor electrode materials due to their high electronic conductivity, large specific surface area, and low cost. Here, a unique hierarchical porous N,O,S‐enriched carbon foam (KNOSC) with high level of structural complexity for supercapacitors is reported. It is fabricated via a combination of a soft‐template method, freeze‐drying, and chemical etching. The carbon foam is a macroporous structure containing a network of mesoporous channels filled with micropores. It has an extremely large specific surface area of 2685 m2 g?1. The pore engineered carbon structure is also uniformly doped with N, O, and S. The KNOSC electrode achieves an outstanding capacitance of 402.5 F g?1 at 1 A g?1 and superior rate capability of 308.5 F g?1 at 100 A g?1. The KNOSC exhibits a Bode frequency at the phase angle of ?45° of 18.5 Hz, which corresponds to a time constant of 0.054 s only. A symmetric supercapacitor device using KNOSC as electrodes can be charged/discharged within 1.52 s to deliver a specific energy density of 15.2 W h kg?1 at a power density of 36 kW kg?1. These results suggest that the pore and heteroatom engineered structures are promising electrode materials for ultrafast charging.  相似文献   

6.
Tantalum nitride (Ta3N5) with a suitable bandgap (≈2 eV) is regarded as one of the most promising photocatalysts for efficient solar energy harvesting and conversion. However, Ta3N5 suffers from low hydrogen production activity due to the low carrier mobility and fast carrier recombination. Thus, the design of Ta3N5 nanostructures to facilitate charge carrier transport and improve photocatalytic performance remains a challenge. This study reports a new type of ultrathin (≈2 nm) Ta3N5 nanomesh with high specific surface area (284.6 m2 g?1) and excellent crystallinity by an innovative bottom‐up graphene oxide templated strategy. The resulting Ta3N5 nanomeshes demonstrate drastically improved electron transport ability and prolonged lifetime of charge carriers, due to the nature of high surface area and excellent crystallinity. As a result, when used as photocatalysts, the Ta3N5 nanomeshes exhibit a greater than tenfold improvement in solar hydrogen production compared to bulk counterparts. This work provides an effective and generic strategy for designing 2D ultrathin nanomesh structures for nonlayered materials with improved catalytic activity.  相似文献   

7.
Green plants use solar energy efficiently in nature. Simulating the exquisite structure of a natural photosynthesis system may open a new approach for the construction of desirable photocatalysts with high light harvesting efficiency and performance. Herein, inspired by the excellent light utilization of “leaf mosaic” in plants, a novel vine‐like g‐C3N4 (V‐CN) is synthesized for the first time by copolymerizing urea with dicyandiamide‐formaldehyde (DF) resin. The as‐prepared V‐CN exhibits ultrahigh photocatalytic hydrogen production of 13.6 mmol g?1 h?1 under visible light and an apparent quantum yield of 12.7% at 420 nm, which is ≈38 times higher than that of traditional g‐C3N4, representing one of the highest‐activity g‐C3N4‐based photocatalysts. This super photocatalytic performance is derived from the unique leaf mosaic structure of V‐CN, which effectively improves its light utilization and affords a larger specific surface area. In addition, the introduction of DF resin further optimizes the energy band of V‐CN, extends its light absorption, and improves its crystallinity and interfacial charge transport, resulting in high performance. It is an easy and green strategy for the preparation of broad‐spectrum, high‐performance g‐C3N4, which presents significant advancement for the design of other nanophotocatalysts by simulating the fine structure of natural photosynthesis.  相似文献   

8.
Various host materials have been investigated to address the intrinsic drawbacks of lithium sulfur batteries, such as the low electronic conductivity of sulfur and inevitable decay in capacity during cycling. Besides the widely investigated carbonaceous materials, metal oxides have drawn much attention because they form strong chemical bonds with the soluble lithium polysulfides. Here, mesoporous Magnéli Ti4O7 microspheres are prepared via an in situ carbothermal reduction that exhibit interconnected mesopores (20.4 nm), large pore volume (0.39 cm3 g?1), and high surface area (197.2 m2 g?1). When the sulfur cathode is embedded in a matrix of mesoporous Magnéli Ti4O7 microspheres, it exhibits a superior reversible capacity of 1317.6 mA h g?1 at moderate current (C/10) and a low decay in capacity of 12% after 400 cycles at C/5. Strong chemical bonding of the lithium polysulfides to Ti4O7, as well as effective physical trapping in the mesopores and voids in the matrix are considered responsible for the improved electrochemical performance. A mechanism of the physical and chemical interactions between mesoporous Magnéli Ti4O7 microspheres and sulfur is proposed based on systematic investigations.  相似文献   

9.
2D metal organic frameworks (MOF) have received tremendous attention due to their organic–inorganic hybrid nature, large surface area, highly exposed active sites, and ultrathin thickness. However, the application of 2D MOF in light‐to‐hydrogen (H2) conversion is rarely reported. Here, a novel 2D MOF [Ni(phen)(oba)]n·0.5nH2O (phen = 1,10‐phenanthroline, oba = 4,4′‐oxybis(benzoate)) is for the first time employed as a general, high‐performance, and earth‐abundant platform to support CdS or Zn0.8Cd0.2S for achieving tremendously improved visible‐light‐induced H2‐production activity. Particularly, the CdS‐loaded 2D MOF exhibits an excellent H2‐production activity of 45 201 µmol h?1 g?1, even exceeding that of Pt‐loaded CdS by 185%. Advanced characterizations, e.g., synchrotron‐based X‐ray absorption near edge structure, and theoretical calculations disclose that the interactive nature between 2D MOF and CdS, combined with the high surface area, abundant reactive centers, and favorable band structure of 2D MOFs, synergistically contribute to this distinguished photocatalytic performance. The work not only demonstrates that the earth‐abundant 2D MOF can serve as a versatile and effective platform supporting metal sulfides to boost their photocatalytic H2‐production performance without noble‐metal co‐catalysts, but also paves avenues to the design and synthesis of 2D‐MOF‐based heterostructures for catalysis and electronics applications.  相似文献   

10.
Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of mesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)–poly(butylene oxide)–poly(ethylene oxide) triblock copolymer (EO39BO47EO39), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H2O. The pristine material exhibited a BET specific surface area of 684 m2 g−1, total pore volume of 0.89 cm3 g−1, external surface area of 49 m2 g−1 and microporous volume of 0.09 cm3 g−1. The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry.  相似文献   

11.
Herein, this study successfully fabricates porous g‐C3N4‐based nanocomposites by decorating sheet‐like nanostructured MnOx and subsequently coupling Au‐modified nanocrystalline TiO2. It is clearly demonstrated that the as‐prepared amount‐optimized nanocomposite exhibits exceptional visible‐light photocatalytic activities for CO2 conversion to CH4 and for H2 evolution, respectively by ≈28‐time (140 µmol g?1 h?1) and ≈31‐time (313 µmol g?1 h?1) enhancement compared to the widely accepted outstanding g‐C3N4 prepared with urea as the raw material, along with the calculated quantum efficiencies of ≈4.92% and 2.78% at 420 nm wavelength. It is confirmed mainly based on the steady‐state surface photovoltage spectra, transient‐state surface photovoltage responses, fluorescence spectra related to the produced ?OH amount, and electrochemical reduction curves that the exceptional photoactivities are comprehensively attributed to the large surface area (85.5 m2 g?1) due to the porous structure, to the greatly enhanced charge separation and to the introduced catalytic functions to the carrier‐related redox reactions by decorating MnOx and coupling Au‐TiO2, respectively, to modulate holes and electrons. Moreover, it is suggested mainly based on the photocatalytic experiments of CO2 reduction with isotope 13CO2 and D2O that the produced ?CO2 and ?H as active radicals would be dominant to initiate the conversion of CO2 to CH4.  相似文献   

12.
This study reports an improved method for activating asphalt to produce ultra‐high surface area porous carbons. Pretreatment of asphalt (untreated Gilsonite, uGil ) at 400 °C for 3 h removes the more volatile organic compounds to form pretreated asphalt ( uGil‐P ) material with a larger fraction of higher molecular weight π‐conjugated asphaltenes. Subsequent activation of uGil‐P at 900 °C gives an ultra‐high surface area (4200 m2 g?1) porous carbon material ( uGil‐900 ) with a mixed micro and mesoporous structure. uGil‐900 shows enhanced room temperature CO2 uptake capacity at 54 bar of 154 wt% (35 mmol g?1). The CH4 uptake capacity is 37.5 wt% (24 mmol g?1) at 300 bar. These are relevant pressures in natural gas production. The room temperature working CO2 uptake capacity for uGil‐900 is 19.1 mmol g?1 (84 wt%) at 20 bar and 32.6 mmol g?1 (143 wt%) at 50 bar. In order to further assess the reliability of uGil‐900 for CO2 capture at elevated pressures, the authors study competitive sorption of CO2 and CH4 on uGil‐900 at pressures from 1 to 20 bar at 25 °C. CO2/CH4 displacement constants are measured at 2 to 40 bar, and found to increase significantly with pressure and surface area.  相似文献   

13.
While electrochemical water splitting is one of the most promising methods to store light/electrical energy in chemical bonds, a key challenge remains in the realization of an efficient oxygen evolution reaction catalyst with large surface area, good electrical conductivity, high catalytic properties, and low fabrication cost. Here, a facile solution reduction method is demonstrated for mesoporous Co3O4 nanowires treated with NaBH4. The high‐surface‐area mesopore feature leads to efficient surface reduction in solution at room temperature, which allows for retention of the nanowire morphology and 1D charge transport behavior, while at the same time substantially increasing the oxygen vacancies on the nanowire surface. Compared to pristine Co3O4 nanowires, the reduced Co3O4 nanowires exhibit a much larger current of 13.1 mA cm‐2 at 1.65 V vs reversible hydrogen electrode (RHE) and a much lower onset potential of 1.52 V vs RHE. Electrochemical supercapacitors based on the reduced Co3O4 nanowires also show a much improved capacitance of 978 F g‐1 and reduced charge transfer resistance. Density‐functional theory calculations reveal that the existence of oxygen vacancies leads to the formation of new gap states in which the electrons previously associated with the Co‐O bonds tend to be delocalized, resulting in the much higher electrical conductivity and electrocatalytic activity.  相似文献   

14.
Lithium–sulfur batteries (LSBs) are a class of new‐generation rechargeable high‐energy‐density batteries. However, the persisting issue of lithium polysulfides (LiPs) dissolution and the shuttling effect that impedes the efficiency of LSBs are challenging to resolve. Herein a general synthesis of highly dispersed pyrrhotite Fe1?xS nanoparticles embedded in hierarchically porous nitrogen‐doped carbon spheres (Fe1?xS‐NC) is proposed. Fe1?xS‐NC has a high specific surface area (627 m2 g?1), large pore volume (0.41 cm3 g?1), and enhanced adsorption and electrocatalytic transition toward LiPs. Furthermore, in situ generated large mesoporous pores within carbon spheres can accommodate high sulfur loading of up to 75%, and sustain volume variations during charge/discharge cycles as well as improve ionic/mass transfer. The exceptional adsorption properties of Fe1?xS‐NC for LiPs are predicted theoretically and confirmed experimentally. Subsequently, the electrocatalytic activity of Fe1?xS‐NC is thoroughly verified. The results confirm Fe1?xS‐NC is a highly efficient nanoreactor for sulfur loading. Consequently, the Fe1?xS‐NC nanoreactor performs extremely well as a cathodic material for LSBs, exhibiting a high initial capacity of 1070 mAh g?1 with nearly no capacity loss after 200 cycles at 0.5 C. Furthermore, the resulting LSBs display remarkably enhanced rate capability and cyclability even at a high sulfur loading of 8.14 mg cm?2.  相似文献   

15.
Nanoporous carbons (NPCs) with engineered specific pore sizes and sufficiently high porosities (both specific surface area and pore volume) are necessary for storing energy in the form of electric charges and molecules. Herein, NPCs, derived from biomass pine‐cones, coffee‐grounds, graphene‐oxide and metal‐organic frameworks, with systematically increased pore width (<1.0 nm to a few nm), micropore volume (0.2–0.9 cm3 g?1) and specific surface area (800–2800 m2 g?1) are presented. Superior CO2, H2, and H2O uptakes of 35.0 wt% (≈7.9 mmol g?1 at 273 K), 3.0 wt% (at 77 K) and 85.0 wt% (at 298 K), respectively at 1 bar, are achieved. At controlled microporosity, supercapacitors deliver impressive performance with a capacity of 320 and 230 F g?1 at 500 mA g?1, in aqueous and organic electrolytes, respectively. Excellent areal capacitance and energy density (>50 Wh kg?1 at high power density, 1000 W kg?1) are achieved to form the highest reported values among the range of carbons in the literature. The noteworthy energy storage performance of the NPCs for all five cases (CO2, H2, H2O, and capacitance in aqueous and organic electrolytes) is highlighted by direct comparison to numerous existing porous solids. A further analysis on the specific pore type governed physisorption capacities is presented.  相似文献   

16.
A novel ligand‐assisted assembly approach is demonstrated for the synthesis of thermally stable and large‐pore ordered mesoporous titanium dioxide with a highly crystalline framework by using diblock copolymer poly(ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) as a template and titanium isopropoxide (TIPO) as a precursor. Small‐angle X‐ray scattering, X‐ray diffraction (XRD), transmission electron microscopy (TEM), high‐resolution scanning electron microscopy, and N2‐sorption measurements indicate that the obtained TiO2 materials possess an ordered primary cubic mesostructure with large, uniform pore diameters of about 16.0 nm, and high Brunauer–Emmett–Teller surface areas of ~112 m2 g?1, as well as high thermal stability (~700 °C). High resolution TEM and wide‐angle XRD measurements clearly illustrate the high crystallinity of the mesoporous titania with an anatase structure in the pore walls. It is worth mentioning that, in this process, in addition to tetrahydrofuran as a solvent, acetylacetone was employed as a coordination agent to avoid rapid hydrolysis of the titanium precursor. Additionally, stepped evaporation and heating processes were adopted to control the condensation rate and facilitate the assembly of the ordered mesostructure, and ensure the formation of fully polycrystalline anatase titania frameworks without collapse of the mesostructure. By employing the obtained mesoporous and crystallized TiO2 as the photoanode in a dye‐sensitized solar cell, a high power‐conversion efficiency (5.45%) can be achieved in combination with the N719 dye, which shows that this mesoprous titania is a great potential candidate as a catalyst support for photonic‐conversion applications.  相似文献   

17.
Atomically dispersed transition metals confined with nitrogen on a carbon support has demonstrated great electrocatalytic performance, but an extremely low concentration of metal atoms (usually below 1.5%) is necessary to avoid aggregation through sintering which limits mass activity. Here, a salt‐template method to fabricate densely populated, monodispersed cobalt atoms on a nitrogen‐doped graphene‐like carbon support is reported, and achieving a dramatically higher site fraction of Co atoms (≈15.3%) in the catalyst and demonstrating excellent electrocatalytic activity for both the oxygen reduction reaction and oxygen evolution reaction. The atomic dispersion and high site fraction of Co provide a large electrochemically active surface area of ≈105.6 m2 g?1, leading to very high mass activity for ORR (≈12.164 A mgCo?1 at 0.8 V vs reversible hydrogen electrode), almost 10.5 times higher than that of the state‐of‐the‐art benchmark Pt/C catalyst (1.156 A mgPt?1 under similar conditions). It also demonstrates an outstanding mass activity for OER (0.278 A mgCo?1). The Zn‐air battery based on this bifunctional catalyst exhibits high energy density of 945 Wh kgZn?1 as well as remarkable stability. In addition, both density functional theory based simulations and experimental measurements suggest that the Co? N4 sites on the carbon matrix are the most active sites for the bifunctional oxygen electrocatalytic activity.  相似文献   

18.
A facile approach to synthesize porous disordered carbon layers as energy storage units coating on graphene sheets to form interconnected frameworks by one‐step pyrolysis of the mixture of graphene oxide/polyaniline and KOH is presented. As effective energy storage units, these porous carbon layers play an important role in enhancing the electrochemical performances. The obtained porous carbon material exhibits a high specific surface area (2927 m2 g?1), hierarchical interconnected pores, moderate pore volume (1.78 cm3 g?1), short ion diffusion paths, and a high nitrogen level (6 at%). It displays both unparalleled gravimetric (481 F g?1) and outstanding volumetric capacitance (212 F cm?3) in an aqueous electrolyte. More importantly, the assembled symmetrical supercapacitor delivers not only high gravimetric (25.7 Wh kg?1 based on total mass of electroactive materials) but also high volumetric energy densities (11.3 Wh L?1) in an aqueous electrolyte. Furthermore, the assembled asymmetric supercapacitor yields a maximum energy density up to 88 Wh kg?1, which is, to the best of our knowledge, the highest value so far reported for carbon//MnO2 asymmetric supercapacitors in aqueous electrolytes. Therefore, this novel carbon material holds great promise for potential applications in energy‐related technological fields.  相似文献   

19.
Highly porous, sponge‐like boron nitride materials, namely microsponges (BNMSs), with ultrahigh surface areas up to 1900 m2 g‐1, are prepared by a facile, one‐step, template‐free reaction of boric acid and dicyanamide. Detailed analysis confirms the increase of the interlayer (0002) distances compared to standard graphitic BN and reveals special dislocation structures in the BNMSs. The resulting textural parameters such as the Brunauer‐Emmett‐Teller (BET) specific surface areas and pore volumes are easily tunable over a wide range by adjusting the synthesis temperature or composition of the precursors. It is demonstrated that these microporous materials (with pore widths of 1.0 nm) display comparatively high and reversible H2 sorption capacities from 1.65 to 2.57 wt% at 1 MPa and –196 °C on a material basis.  相似文献   

20.
The use of perovskite materials as anion‐based intercalation pseudocapacitor electrodes has received significant attention in recent years. Notably, these materials, characterized by high oxygen vacancy concentrations, do not require high surface areas to achieve a high energy storage capacity as a result of the bulk intercalation mechanism. This study reports that reduced PrBaMn2O6–δ (r‐PBM), possessing a layered double perovskite structure, exhibits ultrahigh capacitance and functions as an excellent oxygen anion‐intercalation‐type electrode material for supercapacitors. Formation of the layered double perovskite structure, as facilitated by hydrogen treatment, is shown to significantly enhance the capacitance, with the resulting r‐PBM material demonstrating a very high gravimetric capacitance of 1034.8 F g?1 and an excellent volumetric capacitance of ≈2535.3 F cm?3 at a current density of 1 A g?1. The resultant formation of a double perovskite crystal oxide with a specific layered structure leads to the r‐PBM with a substantially higher oxygen diffusion rate and oxygen vacancy concentration. These superior characteristics show immense promise for their application as oxygen anion‐intercalation‐type electrodes in pseudocapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号