首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.
4.
A small molecular metal‐chelate complex, tris(8‐hydroxyquinoline‐5‐sulfonic acid) aluminum (AlQSA3), that has three sulfonic acid groups per molecule leading to an excellent solubility in water is reported as a liquid‐free perfect solid‐state electrolyte for flexible film‐type all‐solid‐state energy storage devices. The AlQSA3 material is synthesized by one‐step reaction of aluminum triisopropoxide and 8‐hydroxyquinoline‐5‐sulfonic acid. The aqueous solutions of AlQSA3 are applied to fabricate flexible film‐type all‐solid state electric double layer capacitors with indium‐tin oxide thin film electrodes. The ion conductivity of the AlQSA3 film reaches 0.116 mS cm?1, while a pronounced hysteresis are obtained in the cyclic voltammetry measurement. The AlQSA3 film capacitors exhibit an output voltage of 1.5 V at 20 μA cm?2, which is considerably stable by the repeated operation. In particular, the peak output voltage is well kept even after 180° bending for 500 times in the case of the flexible AlQSA3 film capacitors.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
Storing energy within flexible and safe materials is one of the most important goals for energy storage devices. To that end, high‐performance conformable electrolytes, which can transport ions quickly and safely, and can also effectively separate and bond strongly to the two electrodes, are of great importance. However, it is challenging to develop an electrolyte that can play these multiple roles simultaneously. Here, aiming to overcome this challenge, a particle‐based approach to the fabrication of a high‐performance, gum‐like electrolyte is described. The intriguing properties of the gum‐like electrolyte include high ionic conductivity, good mechanical properties, excellent adhesion properties, and, more importantly, thermal‐protection capability. It is shown that these significant properties are well‐controlled by the incorporation of wax particles with variable size, loading, and surface properties that can be designed through the use of an apporpriate surfactant. This provides a promising solution for high‐performance electrolytes and indicates a cost‐effective approach to fabricating multifunctional ion‐conducting materials.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号