首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomes with active nucleolus organizer regions (NORs) were visualized in root tip metaphases ofPhaseolus coccineus using the silver staining technique. A mean number of 5.5 Ag-NORs per cell was observed in 54 cells from eight plants. In the endopolyploid nuclei of the suspensor the silver technique did not demonstrate the reported specificity for nucleolus organizer activity, because there was usually pale staining of nucleoli and preferential staining of heterochromatic regions in the polytene chromosomes including pericentromeric material, telomeres and NORs. The mean number of NORs per nucleolus as detected by this method was 5.8 (28 nucleoli analysed). Using a modified preparation technique, giant chromosomes stained pale, but nucleoli of suspensor cells displayed darkly silver staining internal domains, each of which originating from a nucleolus organizer.—Giemsa C-banding of endopolyploid suspensor nuclei revealed C-positive nucleolus organizers with darkly staining intranucleolar fibrils. The latter were frequently involved in inter-NOR associations. In 34 nucleoli analysed, the mean number of Giemsa C-positive NORs per nucleolus was 6.0.Dedicated to Professor Dr.Lothar Geitler on the occasion of his 80th birthday.  相似文献   

2.
In the last 3 oogonial mitoses in Ascaphus truei all daughter nuclei remain in the same cell. The oocyte is 8-nucleate at the start of meiotic prophase and remains so until late in oogenesis when 7 of the nuclei disappear. All 8 nuclei in a single oocyte resemble one another with respect to size and chromatin distribution at all stages of meiotic prophase. Much of the Feulgen-positive material in pachytene nuclei is concentrated into one region of the nucleus. — All of the 8 germinal vesicles of yolky oocytes have a full set of lampbrush diplotene bivalents. Germinal vesicles from oocytes of up to 0.8 mm diameter have less than 100 nucleoli, some of which are multiple nucleoli in the sense that they have more than one core region. Each of the 8 nuclei in oocytes from one animal had about the same volume of nucleolar material. — Two values have been obtained for the amount of DNA in a diploid nucleus from Ascaphus. A biochemical estimate utilizing erythrocyte nuclei and the diphenylamine reaction yielded a value of 7.1 pg per nucleus. Microphotometry of erythrocyte nuclei stained with Feulgen's reagent gave a value of 8.2 pg per nucleus. — Microphotometric measurements of Feulgen-stained nuclei at various stages of meiotic prophase up to diplotene indicate that each nucleus synthesizes up to 5 pg of extrachromosomal DNA during and immediately after pachytene. This DNA is considered to be nucleolar. Autoradiography of nuclei from oocytes which had been incubated for 6h in 3H thymidine showed silver grains over pachytene and early diplotene nuclei only. In pachytene nuclei the silver grains overlaid that part of the nucleus where Feulgen-positive material was most concentrated. Most of the chromosomal material was unlabelled. — The significance of the 8-nucleate condition in Ascaphus oocytes is discussed, and the amount of nucleolar DNA synthesized at pachytene and of nucleolar material present in germinal vesicles is compared with corresponding situations in other amphibians.  相似文献   

3.
We studied distribution of ribosomal DNA (rDNA) sequences along with chromosomal location of the nucleolar organizer regions (NORs) in males of two fish parasites, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Fluorescence in situ hybridization with 18S rDNA probe identified two clusters of rDNA in each species, but revealed a remarkable difference in their location on chromosomes. In P. laevis, the rDNA-FISH signals were found in long arms of the first chromosome pair and in short arms of the second pair. Whereas in P. tereticollis, rDNA clusters were located in long arms of both the first and second chromosome pairs. The divergent location of rDNA clusters in the chromosome No. 2 supports current classification of P. tereticollis, previously considered a synonym of P. laevis, as a separate species. A possible scenario of the second chromosome rearrangement during karyotype evolution of the two species involves two successive pericentric inversions. In both species, one or two prominent nucleoli were apparent within interphase nuclei stained with either silver nitrate or a fluorescent dye YOYO-1. However, a single large nucleolus was observed in early stages of mitosis and meiosis I regardless the number of rDNA clusters. Nevertheless, two bivalents with silver-stained NORs in diakinesis and two silver-stained sites in early prophase II nuclei indicated that all NORs are active. This means that each Pomphorhynchus NOR generates a nucleolus, but the resulting nucleoli have a strong tendency to associate in a large body.  相似文献   

4.
The distribution and the behaviour of the nucleolus organizer regions (NORs) were analysed during the spermatogenesis and oogenesis of K. flavicollis with the silver staining method. The Ag-stainability of the NORs increases in growing spermatocytes up to pachytene and is absent during the remainder of the meiotic prophase. During female meiosis the nucleolar material undergoes a more complex transformation. It is active until pachytene; in early diplotene the mass of silver stainable material progressively increases as an effect of rDNA amplification. By the end of meiotic prophase the nucleolar strands disappear and a large nucleolus is rebuilt in the mature oocyte.  相似文献   

5.
S. Sato  E. Matsumoto  Y. Kuroki 《Protoplasma》1981,108(1-2):139-147
Summary A method for preparing chromosomes that included enzyme maceration and subsequent flame-drying allowed us to easily detect satellite association in the mitotic cells ofNothoscordum fragrans (2 n=19), which has six acrocentric nucleolar chromosomes in its chromosome complement. Of 593 metaphase plates examined, approximately 60% had satellite association. The number of chromosomes involved in the association varied from two to six, and the incidence decreased as the number of chromosomes involved in the association increased. Comparison of the same chromosomes stained with Giemsa and subsequently with silver demonstrated that the nucleolar organizing regions (NORs) that responded almost negatively to Giemsa and positively to silver was responsible for satellite association. The nucleoli may strongly correlate with satellite association since persistent nucleoli associated with a few metaphase chromosomes were sometimes found and the nucleoli had a strong tendency to fuse with each other at interphase. Four types of acrocentric chromosomes could be discriminated on the basis of the bands negatively staining with Hoechst. All four types were involved in satellite association and there were significant deviations from the expectation for random participation in the association.  相似文献   

6.
Summary The characteristics of the nucleoli of the microsporangiate strobili and the root tips of Scotch pine (Pinus sylvestris L.) vary both during the course of the cellular cycle and, with regard to the pattern and stage of organ and tissue differentiation. Nucleologenesis takes place in interphase and the nucleoli last until prophase. Several types of nucleoli occur during the nucleolar cycle, the pattern and age of tissues determining which type or types dominate. In the strobilus primordia collected at the end of July and in August, the mitotic frequency is high. Nucleoli remain small throughout the nucleolar cycle, and at the electron microscopic level, they display intermingled fibrillar and fibrillogranular components. Strobilus primordia collected in September contain larger nucleoli in the sporogenous nuclei than in the nuclei of the tapetum or of the wall cells. Amongst the nucleoli with completely intermingled fibrous and granular material, nucleoli with nucleolonema or with vacuoles occur frequently. Small balls of fibrous material are seen on the nucleolar surface and in the nucleoplasm. In October, the mitotic frequency of strobilal cells is low. Nucleoli with completely intermingled fibrillar and granular components have vanished whereas a new, compact type of nucleolus with a dense fibrillogranular main portion and with nucleolonema, has developed. The nucleoli of the sporogenous cells have enlarged continuously whereas those of the wall cells are small. The nucleoli of the root tip cell resemble, to a certain extent, those of the strobilus primordia collected in September. In squashed preparations, the nucleoli of the strobilal cells bind the common nucleolar stains poorly whereas the nucleoli of the root cells can be stained with all the methods used. In certain cases, DNase treatment improves the stainability of the strobilal nucleoli. AgNO3-staining is successful after acetic acid: alcohol fixation but not after formalin: hydrochinone fixation.  相似文献   

7.
S Iu Demin 《Tsitologiia》1999,41(1):66-86
Preparations of surface stretched amembranous nuclei and mitotic figures were used for revealing the high order nuclear and chromosomal structures. The preparations were obtained by dropping amembraneous nuclei and mitotic figures suspension in methanol-glacial acetic acid mixture (3:1) on wetted superclean slides. Amembraneous nuclei and mitotic figures were isolated from intact murine and human cells (lines L1210, SK-UT-1B, PHA-stimulated lymphocytes) by means of their 1-5 min prefixational capillary pipetting with freshly prepared 0.018-0.06% Triton X-100 solution in the conditional cultural medium. Stretched amembraneous nuclei and mitotic figures had no features of induced chromatin dispersion and compaction. Stretched interphase amembraneous nuclei showed spatially separated individual structures (thin chromatin fibres, nucleoli, intranuclear bodies), polymorphous pattern of perinucleolar chromatin aggregation and episodically expressed beaded thick chromatin fibres and a chromocenter. The chromomeric pattern of the spread chromosomes of mitotic figures was quite similar but hardly identical with that of G-banding. The stretched prometaphase mitotic figures in all tested cell types always contained loose "residual" nucleoli looking like typical prophase nucleoli as concerns their shape and number per cell (mitotic figure). The majority of chromosomes of stretched mitotic figures and of prophase amembraneous nuclei were attached to the nucleolar material. All tested cell lines showed almost the same variation in number of nucleolus-attached chromosomes, per both prophase amembraneous nucleus and prometaphase mitotic figure. Some chromosomes of stretched mitotic figures were colocated with "residual" nucleoli and looked shortened and strongly condensed. Other chromosomes, locally associated with "residual" nucleoli, were straight and oriented radially to these. Mutual chromosomal arrangements in mitotic cells on smears and in stretched mitotic figures were analogous. Equatorial plates from PBS-washed SK-UT-1B cells displayed a better stretching capacity than those from untreated cells. In the former case metaphase chromosomes were seen more uniformly stretched and well identified after GTG-banding procedure. The number of interchromosomal (mainly telomere-telomeric and telomere-centromeric) connections per stretched mitotic figure (or per stretched prophase amembraneous nucleus) was minimum in late prometaphase, maximum in prophase and early prometaphase, and intermediate in metaphase. The obtained data are discussed in terms of topology and longitudinal heterogeneity of mitotic chromosomes.  相似文献   

8.
D. B. Gromov 《Protoplasma》1985,126(1-2):130-139
Summary The fine structure ofAmoeba proteus nuclei has been studied during interphase and mitosis. The interphase nucleus is discoidal, the nuclear envelope is provided with a honeycomb layer on the inside. There are numerous nucleoli at the periphery and many chromatin filaments and nuclear helices in the central part of nucleus.In prophase the nucleus becomes spherical, the numerous chromosomes are condensed, and the number of nucleoli decreases. The mitotic apparatus forms inside the nucleus in form of an acentric spindle. In metaphase the nuclear envelope loses its pore complexes and transforms into a system of rough endoplasmic reticulum cisternae (ERC) which separates the mitotic apparatus from the surrounding cytoplasm; the nucleoli and the honeycomb layer disappear completely. In anaphase the half-spindles become conical, and the system of ERC around the mitotic spindle persists. Electron dense material (possibly microtubule organizing centers—MTOCs) appears at the spindle pole regions during this stage. The spindle includes kinetochore microtubules attached to the chromosomes, and non-kinetochore ones which pierce the anaphase plate. In telophase the spindle disappears, the chromosomes decondense, and the nuclear envelope becomes reconstructed from the ERC. At this stage, nucleoli can already be revealed with the light microscope by silver staining; they are visible in ultrathin sections as numerous electron dense bodies at the periphery of the nucleus.The mitotic chromosomes consist of 10 nm fibers and have threelayered kinetochores. Single nuclear helices still occur at early stages of mitosis in the spindle region.  相似文献   

9.
Summary Silver stainable proteins of the Nucleolar Organizer Regions (Ag-NOR proteins) of human breast cancer tissues have been localized at the electron microscopical level with a new method which combines a simple and reproducible one step Ag-NOR staining method combined with an acetylation procedure. This new method allows the fine identification of nucleolar components, particularly those which are stained by silver.In order to determine the cytochemical nature of the components associated with Ag-NOR proteins, the EDTA regressive preferential staining procedure for ribonucleoproteins has been applied to sections. By this means the precise localization of the Ag-NOR proteins was studied simultaneously with that of ribonucleoprotein within interphasic nucleoli and mitotic chromosomes.In interphasic nucleoli, stainable Ag-NOR proteins were localized in fibrillar centres and part of the dense fibrillar component. No silver deposits were seen on perichromatin or interchromatin fibrils and granules.In metaphasic nuclei, Ag-NOR proteins were only found on roundish fibrillar ribonucleoprotein structures, which could correspond to secondary constrictions. No silver deposits were seen on the well defined ribonucleoprotein sheet surrounding the chromosomes.In telophasic nuclei, Ag-NOR proteins were seen on the central part of roundish ribonucleoprotein fibrillar structures integrated in decondensing chromosomes. These structures have been interpreted as the nucleolar organizer regions around which rRNA synthesis resumes.In interphasic and mitotic nuclei, Ag-NOR proteins were never found within condensed chromatin but always in association with ribonucleoprotein components.The new method proposed here appears to be a useful tool for the simultaneous study of the localization of ribonucleoprotein and Ag-NOR proteins during the cell cycle.  相似文献   

10.
NORs and interphase nucleoli have been silver stained inAllium cepa, A. fistulosum, reciprocal crosses between both species, and in different strains of top onions which originated from hybridization betweenA. cepa andA. fistulosum. The variability observed in size, number, and position of active NORs and correspondingly in number (and size) of interphase nucleoli is at least in part strain-specific. These data are taken to indicate that NORs inAllium behave like movable genetic elements.—With respect to the staining specifity of silver nitrate, it was found that AgNO3 labels (1) nucleoli, (2) NORs (i.e., actively transcribed ribosomal genes) inside the achromatic secondary constrictions, and (3) sometimes (but less pronounced) centromeres; Giemsa banding labels heterochromatin surrounding the NOR but not the nucleolus organizing secondary constriction.  相似文献   

11.
S. Sato  M. Hizume  S. Kawamura 《Protoplasma》1980,105(1-2):77-85
Summary Allium sativum L. (2 n=16) had three types of clones with regard to the number of chromosomes carrying well-defined secondary constrictions: the first type had two secondary constricted chromosomes (type I), the second had three (type II) and the third had four (type III). Silver staining was applied to these three types of cells to determine the number of nucleolus organizing regions (NORs) per cell and to study the relationship between the morphological appearance of the secondary constrictions and the ability of the chromosomes to form nucleoli. Ag-positive regions appeared on two chromosomes in type I, on three in type II and on four in type III. The comparison of Giemsa and Feulgen stained chromosomes with the silver stained ones clearly indicated that the positive reaction with silver occurred exclusively on the secondary constricted regions that responded negatively to both Giemsa and Feulgen staining, indicating that the size of the achromatic secondary constrictions directly reflects the volume of the Ag-positive materials. However, all three types of clones had a maximum of four nucleoli at interphase. Of the four nucleoli, either two or one was extremely small (less than 1 m in diameter) in types I and II respectively. The size variations of the other nucleoli seemed to be positively correlated with those of the Ag-positive regions. This and the observation that the maximum number of nucleoli per cell did not coincide with the number of Ag-positive regions on the metaphase chromosome complement suggest strongly that the NORs responsible for the minute nucleoli cannot be detected on the metaphase chromosomes. The present observations indicate that not all NORs are indicated by the morphological appearance of secondary constrictions.  相似文献   

12.
von Well  Eben  Booyse  Mardé  Fossey  Annabel 《Protoplasma》2022,259(2):453-468

Ionizing irradiation induces positive or negative changes in plant growth (M1) depending on the amount of irradiation applied to seeds or plant parts. The effect of 50–350 Gy gamma irradiation of kernels on nucleolar activity, as an indicator of metabolic activity, in root tip cells of tetraploid wheat Triticum turgidum ssp. durum L. cv. Orania (AABB) was investigated. The number of nucleoli present in nuclei and micronuclei as well as the mitotic index in the different irradiation dosages was used as an indicator of the cells entering mitosis, the chromosomes with nucleolar organizer regions that are active as well as chromosome doubling in the event of unsuccessful mitotic division. Nucleolar activity was investigated from 17.5 to 47.5 h after the onset of imbibition to study the first mitotic division and its consequences on the cells that were in G2 and G1 phases at the time of gamma irradiation. Untreated material produced a maximum of four nucleoli formed by the nucleolar organizing regions (NORs) on chromosomes 1B and 6B. In irradiated material, additional nucleoli were noted that are due to the activation of the NORs on chromosome 1A in micronuclei. The onset of mitosis was highly significantly retarded in comparison to the control due to checkpoints in the G2 phase for the repairing of damaged DNA. This study is the first to report on the appearance of nucleoli in micronuclei as well as activation of NORs in the micronuclei that are inactive in the nucleus and the effect of chromosome doubling on nucleolar activity in the event of unsuccessful mitotic division.

  相似文献   

13.
Summary The ammoniacal silver reaction was used for localization of histones in meristematic root tip cells of Allium cepa. Electron microscopic observations showed that yellow or brown colour of interphase and prophase nuclei and brown nucleolar colour produced in the reaction coincides with the appearance of silver grains, about 400 Å in diameter, in the interphase and prophase chromatin and nucleoli. This together with the complete absence of staining reaction and silver grains in the cytoplasm could mean quite a specific reaction with histones and might suggest also that in these cells the site of histone synthesis is in the nucleolus.  相似文献   

14.
15.
The reaction to C-banding was investigated throughout the mitotic cycle ofCrepis capillaris (2n=6): (1) 18–22 C-bodies or C-bands were found during mid telophase and interphase to prophase and metaphase, and also 12–14 at late anaphase to early telophase in the mitotic cycle. Fewer C-bands in late anaphase to early telophase were due to the absence of minute bands; (2) large and medium sized C-bands were strongly stained by Giemsa, while small and minute bands stained palely. It is suggested that inCrepis capillaris the difference of color in C-banded segments following Giemsa staining is referable to the amount of constitutive heterochromatin rather than to the difference in the condensation and decondensation; (3) the size of C-bodies changed during telophase to interphase and prophase. It is inferred that the extent of C-bodies is regulated by both the length of DNA sequences of constitutive heterochromatin and the amount of proteins combined with C-banded DNA. It was shown that the reaction to C-banding is neither due to the differential condensation of chromatin nor to a higher concentration of DNA in the C-banded regions, in the C-banding mechanism as has been suggested so far at least.  相似文献   

16.
Li Jing-yan 《Hydrobiologia》1985,124(1):45-48
To date no nucleolus had been observed in Prorocentrum under the light microscope. The author failed to show the nucleoli of P. micans and P. cassubica with eosin in 70% alc or with methyl green-pyronin. But when these dinoflagellates were treated with an Ag-1 technique which had been improved for demonstrating NORs in unicellular organisms, nucleoli were stained dark brown or black, while all other parts showed no colour. When the materials were stained well, only the central part of the nucleolus was stained. Under the electron microscope, it was observed that all the silver grains were concentrated in the pars fibrosa of the nucleolus. P. cassubica had only one small oblate nucleolus attached to the nuclear envelope, with NOR usually in the shape of the letters O or C. P. micans had 1–7 nucleoli of various sizes and shapes with NORs in various complicated forms. The number of nucleoli bore a certain relationship to the living state of the dinoflagellate. One day after fresh medium was added, cells with 3 nucleoli were most common, and 28.5% of the individuals had 4–6 nucleoli. Cells having only one nucleolus accounted for 8.6%. 3 days after, cells with 2 nucleoli became dominant, and those with 4–6 decreased to 18.4%. After a month, cells with 1 nucleolus became most abundant, cells having 4 nucleoli decreased to 2.4%, and no cells had 5 or 6 nucleoli.  相似文献   

17.
Details of mitosis in the chloromonadophycean alga Vacuolaria virescens Cienk. have been studied with the light microscope. The chromosomes are relatively large (up to μ in length at metaphase) and so mitotic stages are readily distinguishable. Chromosomes can be recognized in interphase nuclei as fine strands of chromatin. Contraction of these chromosomes marks the beginning of mitosis and continues progressively until the transition from metaphase to anaphase. Disintegration of nucleoli is complete by late prophase and nucleolar reformation begins in telophase. Some chromosomes exhibit less densely stained regions; centromeres are also present as indicated by their differential staining and by the behavior of chromosomes at metaphase and anaphase. At anaphase progeny chromosomes move apart parallel to the division axis of the nucleus. As anaphase progresses the chromosomes fuse at the polar surface of the progeny chromosome groups. This process continues in telophase and the chromosome groups become more spherical. By the end of telophase nucleolar reformation has begun and the chromosomes have relaxed to their interphase condition.  相似文献   

18.
Root tip cells of broad bean (Vicia faba L. cv. ’Wase soramame’) and barley (Hordeum vulgare L. cv. ’Minorimugi’) were immunostained with antibodies specific for acetylated histone H4. With an antiserum that recognizes histone H4 acetylated at lysine-5, the nucleolar organizing region (NOR) in mitotic chromosomes was strongly labeled in both species. The broad bean had two signals in the metaphase and telophase chromosome complements and four signals in the prophase and anaphase chromosome complements, while the barley had four signals in the metaphase and telophase chromosome complements and eight signals in the prophase and anaphase complements. Five different patterns of signals were observed at interphase: in type I only nucleoli were wholly stained; in type II perinucleolar knob-like signals and/or fiber-like signals emanated from the nucleus; in type III aggregate signals appeared in the nucleolus; in type IV many small dot-like signals were distributed throughout the nucleus, except nucleoli; and in type V string-like or some granule-like signals appeared in the nucleoli. Type II was very similar to previous results by in situ hybridization with sense rDNA probes. Type III was similar to the patterns of DNA synthesis recognized as chromatin domains by anti-BrdU antibodies. Type V was very similar to the results of in situ hybridization with pTa71, rDNA probes and the appearance of the dense fibrillar components of the nucleolus. Received: 7 August 1996; in revised form: 16 September 1996 / Accepted: 16 September 1996  相似文献   

19.
Summary Throughout the premeiotic to late prophase I stages of meiosis in the anthers of tomato (Lycopersicon esculentum) extensive changes occurred in the ultrastructure of pollen mother cells (PMCs). During early prophase, the wall of each PMC developed a layered appearance and was broadened both by the widening of the middle lamella as well as by intensive deposition of microfibrils in the wall. By late prophase, however, the microfibrils adjacent to the plasmalemma dissipated. At the same time, callose was deposited between the wall and the plasmalemma. The nucleus of the PMCs also underwent changes. During early prophase, the nucleolus consisted of a linear series of three segments, with a separation of the granular and fibrillar portions. By late prophase, the nucleoli were less distinct as the nucleus was highly vacuolate. Mitochondria were initially simple with lightly stained matrix and few cristae but, during the course of prophase, they acquired a more densely-stained matrix with dilated cristae. Plastids remained relatively undifferentiated and, at late prophase, many were convoluted in appearance and constricted at intervals indicating their division. Cytoplasmic connections between adjacent PMCs were broad enough to permit the passage of organelles and were retained through to metaphase I. These cytological and wall changes appear to be a prerequisite for the subsequent development of microspores.Abbreviations PMC pollen mother cell - NOR nucleolus organizing region  相似文献   

20.
In seven mammalian species, including man, the position and number of nucleoli in pachytene spermatocyte nuclei were studied from electron microscope (EM) nuclear sections or bivalent microspreads. The number and position of the nucleolar organiser regions (NORs) in mitotic and meiotic chromosomes were also analysed, using silver staining techniques and in situ hybridisation protocols. The general organisation of pachytene spermatocyte nucleoli was almost the same, with only minor morphological differences between species. The terminal NORs of Thylamys elegans (Didelphoidea, Marsupialia), Dromiciops gliroides (Microbiotheridae, Marsupialia), Phyllotys osgoodi (Rodentia, Muridae) and man, always gave rise to peripheral nucleoli in the spermatocyte nucleus. In turn, the intercalated NORs from Octodon degus, Ctenomys opimus (Rodentia, Octodontidae) and Chinchilla lanigera (Rodentia, Cavidae), gave rise to central nucleoli. In species with a single nucleolar bivalent, just one nucleolus is formed, while in those with multiple nucleolar bivalents a variable number of nucleoli are formed by association of different nucleolar bivalents or NORs that occupy the same nuclear peripheral space (Phyllotis and man). It can be concluded that the position of each nucleolus within the spermatocyte nucleus is mainly dependent upon: (1) the position of the NOR in the nucleolar bivalent synaptonemal complex (SC), (2) the nuclear pathway of the nucleolar bivalent SC, being both telomeric ends attached to the nuclear envelope, and (3) the association between nucleolar bivalents by means of their NOR-nucleolar domains that occupy the same nuclear space. Thus, the distribution of nucleoli within the nuclear space of spermatocytes is non-random and it is consistent with the existence of a species-specific meiotic nuclear architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号