首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Free radical scavenging and antioxidant activities of a standardized extract of Hypericum perforatum (SHP) were examined for inhibition of lipid peroxidation, for hydroxyl radical scavenging activity and interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical (DPPH). Concentrations between 1 and 50 microg/ml of SHP effectively inhibited lipid peroxidation of rat brain cortex mitochondria induced by Fe2+/ascorbate or NADPH system. The results showed that SHP scavenged DPPH radical in a dose-dependent manner and also presented inhibitory effects on the activity of xanthine oxidase. In contrast, hydroxyl radical scavenging occurs at high doses. The protective effect of the standardized extract against H2O2-induced oxidative damage on the pheochromocytoma cell line PC 12 was investigated by measuring cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays, caspase-3-enzyme activity and accumulation of reactive oxygen species [2',7'-dichlorofluorescin (DCF) assay]. Following 8-h cell exposure to H2O2 (300 microM), a marked reduction in cell survival was observed, which was significantly prevented by SHP (pre-incubated for 24 h) at 1-100 microg/ml. In a separate experiment, different concentrations of the standardized extract (0.1-100 microg/ml) also attenuated the increase in caspase-3 activity and suppressed the H2O2 -induced reactive oxygen species generation. Taken together, these results suggest that SHP shows relevant antioxidant activity both in vitro and in a cell system, by means of inhibiting free radical generation and lipid peroxidation.  相似文献   

2.
4-Hydroxyphenylacetic acid amides and 4-hydroxycinnamamides were synthesized and their antioxidant and neuroprotective activities were evaluated. Among the prepared compounds, 8b, and exhibited potent inhibition of lipid peroxidation in rat brain homogenates, and marked DPPH radical scavenging activities. Furthermore, and exhibited neuroprotective action against the oxidative damage induced by the exposure of primary cultured rat cortical cells to H(2)O(2), xanthine/xanthine oxidase, or Fe(2+)/ascorbic acid. Based on these results, we found that was the most potent antioxidant among the compounds tested.  相似文献   

3.
In vitro antioxidant profile of phenolic acid derivatives   总被引:2,自引:0,他引:2  
Several caffeic acid esters isolated from propolis exhibit interesting antioxidant properties, but their in vivo use is compromised by hydrolysis of the ester bond in the gastrointestinal tract. Therefore, a series of caffeic acid amides were synthesized and their in vitro antioxidant profile was determined. A series of hydroxybenzoic acids, hydroxycinnamic acids, and the synthesized caffeic acid amides were tested for both their 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and microsomal lipid peroxidation-inhibiting activity. Some of the highly active antioxidants were further tested by means of electron paramagnetic resonance for their hydroxyl radical scavenging activity. Since a promising antioxidant compound should show a lipid peroxidation-inhibiting activity at micromolar level and a low cytotoxicity, the cytotoxicity of the phenolic compounds was also studied. In all the assays used, the caffeic acid anilides and the caffeic acid dopamine amide showed an interesting antioxidant activity.  相似文献   

4.
Several caffeic acid esters isolated from propolis exhibit interesting antioxidant properties, but their in vivo use is compromised by hydrolysis of the ester bond in the gastrointestinal tract. Therefore, a series of caffeic acid amides were synthesized and their in vitro antioxidant profile was determined. A series of hydroxybenzoic acids, hydroxycinnamic acids, and the synthesized caffeic acid amides were tested for both their 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and microsomal lipid peroxidation-inhibiting activity. Some of the highly active antioxidants were further tested by means of electron paramagnetic resonance for their hydroxyl radical scavenging activity. Since a promising antioxidant compound should show a lipid peroxidation-inhibiting activity at micromolar level and a low cytotoxicity, the cytotoxicity of the phenolic compounds was also studied. In all the assays used, the caffeic acid anilides and the caffeic acid dopamine amide showed an interesting antioxidant activity.  相似文献   

5.
In vitro antioxidant activity of Diospyros malabarica Kostel bark   总被引:1,自引:0,他引:1  
Antioxidant activity of defatted methanol extract of D. malabarica bark was studied for its free radical scavenging property on different in vitro models e.g. 1,1-diphenyl-2-picryl hydrazyl (DPPH), nitric oxide, superoxide, hydroxyl radical and lipid peroxide radical model. The extract showed good dose-dependent free radical scavenging property in all the models except in hydroxyl radical inhibition assay. IC50 values were found to be 9.16, 13.21, 25.27 and 17.33 microg/ml respectively in DPPH, nitric oxide, superoxide and lipid peroxidation inhibition assays. In hydroxyl radical inhibition assay 1000 microg/ml extract showed only 10% inhibition with respect to the control. Measurement of total phenolic compounds by Folin-Ciocalteu's phenol reagent indicated that 1 mg of the extract contained 120.7 microg equivalent of pyrocatechol. The results indicate that the antioxidant property of the extract may be due to the high content of phenolic compounds. However, the underlying mechanism may not involve hydroxyl radical scavenging property.  相似文献   

6.
Antioxidant potential of leaves of three different species of Annona was studied by using different in vitro models eg., 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2-azinobis-(3-ethylbenzothizoline-6-sulphonate) (ABTS), nitric oxide, superoxide, hydroxy radical and lipid peroxidation. The ethanolic extract of A. muricata at 500 microg/ml showed maximum scavenging activity (90.05%) of ABTS radical cation followed by the scavenging of hydroxyl radical (85.88%) and nitric oxide (72.60%) at the same concentration. However, the extract showed only moderate lipid peroxidation inhibition activity. In contrast, the extract of A. reticulata showed better activity in quenching DPPH (89.37%) and superoxide radical (80.88%) respectively. A.squamosa extract exhibited least inhibition in all in vitro antioxidant models excepting hydroxyl radical (79.79%). These findings suggest that the extracts of A. muricata possess potent in vitro antioxidant activity as compared to leaves of A. squamosa and A. reticulata suggesting its role as an effective free radical scavenger, augmenting its therapeutic  相似文献   

7.
The metabolites 2-octaprenyl-1,4-hydroquinone (1) and 2-(24-hydroxy)-octaprenyl-1,4-hydroquinone (2), isolated from the sponge Ircinia spinosula, along with a series of synthetic derivatives, were evaluated for their antioxidant capacity, in order to establish a potential relationship between structural characteristics and antioxidant activity. The antioxidant potential of both natural and synthesised compounds was evaluated in vitro by their ability: (1) to interact with the stable free 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and (2) to inhibit the peroxidation, induced by the Fe(++)/ascorbate system, of heat inactivated hepatic microsomal membrane lipids. Metabolite 1 presented a strong interaction with DPPH and had a moderate effect on lipid peroxidation, while metabolite 2 interacted extensively with DPPH and exhibited a significant effect against lipid peroxidation. All derivatives retaining the free 1,4-hydroquinone system maintained fully or partly the free radical scavenging capacity.  相似文献   

8.
In the presence of Fe-3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1, 3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. The results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe-3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe-2+ by oxygen.  相似文献   

9.
A model lipid peroxidation system dependent upon the hydroxyl radical, generated by Fenton's reagent, was compared to another model system dependent upon the enzymatic generation of superoxide by xanthine oxidase. Peroxidation was studied in detergent-dispersed linoleic acid and in phospholipid liposomes. Hydroxyl radical generation by Fenton's reagent (FeCl2 + H2O2) in the presence of phospholipid liposomes resulted in lipid peroxidation as evidenced by malondialdehyde and lipid hydroperoxide formation. Catalase, mannitol, and Tris-Cl were capable of inhibiting activity. The addition of EDTA resulted in complete inhibition of activity when the concentration of EDTA exceeded the concentration of Fe2+. The addition of ADP resulted in slight inhibition of activity, however, the activity was less sensitive to inhibition by mannitol. At an ADP to Fe2+ molar ratio of 10 to 1, 10 mm mannitol caused 25% inhibition of activity. Lipid peroxidation dependent on the enzymatic generation of superoxide by xanthine oxidase was studied in liposomes and in detergent-dispersed linoleate. No activity was observed in the absence of added iron. Activity and the apparent mechanism of initiation was dependent upon iron chelation. The addition of EDTA-chelated iron to the detergent-dispersed linoleate system resulted in lipid peroxidation as evidenced by diene conjugation. This activity was inhibited by catalase and hydroxyl radical trapping agents. In contrast, no activity was observed with phospholipid liposomes when iron was chelated with EDTA. The peroxidation of liposomes required ADP-chelated iron and activity was stimulated upon the addition of EDTA-chelated iron. The peroxidation of detergent-dispersed linoleate was also enhanced by ADP-chelated iron. Again, this peroxidation in the presence of ADP-chelated iron was not sensitive to catalase or hydroxyl radical trapping agents. It is proposed that initiation of superoxide-dependent lipid peroxidation in the presence of EDTA-chelated iron occurs via the hydroxyl radical. However, in the presence of ADP-chelated iron, the participation of the free hydroxyl radical is minimal.  相似文献   

10.
In the presence of Fe3+ and complexing anions, the peroxidation of unsaturated liver microsomal lipid in both intact microsomes and in a model system containing extracted microsomal lipid can be promoted by either NADPH and NADPH : cytochrome c reductase or by xanthine and xanthine oxidase. Erythrocuprein effectively inhibits the activity promoted by xanthine and xanthine oxidase but produces much less inhibition of NADPH-dependent peroxidation. The singlet-oxygen trapping agent, 1,3-diphenylisobenzofuran, had no effect on NADPH-dependent peroxidation but strongly inhibited the peroxidation promoted by xanthine and xanthine oxidase. NADPH-dependent lipid peroxidation was also shown to be unaffected by hydroxyl radical scavengers.. The addition of catalase had no effect on NADPH-dependent lipid peroxidation, but it significantly increased the rate of malondialdehyde formation in the reaction promoted by xanthine and xanthine oxidase. These results demonstrate that NADPH-dependent lipid peroxidation is promoted by a reaction mechanism which does not involve either superoxide, singlet oxygen, HOOH, or the hydroxyl radical. It is concluded that NADPH-dependent lipid peroxidation is initiated by the reduction of Fe3+ followed by the decomposition of hydroperoxides to generate alkoxyl radicals. The initiation reaction may involve some form of the perferryl ion or other metal ion species generated during oxidation of Fe2+ by oxygen.  相似文献   

11.
Chrysoeriol and its glycoside (chrysoeriol-6-O-acetyl-4'-beta-D-glucoside) are two natural flavonoids extracted from the tropical plant Coronopus didymus. The aqueous solutions of both the flavonoids were tested for their ability to inhibit lipid peroxidation induced by gamma-radiation, Fe (III) and Fe (II). In all these assays chrysoeriol showed better protecting effect than the glycoside. The compounds were also found to inhibit enzymatically produced superoxide anion by xanthine/xanthine oxidase system; here the glycoside is more effective than the aglycone. The rate constants for the reaction of the compounds with superoxide anion determined by using stopped-flow spectrometer were found to be nearly same. Chrysoeriol glycoside reacts with DPPH radicals at millimolar concentration, but the aglycone showed no reaction. Using nanosecond pulse radiolysis technique, reactions of these compounds with hydroxyl, azide, haloperoxyl radicals and hydrated electron were studied. The bimolecular rate constants for these reactions and the transient spectra of the one-electron oxidized species indicated that the site of oxidation for the two compounds is different. Reaction of hydrated electron with the two compounds was carried out at pH 7, where similar reactivity was observed with both the compounds. Based on all these studies it is concluded that chrysoeriol exhibits potent antioxidant activity. O-glycosylation of chrysoeriol decreases its ability to inhibit lipid peroxidation and reaction with peroxyl radicals. However the glycoside is a more efficient scavenger of DPPH radicals and a better inhibitor of xanthine/xanthine oxidase than the aglycone.  相似文献   

12.
The antioxidant properties of cinnamophilin were evaluated by studying its ability to react with relevant reactive oxygen species, and its protective effect on cultured cells and biomacromolecules under oxidative stress. Cinnamophilin concentration-dependently suppressed non-enzymatic iron-induced lipid peroxidation in rat brain homogenates with an IC50 value of 8.0+/-0.7 microM and iron ion/ADP/ascorbate-initiated rat liver mitochondrial lipid peroxidation with an IC50 value of 17.7+/-0.2 microM. It also exerted an inhibitory activity on NADPH-dependent microsomal lipid peroxidation with an IC50 value of 3.4+/-0.1 microM without affecting microsomal electron transport of NADPH-cytochrome P-450 reductase. Both 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azo-bis(2-amidinopropane) dihydrochloride-derived peroxyl radical tests demonstrated that cinnamophilin possessed marked free radical scavenging capacity. Cinnamophilin significantly protected cultured rat aortic smooth muscle cells (A7r5) against alloxan/iron ion/H2O2-induced damage resulting in cytoplasmic membranous disturbance and mitochondrial potential decay. By the way, cinnamophilin inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity and thiobarbituric acid-reactive substance formation in a concentration-dependent manner. On the other hand, it was reactive toward superoxide anions generated by the xanthine/xanthine oxidase system and the aortic segment from aged spontaneously hypertensive rat. Furthermore, cinnamophilin exerted a divergent effect on the respiratory burst of human neutrophil by different stimulators. Our results show that cinnamophilin acts as a novel antioxidant and cytoprotectant against oxidative damage.  相似文献   

13.
In previous studies, flavonoids, orientin and vicenin, that were isolated from the leaf extract of Ocimum sanctum, were found to protect mice against radiation injury. Several flavonoids are known to be good antioxidants. Therefore, the effect of orientin and vicenin on radiation-induced lipid peroxidation in vivo and their antioxidant activity in vitro were studied. Adult mice were injected intraperitoneally with 50 microgram/kg of orientin or vicenin and exposed whole-body to 3 Gy of gamma radiation. Lipid peroxidation was measured in the liver 15 min to 8 h postirradiation. The antioxidant activity of orientin/vicenin (10-500 microM) was studied by measuring inhibition of hydroxyl radicals generated by the Fenton reaction (Fe(3+)-EDTA-ascorbic acid-H(2)O(2)) in vitro. The compounds were also tested for possible pro-oxidant and iron chelation activities at the above concentrations in the in vitro system. Orientin and vicenin provided almost equal protection against radiation-induced lipid peroxidation in mouse liver. Both compounds showed a significantly greater free radical-inhibiting activity in vitro than DMSO. Neither orientin nor vicenin showed any pro-oxidant activity at the concentrations tested. Both compounds inhibited free radical formation in the absence of EDTA. Free radical scavenging appears to be a likely mechanism of radiation protection by these flavonoids.  相似文献   

14.
Hemidesmus indicus R. Br. (Asclepiadaceae) is a well known drug in Ayurveda system of medicine. In the present study, antioxidant activity of methanolic extract of H. indicus root bark was evaluated in several in vitro and ex vivo models. Further, preliminary phytochemical analysis and TLC fingerprint profile of the extract was established to characterize the extract which showed antioxidant properties. The in vitro and ex vivo antioxidant potential of root bark of H. indicus was evaluated in different systems viz. radical scavenging activity by DPPH reduction, superoxide radical scavenging activity in riboflavin/light/NBT system, nitric oxide (NO) radical scavenging activity in sodium nitroprusside/Greiss reagent system and inhibition of lipid peroxidation induced by iron-ADP-ascorbate in liver homogenate and phenylhydrazine induced haemolysis in erythrocyte membrane stabilization study. The extract was found to have different levels of antioxidant properties in the models tested. In scavenging DPPH and superoxide radicals, its activity was intense (EC50 = 18.87 and 19.9 microg/ml respectively) while in scavenging NO radical, it was moderate. It also inhibited lipid peroxidation of liver homogenate (EC50 = 43.8 microg/ml) and the haemolysis induced by phenylhydrazine (EC50 = 9.74 microg/ml) confirming the membrane stabilization activity. The free radical scavenging property may be one of the mechanisms by which this drug is effective in several free radical mediated disease conditions.  相似文献   

15.
Free radical scavenging and antioxidant activities of baicalein, baicalin, wogonin and wogonoside, the four major flavonoids in the radix of Scutellaria baicalensis Georgi, were examined in different systems. ESR results showed that baicalein and baicalin scavenged hydroxyl radical, DPPH radical and alkyl radical in a dose-dependent manner, while wogonin and wogonoside showed subtle or no effect on these radicals. Ten micromol/l of baicalein and baicalin effectively inhibited lipid peroxidation of rat brain cortex mitochondria induced by Fe(2+)-ascorbic acid, AAPH or NADPH, while wogonin and wogonoside showed significant effects only on NADPH-induced lipid peroxidation. In a study on cultured human neuroblastoma SH-SY5Y cells system, it was found that 10 micromol/l of baicalein and baicalin significantly protected cells against H(2)O(2)-induced injury. Baicalein was the most effective antioxidant among the four tested compounds in every system due to its o-tri-hydroxyl structure in the A ring. Compared with a well-known flavonoid, quercetin, the antioxidant activity of baicalein was lower in DPPH or AAPH system, but a little higher in those systems which might associate with iron ion. These results suggest that flavonoids in the radix of Scutellaria baicalensis with o-di-hydroxyl group in A the ring, such as baicalein and baicalin, could be good free radical scavengers and might be used to cure head injury associated with free radical assault.  相似文献   

16.
A series of coumarin analogues bearing a substituted phenyl ring on position 3 were synthesized via a novel methodology, through an intermolecular condensation reaction of 2-hydroxyacetophenones and 2-hydroxybenzaldehyde, with imidazolyl phenylacetic acid active intermediates. The in vitro antioxidant activity of the synthesized compounds was evaluated using two different antioxidant assays (radical scavenging ability of DPPH stable free radical and inhibition of lipid peroxidation induced by the thermal free radical AAPH). Moreover, the ability of the compounds to inhibit soybean lipoxygenase was determined as an indication of potential anti-inflammatory activity.  相似文献   

17.
Trace elements play an important role in oxygen metabolism and therefore in the formation of free radicals. Whereas iron and copper are usually the main enhancers of free radical formation, other trace elements, such as zinc and selenium, protect against the harmful effects of these radicals. To investigate the different protective mechanisms of zinc on radical formation, we examined the effects of added zinc and copper on superoxide dismutase activity. We also studied the effects of copper and iron on xanthine oxidase activity and on the Haber-Weiss cycle (iron, superoxide, and hydrogen peroxide), which generates hydroxyl radicals in vitro. The hypoxanthine/xanthine oxidase radical generating system contained a variety of different physiological ligands for binding the iron. This study confirmed the inhibitory effect of copper on xanthine oxidase activity. Moreover, it demonstrated that zinc inhibited hydroxyl radical formation when this formation was catalyzed by a citrate-iron complex in the hypoxanthine/xanthine oxidase reaction. Finally, human blood plasma inhibited citrate-iron-dependent hydroxyl radical formation under the same conditions. Although trace elements seemed responsible for this antioxidant activity of plasma, it is likely that zinc played no role as a plasma antioxidant. Indeed, calcium appeared to be responsible for most of this effect under our experimental conditions.  相似文献   

18.
The interaction of microsomes with iron and NADPH to generate active oxygen radicals was determined by assaying for low level chemiluminescence. The ability of several ferric complexes to catalyze light emission was compared to their effect on microsomal lipid peroxidation or hydroxyl radical generation. In the absence of added iron, microsomal light emission was very low; chemiluminescence could be enhanced by several cycles of freeze-thawing of the microsomes. The addition of ferric ammonium sulfate, ferric-citrate, or ferric-ADP produced an increase in chemiluminescence, whereas ferric-EDTA or -diethylenetriaminepentaacetic acid (detapac) were inhibitory. The same response to these ferric complexes was found when assaying for malondialdehyde as an index of microsomal lipid peroxidation. In contrast, hydroxyl radical generation, assessed as oxidation of chemical scavengers, was significantly enhanced in the presence of ferric-EDTA and -detapac and only weakly elevated by the other ferric complexes. Ferric-desferrioxamine was essentially inert in catalyzing any of these reactions. Chemiluminescence and lipid peroxidation were not affected by superoxide dismutase, catalase, or competitive hydroxyl radical scavengers whereas hydroxyl radical production was decreased by the latter two but not by superoxide dismutase. Chemiluminescence was decreased by the antioxidants propylgallate or glutathione and by inhibiting NADPH-cytochrome P-450 reductase with copper, but was not inhibited by metyrapone or carbon monoxide. The similar pattern exhibited by ferric complexes on microsomal light emission and lipid peroxidation, and the same response of both processes to radical scavenging agents, suggests a close association between chemiluminescence and lipid peroxidation, whereas both processes can be readily dissociated from free hydroxyl radical generation by microsomes.  相似文献   

19.
Biological antloxldants extracted from plants and fungi have potential abilities to scavenge free radicals and Inhibit lipid peroxldatlon, playing Important roles in preventing diseases, for example, cancer, and aging Induced by reactive oxygen species, which may cause oxidative damage to DNA, proteins and other macromolecules. The antloxldant potency of cultivated fruit-bodies of Cordyceps militarls (L.) Link was investigated In this study. Five established In vitro systems were employed, including the 1,1-dlphenyl-2- plcryldrazyl (DPPH) free radical scavenging, hydroxyl radical eliminating, iron chelating, Inhibition of Ilnolelc acid lipid peroxldatlon and reducing power. The aqueous extract from cultivated fruit-bodies was subjected to the test of amino acid, polysaccharlde and mannitol. Ascorblc acid (Vc), butylated hydroxytoluene (BHT) and ethylenedlamlnetetraacetlc acid (EDTA) were used as positive controls for comparisons. Among the assays, the aqueous extract of C. mllltarls frult-bodles shows a significant scavenging effect on DPPH, eliminating the capability on hydroxyl radicals and the chelating effect on ferrous Iron. The extract also shows positive results of Inhibiting Ilnoleic acid lipid peroxldatlon and reducing power.  相似文献   

20.
Ferritin and superoxide-dependent lipid peroxidation   总被引:23,自引:0,他引:23  
Ferritin was found to promote the peroxidation of phospholipid liposomes, as evidenced by malondialdehyde formation, when incubated with xanthine oxidase, xanthine, and ADP. Activity was inhibited by superoxide dismutase but markedly stimulated by the addition of catalase. Xanthine oxidase-dependent iron release from ferritin, measured spectrophotometrically using the ferrous iron chelator 2,2'-dipyridyl, was also inhibited by superoxide dismutase, suggesting that superoxide can mediate the reductive release of iron from ferritin. Potassium superoxide in crown ether also promoted superoxide dismutase-inhibitable release of iron from ferritin. Catalase had little effect on the rate of iron release from ferritin; thus hydrogen peroxide appears to inhibit lipid peroxidation by preventing the formation of an initiating species rather than by inhibiting iron release from ferritin. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide was used to observe free radical production in this system. Addition of ferritin to the xanthine oxidase system resulted in loss of the superoxide spin trap adduct suggesting an interaction between superoxide and ferritin. The resultant spectrum was that of a hydroxyl radical spin trap adduct which was abolished by the addition of catalase. These data suggest that ferritin may function in vivo as a source of iron for promotion of superoxide-dependent lipid peroxidation. Stimulation of lipid peroxidation but inhibition of hydroxyl radical formation by catalase suggests that, in this system, initiation is not via an iron-catalyzed Haber-Weiss reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号