首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The ethylene production rate of cut sweet pea flower buds increased37-fold during the first 48 h of their vase life. This increasein ethylene production was accompanied by petal wilting at 72h and abscission of the buds 24 h later. Exposure of the cutspikes to the ethylene action inhibitor diazocyclopentadiene(DACP, 170 µI 1-1) for 18 h under fluorescent lights delayedsubsequent wilting and abscission and promoted bud opening.Silver thiosulphate (0·2 mM) was more effective thanDACP, delaying wilting for longer and preventing abscissionentirely.Copyright 1995, 1999 Academic Press Ethylene, abscission, silver thiosulphate, diazocyclopentadiene, flower senescence, wilting, sweet pea, Lathyrus odoratus L  相似文献   

2.
R. Nichols 《Planta》1977,135(2):155-159
Production of endogenous ethylene from the styles, ovary and petals of pollinated and unpollinated flowers of Dianthus caryophyllus L. was measured. The rate of ethylene production of cut, unpollinated flowers aged in water at 18°C was low until the onset of petal wilting, when a rapid surge of ethylene occurred in all tissues. The flower ethylene production was evolved mostly from the styles and petals. The bases of petals from unpollinated, senescing flowers evolved ethylene faster and sometimes earlier than the upper parts. Treatment of cut flowers with propylene, an ethylene analogue, accelerated wilting of flower petals and promoted endogenous ethylene production in all flower tissues. Pollination of intact flowers also promoted endogenous ethylene production and caused accelerated petal wilting within 2–3 days from pollination. Although the data are consistent with the hypothesis that ethylene forms a link between pollination of the style and petal wilting, in the unpollinated flower the style and petals can evolve a surge of ethylene independently of each other, about the time when the petals irreversibly wilt. The results are discussed in relation to the role of ethylene in flower senescence.  相似文献   

3.
Very low ethylene production rates were measured in nonpollinated Cyclamen persicum Mill flowers, and no change in production was observed during the whole life span of the flower until death. Normal senescence was accompanied by a gradual discoloration and loss of turgor followed by wilting. Pollination induced a dramatic increase in ethylene evolution, culminating in a peak 4 days after pollination, and abscission of the corolla on that day. Silver-thiosulfate, an inhibitor of ethylene action, had no effect on longevity of unpollinated flowers, but completely nullified the effect of pollination on corolla abscission. Exposing unpollinated flowers to very high ethylene concentrations (50 microliters per liter) for 48 hours did not promote corolla abscission or senescence. 1-Aminocyclopropane-1-carboxylic acid, the immediate precursor of ethylene, increased ethylene production by unpollinated flowers more than 100-fold, but did not promote corolla abscission. 1-Aminocyclopropane-1-carboxylic acid did enhance corolla abscission of pollinated flowers. It is concluded that the main effect of pollination in inducing corolla abscission of cyclamen is by rendering the tissue sensitive to ethylene, apart from the promotion of ethylene production.  相似文献   

4.
The effect of cis-propenylphosphonic acid (PPOH), a structural analoge of ethylene, on flower wilting and ethylene production was investigated using cut carnation flowers which are very sensitive to ethylene. Wilting (petal in-rolling) of the flowers was delayed by continuously immersing the stems in a 5–20 mM PPOH solution. In addition, the continuous treatment with PPOH markedly reduced autocatalytic ethylene production of the petals accompanying senescence. This reduction of autocatalytic ethylene production was considered responsible for the inhibitory effect of PPOH on flower wilting. The inhibitory activity of trans-propenylphosphonic acid (trans-PPOH), on both flower wilting and the autocatalytic ethylene production accompanying senescence was markedly lower than that of PPOH, suggesting that PPOH action is stereoselective. PPOH may be of interest as a new, water-soluble inhibitor of wilting and autocatalytic ethylene production in cut carnation flowers.  相似文献   

5.
The longevity of cut Phalaenopsis (Phalaenopsis hybrid, cv. Herbet Hager) flowers is normally 2 to 3 weeks. After pollination however, there was a rapid acceleration of the wilting process, beginning after only 24 h. Enhancement of senescence in several Phalaenopsis cultivars as well as in Doritaenopsis, Dendrobium and Cymbidium, was induced by successful pollination and only slightly or not at all by emasculation. Wilting of the flowers was accompanied by a loss of water from cells of the upper layer of the petals, leading to their upward folding. Following pollination there was an increase in ethylene production and sensitivity to ethylene. The increase in ethylene production began about 10 h after pollination and reached its peak after 30 h. An obvious increase in sensitivity to ethylene could already be detected 4 h after pollination and reached its peak 10 h after pollination. The increase en ethylene sensitivity following pollination was not dependent on endogenous ethylene production as it occurred also in flowers treated with (aminooxy)acetic acid, an inhibitor of ethylene biosynthesis.Abbreviations AOA = (aminooxy)acetic acid - RH = relative humidity - SEM = scanning electron microscope  相似文献   

6.
To study the cause of the uneven production of ethylene by upper and basal portions of detached petals of carnation ( Dianthus caryophyllus L. cv. White Sim), the petals were divided and exposed to ethylene (30 μl 1-1 for 16 h). The treatment induced rapid wilting and autocatalytic ethylene production in the basal portion similar to that induced in entire petals. In contrast to the response in entire petals and the basal portions, the upper portions responded to ethylene by delayed wilting and much lower ethylene production. Aminocyclopropane carboxylic acid (ACC)-synthase activity in the basal portion of the petals was 38 to 400 times that in the upper portion. In untreated detached petal pieces from senescing carnation flowers, ethylene production by the upper portion declined after 6 h while the basal portion was still producing ethylene at a steady rate 18 h later. Application of ACC to the upper portion of senescing petals increased their ethylene production. α-Aminooxyacetic acid (0.5 m M ), reduced the ethylene production of the senescing basal portion more than that of the upper portion. Endogenous ACC content in basal portions of senescing carnation petals was 3 to 4 times higher than in the upper parts. When detached senescing petals were divided immediately after detaching, the endogenous ACC levels in upper portions remained steady or declined during 24 h after division, while in the basal portions the ACC level rose steadily as in the intact petals. There was no change in the conjugated ACC in either portion after 24 h. Benzyladenine (BA) applied as a pretreatment to entire preclimacteric petals greatly reduced the development of ACC-synthase activity of the basal portion, but had little effect on the activity in the upper portion of the petal. In both portions, however, BA effectively reduced the conversion of ACC to ethylene.  相似文献   

7.
8.
Stamen abscission and water balance in Metrosideros flowers   总被引:2,自引:0,他引:2  
Cymules (3-flowered units borne on single pedicels) were cut from inflorescences of Metrosideros collina J.R. & G. Forst. cv. Tahiti and used to test the effects of ethephon and ethylene on stamen abscission in the presence of silver thiosulphate (STS) and 1-methylcyclopropene (1-MCP), and to test the effects of holding solutions on cymule water balance and the progression of floral development. Flower bud and stamen abscission occurred in response to 0.5–5.0 and 0.1 μl l−1 ethylene, respectively. Ethylene effects were partially negated by scrubbing exogenous ethylene, and more completely negated by STS (2.0 m M ). 1-MCP caused greater ethylene production and inhibited stamen abscission for only 1–2 days after treatment. Ethephon (10-10 000 mg l−1) induced stamen wilting rather than abscission, an effect that was not negated by STS. Stamen wilting was negatively correlated with stamen relative water content, and the increase in stamen wilting was generally reduced by treatments that enhanced cymule mass. Stamen wilting was least using a 100 g l−1 sucrose pulse or holding solutions containing 30–40 g l−1 sucrose, with hydroxyquinoline citrate (200 mg l−1) maintained at pH 5. Our results indicate that 1-MCP may be relatively ineffective in blocking the effects of ethylene on the abscission of organs, such as the stamens of M . collina , which are highly sensitive to this hormone.  相似文献   

9.
Yamada T  Ichimura K  van Doorn WG 《Planta》2007,226(5):1195-1205
Depending on the species, the end of flower life span is characterized by petal wilting or by abscission of petals that are still fully turgid. Wilting at the end of petal life is due to programmed cell death (PCD). It is not known whether the abscission of turgid petals is preceded by PCD. We studied some parameters that indicate PCD: chromatin condensation, a decrease in nuclear diameter, DNA fragmentation, and DNA content per nucleus, using Prunus yedoensis and Delphinium belladonna which both show abscission of turgid petals at the end of floral life. No DNA degradation, no chromatin condensation, and no change in nuclear volume was observed in P. yedoensis petals, prior to abscission. In abscising D. belladonna petals, in contrast, considerable DNA degradation was found, chromatin was condensed and the nuclear volume considerably reduced. Following abscission, the nuclear area in both species drastically increased, and the chromatin became unevenly distributed. Similar chromatin changes were observed after dehydration (24 h at 60°C) of petals severed at the time of flower opening, and in dehydrated petals of Ipomoea nil and Petunia hybrida, severed at the time of flower opening. In these flowers the petal life span is terminated by wilting rather than abscission. It is concluded that the abscission of turgid petals in D. belladonna was preceded by a number of PCD indicators, whereas no such evidence for PCD was found at the time of P. yedoensis petal abscission. Dehydration of the petal cells, after abscission, was associated with a remarkable nuclear morphology which was also found in younger petals subjected to dehydration. This nuclear morphology has apparently not been described previously, for any organism.  相似文献   

10.
Categories of Petal Senescence and Abscission: A Re-evaluation   总被引:6,自引:2,他引:4  
van Doorn  W. G. 《Annals of botany》2001,87(4):447-456
In a previous paper (Woltering and van Doorn, 1988, Journalof Experimental Botany39: 1605–1616) we identified threetypes of flower life cessation: by petal wilting or withering,which was either ethylene-sensitive or insensitive, and by abscissionof turgid petals, which was ethylene-sensitive. These categoriestended to be consistent within families. Here we re-examinethese relationships by testing a further 200 species, and anumber of other families. As previously, flowering shoots wereexposed to 3 ppm ethylene for 24 h at 20 °C, in darkness.Most monocotyledonous species tested showed ethylene-insensitivepetal wilting, although ethylene-sensitive wilting occurredin the Alismataceae and Commelinaceae. Petals of the dicotyledonousspecies tested were generally sensitive to ethylene, exceptfor a few groups showing wilting (Crassulaceae, Gentianaceaeand Fumariaceae, and one subfamily in both the Ericaceae andSaxifragaceae). Petal abscission was generally ethylene-sensitive,but ethylene insensitivity was found in some Tulipa cultivarsand three Saxifraga species. In most tulip cultivars tested,the petals wilted and then fell. It is concluded that (a) theresponse to ethylene is often consistent within either familiesor subfamilies; and (b) a fourth category, ethylene-insensitivepetal abscission, exists both in monocotyledons and dicotyledons.Copyright 2001 Annals of Botany Company Ethylene sensitivity, flower longevity, petal abscission, petal wilting, petal withering, petal senescence, taxonomic categories  相似文献   

11.
Petal senescence in mature flowers was studied in 93 speciesfrom 22 families. The initial symptom of senescence was eitherwilting or abscission, but in some species the time span betweenwilting and abscission was very short. There was no apparent relationship between corolla form (choripetalousor sympetalous), ovary position (inferior or superior with respectto the corolla) and type of senescence (initial wilting or initialabscission). In monocots no initial abscission was found, whilein dicots the difference between the wilting type and the abscissiontype was generally at the family level. With respect to petalsenescence, sensitivity to exogenous ethylene (C2H4) was alsorelated to the family level. Except for a few families (all tested Campanulaceae, Caryophyllaceaeand Malvaceae, and most Orchidaceae), most of the flowers investigatedthat showed initial wilting were not sensitive to exogenousethylene, e.g. all tested Compositae, Iridaceae, and Liliaceae.Most of the flowers showing initial abscission were sensitiveto exogenous ethylene (Geraniaceae, Labiatae, Ranunculaceae,Rosaceae, Scrophulariaceae). Experiments with silver thiosulphate (STS) confirmed the effectsof exogenous ethylene, both in flowers showing initial wiltingand in flowers showing initial abscission. The data indicate,therefore, that ethylene is involved in the natural senescenceof only a minority of the wilting type of flowers and in a majority(if not all) of the abscising type of flowers. Key words: Abscission, ethylene, senescence, silver thiosulphate  相似文献   

12.
K. Manning 《Planta》1986,168(1):61-66
The relationship between ethylene production and the CN--assimilating enzyme -cyanoalanine synthase (CAS; EC 4.4.1.9) was examined in the carnation (Dianthus caryophyllus L.) flower. In petals from cut flowers aged naturally or treated with ethylene to accelerate senescence the several hundred-fold increase in ethylene production which occurred during irreversible wilting was accompanied by a one- to twofold increase in CAS activity. The basal parts of the petal, which produced the most ethylene, had the highest CAS activity. Studies of flower parts (styles, ovaries, receptacles, petals) showed that the styles had a high level of CAS together with the ethylene-forming enzyme (EFE) system for converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The close association between CAS and EFE found in styles could also be observed in detached petals after induction by ACC or ethylene. Treatment of the cut flowers with cycloheximide reduced synthesis of CAS and EFE. The data indicate that CAS and ethylene production are associated, and are discussed in relation to the hypothesis that CN- is formed during the conversion of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglyoine - CAS -cyanoalanine synthase - CHI cycloheximide - EFE ethylene-forming enzyme  相似文献   

13.
The never ripe mutation blocks ethylene perception in tomato.   总被引:19,自引:1,他引:18       下载免费PDF全文
Seedlings of tomato fruit ripening mutants were screened for their ability to respond to ethylene. Ethylene induced the triple response in etiolated hypocotyls of all tomato ripening mutants tested except for one, Never ripe (Nr). Our results indicated that the lack of ripening in this mutant is caused by ethylene insensitivity. Segregation analysis indicated that Nr-associated ethylene insensitivity is a single codominant trait and is pleiotropic, blocking senescence and abscission of flowers and the epinastic response of petioles. In normal tomato flowers, petal abscission and senescence occur 4 to 5 days after the flower opens and precede fruit expansion. If fertilization does not occur, pedicel abscission occurs 5 to 8 days after petal senescence. If unfertilized, Nr flowers remained attached to the plant indefinitely, and petals remained viable and turgid more than four times longer than their normal counterparts. Fruit development in Nr plants was not preceded by petal senescence; petals and anthers remained attached until they were physically displaced by the expanding ovary. Analysis of engineered 1-aminocyclopropane-1-carboxylate (ACC) synthase-overexpressing plants indicated that they are phenotypic opposites of Nr plants. Constitutive expression of ACC synthase in tomato plants resulted in high rates of ethylene production by many tissues of the plant and induced petiole epinasty and premature senescence and abscission of flowers, usually before anthesis. There were no obvious effects on senescence in leaves of ACC synthase overexpressers, suggesting that although ethylene may be important, it is not sufficient to cause tomato leaf senescence; other signals are clearly involved.  相似文献   

14.
Exposing cut carnation (Dianthus caryophyllus, cv. White Sim)to short term (12 h) water stress resulted in a marked increasein the water saturation deficit (WSD) of the petals. Full recoveryoccurred upon transfer of the flowers to water in humid conditions(r.h. 85%). However, an increase in aminocyclopropane carboxylicacid (ACC) content occurred immediately upon stress. An associatedrise in ethylene production following transfer to humid conditionswas observed earlier than in the control. Exogenous ethylene,applied alone or in combination with water stress, increasedthe WSD of the petals. Continuous treatment of cut flowers with amino-oxyacetic acid(AOA), a known inhibitor of ACC synthesis, suppressed ethyleneproduction, delayed the rise in WSD which accompanied developmentand senescence and hence delayed wilting. Similar results wereobtained with short term (2 h) treatment with AOA prior to stressingthe flowers. Short term AOA treatment partially inhibited therise in WSD during the stress period. On the basis of our findings, in particular that no rise inethylene production occurred during water stress, it is suggestedthat the effect of water stress is not directly mediated byethylene. The possible modulatory effect of water stress andAOA on certain characteristics of the petal cell membrane isdiscussed.  相似文献   

15.
16.
In Cymbidium flowers emasculation by removal of the anther capand the pollinia, led to rapid colouration of the lip and advancedwilting of the petals and sepals. The ethylene production ofwhole flowers showed an emasculation-induced early peak in ethyleneevolution followed some days later by a second increase concomitantwith the wilting of the flower. In non-emasculated flowers theethylene production increased later and simultaneously withcolouration of the lip and wilting of the petals and sepals.At all stages of senescence, the contribution of the lip, petals,and sepals to the total amount of ethylene produced was negligible. Parallel to the increase in ethylene production of whole flowers,an increase in 1-aminocyclopropane-l-carboxylic acid (ACC) andmalonyl-ACC (MACC) in the central column and, to a lesser extent,in the ovary was observed. Also an increase in internal ethyleneconcentration was demonstrated and this, in contrast, was apparentin all the different flower parts. The activity of the ethylene-formingenzyme in lips, petals, and sepals showed an increase afteremasculation and such an effect could also be induced by treatmentof isolated lips with low concentrations of ethylene. The data indicate that senescence in Cymbidium flowers is regulatedby the central column and perhaps the ovary and that both ACCand ethylene may play a signalling role in inter-organ communication. Key words: 1-aminocyclopropane-l-carboxylic acid, ethylene, Cymbidium, senescence  相似文献   

17.
Although the role of the gynoecium in natural senescence of the carnation flower has long been suggested, it has remained a matter of dispute because petal senescence in the cut carnation flower was not delayed by the removal of gynoecium. In this study, the gynoecium was snapped off by hand, in contrast to previous investigations where removal was achieved by forceps or scissors. The removal of the gynoecium by hand prevented the onset of ethylene production and prolonged the vase life of the flower, demonstrating a decisive role of the gynoecium in controlling natural senescence of the carnation flower. Abscisic acid (ABA) and indole-3-acetic acid (IAA), which induced ethylene production and accelerated petal senescence in carnation flowers, did not stimulate ethylene production in the flowers with gynoecia removed (-Gyn flowers). Application of 1-aminocyclopropane-1-carboxylate (ACC), the ethylene precursor, induced substantial ethylene production and petal wilting in the flowers with gynoecia left intact, but was less effective at stimulating ethylene production in the -Gyn flowers and negligible petal in-rolling was observed. Exogenous ethylene induced autocatalytic production of the gas and petal wilting in the -Gyn flowers. These results indicated that ethylene generated in the gynoecium triggers the onset of ethylene production in the petals of carnation during natural senescence.  相似文献   

18.
Cut sweet pea flowers were put in vase water containing 200 mg l–1 8-hydroxyquinoline sulfate (HQS), and 100 g l–1 sucrose was added to the solution during the first 24 h (initial treatment), from the 24th h on (late treatment) or throughout the experimental period (continuous treatment). The vase life of the florets in the control (with no sucrose added), initial-, late-, and continuous-treatment groups were 2.8, 6.0, 5.0 and 8.0 days, respectively. Climacteric ethylene production of the florets was the earliest in the control group followed by the late-, initial- and continuous-treatment groups, in this order. The concentrations of glucose, fructose and s ucrose at the 2nd day and later were the highest in the continuous-treatment group followed by the initial-treatment, late-treatment and control group, in this order. Thus, the correlation between sugar concentrations in petals and vase life was positive, whereas that between the sugar concentrations and ethylene production was negative. These results suggest that sugar concentration in petals affects the vase life of cut sweet pea flowers through ethylene production.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号