首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cationic lipids (CLs) have found widespread use as nonviral gene carriers (vectors), including applications in clinical trials of gene therapy. However, their observed transfection efficiencies (TEs) are inferior to those of viral vectors, providing a strong incentive for a detailed understanding of CL-DNA complex behavior. In recent systematic studies employing monovalent as well as newly synthesized multivalent lipids (MVLs), the membrane cationic charge density has been identified as a key parameter governing the TE of lamellar CL-DNA complexes. In this work, we use x-ray scattering and molecular simulations to investigate the structural properties of complexes containing MVLs. At low mole fraction of neutral lipids (NLs), ΦNL, the complexes show dramatic DNA compaction, down to essentially close-packed DNA arrays with a DNA interaxial spacing dDNA = 25 Å. A gradual increase in ΦNL does not lead to a continuous increase in dDNA as observed for DNA complexes of monovalent CLs. Instead, distinct spacing regimes exist, with sharp transitions between the regimes. Three packing states have been identified: 1), close packed, 2), condensed, but not close packed, with dDNA = 27-28 Å, and 3), an expanded state, where dDNA increases gradually with ΦNL. Based on our experimental and computational results, we conclude that the DNA condensation is mediated by the multivalent cationic lipids, which assemble between the negatively charged DNA rods. Quite remarkably, the computational results show that the less tightly packed structure in regime 2 is thermodynamically more stable than the close packed structure in regime 1. Accordingly, the constant DNA spacing observed in regime 2 is attributed to lateral phase coexistence between this stable CL-DNA complex and neutral membranes. This finding may explain the reduced TE measured for such complexes: transfection involves endosomal escape and disassembly of the complex, and these processes are inhibited by the high thermodynamic stability. Our results, which demonstrate the existence of an inverse correlation between the stability and transfection activity of lamellar CL-DNA complexes are, therefore, consistent with a recently proposed model of cellular entry.  相似文献   

2.
3.
We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on the statistical-mechanical behavior of lamellar complexes, which in Monte Carlo simulations self-assemble spontaneously from a disordered random initial state. We measure the DNA-interaxial spacing, d(DNA), and the local cationic area charge density, sigma(M), for a wide range of values of the parameter (c) representing the fraction of cationic lipids. For weakly charged complexes (low values of (c)), we find that d(DNA) has a linear dependence on (c)(-1), which is in excellent agreement with x-ray diffraction experimental data. We also observe, in qualitative agreement with previous Poisson-Boltzmann calculations of the system, large fluctuations in the local area charge density with a pronounced minimum of sigma(M) halfway between adjacent DNA molecules. For highly-charged complexes (large (c)), we find moderate charge density fluctuations and observe deviations from linear dependence of d(DNA) on (c)(-1). This last result, together with other findings such as the decrease in the effective stretching modulus of the complex and the increased rate at which pores are formed in the complex membranes, are indicative of the gradual loss of mechanical stability of the complex, which occurs when (c) becomes large. We suggest that this may be the origin of the recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities, because the completion of the transfection process requires the disassembly of the complex and the release of the DNA into the cytoplasm. Some of the structural properties of the system are also predicted by a continuum free energy minimization. The analysis, which semiquantitatively agrees with the computational results, shows that that mesoscale physical behavior of CL-DNA complexes is governed by interplay among electrostatic, elastic, and mixing free energies.  相似文献   

4.
Cationic lipid-DNA (CL-DNA) complexes comprise a promising new class of synthetic nonviral gene delivery systems. When positively charged, they attach to the anionic cell surface and transfer DNA into the cell cytoplasm. We report a comprehensive x-ray diffraction study of the lamellar CL-DNA self-assemblies as a function of lipid composition and lipid/DNA ratio, aimed at elucidating the interactions determining their structure, charge, and thermodynamic stability. The driving force for the formation of charge-neutral complexes is the release of DNA and lipid counterions. Negatively charged complexes have a higher DNA packing density than isoelectric complexes, whereas positively charged ones have a lower packing density. This indicates that the overcharging of the complex away from its isoelectric point is caused by changes of the bulk structure with absorption of excess DNA or cationic lipid. The degree of overcharging is dependent on the membrane charge density, which is controlled by the ratio of neutral to cationic lipid in the bilayers. Importantly, overcharged complexes are observed to move toward their isoelectric charge-neutral point at higher concentration of salt co-ions, with positively overcharged complexes expelling cationic lipid and negatively overcharged complexes expelling DNA. Our observations should apply universally to the formation and structure of self-assemblies between oppositely charged macromolecules.  相似文献   

5.
Toll-like receptors as adjuvant receptors   总被引:5,自引:0,他引:5  
Poly(ethylene glycol)-lipid (PEG-lipid) conjugates are widely used in the field of liposomal drug delivery to provide a polymer coat that can confer favorable pharmacokinetic characteristics on particles in the circulation. More recently these lipids have been employed as an essential component in the self-assembly of cationic and neutral lipids with polynucleic acids to form small, stable lipid/DNA complexes that exhibit long circulation times in vivo and accumulate at sites of disease. However, the presence of a steric barrier lipid might be expected to inhibit the transfection activity of lipid/DNA complexes by reducing particle-membrane contact. In this study we examine what effect varying the size of the hydrophobic anchor and hydrophilic head group of PEG-lipids has on both gene and antisense delivery into cells in culture. Lipid/DNA complexes were made using unilamellar vesicles composed of 5 mole% PEG-lipids in combination with equimolar dioleoylphosphatidylethanolamine and the cationic lipid dioleyldimethylammonium chloride. Using HeLa and HepG2 cells we show that under the conditions employed PEG-lipids had a minimal effect on the binding and subsequent endocytosis of lipid/DNA complexes but they severely inhibited active gene transfer and the endosomal release of antisense oligodeoxynucleotides into the cytoplasm. Decreasing the size of the hydrophobic anchor or the size of the grafted hydrophilic PEG moiety enhanced DNA transfer by the complexes.  相似文献   

6.
Poly(ethylene glycol)-lipid (PEG-lipid) conjugates are widely used in the field of liposomal drug delivery to provide a polymer coat that can confer favorable pharmacokinetic characteristics on particles in the circulation. More recently these lipids have been employed as an essential component in the self-assembly of cationic and neutral lipids with polynucleic acids to form small, stable lipid/DNA complexes that exhibit long circulation times in vivo and accumulate at sites of disease. However, the presence of a steric barrier lipid might be expected to inhibit the transfection activity of lipid/DNA complexes by reducing particle-membrane contact. In this study we examine what effect varying the size of the hydrophobic anchor and hydrophilic head group of PEG-lipids has on both gene and antisense delivery into cells in culture. Lipid/DNA complexes were made using unilamellar vesicles composed of 5 mole% PEG-lipids in combination with equimolar dioleoylphosphatidylethanolamine and the cationic lipid dioleyldimethylammonium chloride. Using HeLa and HepG2 cells we show that under the conditions employed PEG-lipids had a minimal effect on the binding and subsequent endocytosis of lipid/DNA complexes but they severely inhibited active gene transfer and the endosomal release of antisense oligodeoxynucleotides into the cytoplasm. Decreasing the size of the hydrophobic anchor or the size of the grafted hydrophilic PEG moiety enhanced DNA transfer by the complexes.  相似文献   

7.
The free energy of transfer (DeltaG degrees ) from water to lipid bilayers was measured for two amphipathic peptides, the presequence of the mitochondrial peptide rhodanese (MPR) and melittin. Experiments were designed to determine the effects on peptide partitioning of the addition of lipids that produce structural modifications to the bilayer/water interface. In particular, the addition of cholesterol or the cholesterol analog 6-ketocholestanol increases the bilayer area compressibility modulus, indicating that these molecules modify lipid-lipid interactions in the plane of the bilayer. The addition of 6-ketocholestanol or lipids with attached polyethylene glycol chains (PEG-lipids) modify the effective thickness of the interfacial region; 6-ketocholestanol increases the width of hydrophilic headgroup region in the direction of the acyl chains whereas the protruding PEG chains of PEG-lipids increase the structural width of the headgroup region into the surrounding aqueous phase. The incorporation of PEG-lipids with PEG molecular weights of 2000 or 5000 had no appreciable effect on peptide partitioning that could not be accounted for by the presence of surface charge. However, for both MPR and melittin DeltaG degrees decreased linearly with increasing bilayer compressibility modulus, demonstrating the importance of bilayer mechanical properties in the binding of amphipathic peptides.  相似文献   

8.
Cryo-transmission electron microscopy has been used to investigate the phase behavior and aggregate structure in dilute aqueous mixtures of dioleoylphosphatidylethanolamine (DOPE) and poly(ethylene glycol)-phospholipids (PEG-lipids). It is shown that PEG-lipids (micelle-forming lipids) induce a lamellar phase in mixtures with DOPE (inverted hexagonal forming lipid). The amount of PEG-lipid that is needed to induce a pure dispersed lamellar phase, at physiological conditions, depends on the size of the PEG headgroup. In the transition region between the inverted hexagonal phase and the lamellar phase, particles with dense inner textures are formed. It is proposed that these aggregates constitute dispersed cubic phase particles. Above bilayer saturating concentration of PEG-lipid, small disks and spherical micelles are formed. The stability of DOPE/PEG-lipid liposomes, prepared at high pH, against a rapid drop of the pH was also investigated. It is shown that the density of PEG-lipid in the membrane, sufficient to prevent liposome aggregation and subsequent phase transition, depends on the size of the PEG headgroup. Below a certain density of PEG-lipid, aggregation and phase transition occurs, but the processes involved proceed relatively slow, over the time scale of weeks. This allows detailed studies of the aggregate structure during membrane fusion.  相似文献   

9.
The formation of lipid-DNA (CL-DNA) complexes called lipoplexes, proposed as DNA vectors in gene therapy, is obtained by adding DNA to a solution containing liposomes composed of cationic and neutral lipids. The structural and dynamic properties of such lipoplexes are determined by a coupling between the electrostatic interactions and the elastic parameters of the lipid mixture. An attempt to achieve a better understanding of the structure-dynamics relationship is reported herein. In particular, an elastic neutron scattering investigation of DOTAP-DOPC (dioleoyl trimethylammonium propane-dioleoyl phosphatidylcoline) complexed with DNA is described. Proton dynamics in this oriented CL-DNA lipoplex is found to be strongly dependent upon DNA concentration. Our results show that a substantial modification of the membrane dynamics is accompanied by the balancing of the total net charge inside the complex, together with the consequent displacement of interlayer water molecules.  相似文献   

10.
Poly(ethylene glycol) (PEG) decorated lipid bilayers are widely used in biomembrane and pharmaceutical research. The success of PEG-lipid stabilized liposomes in drug delivery is one of the key factors for the interest in these polymer/lipid systems. From a more fundamental point of view, it is essential to understand the effect of the surface grafted polymers on the physical-chemical properties of the lipid bilayer. Herein we have used cryo-transmission electron microscopy and dynamic light scattering to characterize the aggregate structure and phase behavior of mixtures of PEG-lipids and distearoylphosphatidylcholine or dipalmitoylphosphatidylcholine. The PEG-lipids contain PEG of molecular weight 2000 or 5000. We show that the transition from a dispersed lamellar phase (liposomes) to a micellar phase consisting of small spherical micelles occurs via the formation of small discoidal micelles. The onset of disk formation already takes place at low PEG-lipid concentrations (<5 mol %) and the size of the disks decreases as more PEG-lipid is added to the lipid mixture. We show that the results from cryo-transmission electron microscopy correlate well with those obtained from dynamic light scattering and that the disks are well described by an ideal disk model. Increasing the temperature, from 25 degrees C to above the gel-to-liquid crystalline phase transition temperature for the respective lipid mixtures, has a relatively small effect on the aggregate structure.  相似文献   

11.
Poly(ethyleneglycol) (PEG), anchored at the surface of liposomes via the conjugation to a lipid, is commonly used for increasing the liposome stability in the blood stream. In order to gain a better understanding of the protective properties of interfacial polymers, we have studied the binding of melittin to PEG-lipid-containing membranes as well as the melittin-induced efflux of a fluorescent marker from liposomes containing PEG-lipids. We examined the effect of the polymer size by using PEG with molecular weights of 2000 and 5000. In addition, we studied the role of the anchoring lipid by comparing PEG conjugated to phosphatidylethanolamine (PE) which results in a negatively charged PEG-PE, with PEG conjugated to ceramide (Cer) which provides the neutral PEG-Cer. Our results show that interfacial PEG does not prevent melittin adsorption onto the interface. In fact, PEG-PE promotes melittin binding, most likely because of attractive electrostatic interactions with the negative interfacial charge density of the PEG-PE-containing liposomes. However, PEG-lipids limit the lytic potential of melittin. The phenomenon is proposed to be associated with the change in the polymorphic tendencies of the liposome bilayers. The present findings reveal that the protective effect associated with interfacial hydrophilic polymers is not universal. Molecules like melittin can sense surface charges borne by PEG-lipids, and the influence of PEG-lipids on liposomal properties such as the polymorphic propensities may be involved in the so-called protective effect.  相似文献   

12.
Poly(ethyleneglycol) (PEG), anchored at the surface of liposomes via the conjugation to a lipid, is commonly used for increasing the liposome stability in the blood stream. In order to gain a better understanding of the protective properties of interfacial polymers, we have studied the binding of melittin to PEG-lipid-containing membranes as well as the melittin-induced efflux of a fluorescent marker from liposomes containing PEG-lipids. We examined the effect of the polymer size by using PEG with molecular weights of 2000 and 5000. In addition, we studied the role of the anchoring lipid by comparing PEG conjugated to phosphatidylethanolamine (PE) which results in a negatively charged PEG-PE, with PEG conjugated to ceramide (Cer) which provides the neutral PEG-Cer. Our results show that interfacial PEG does not prevent melittin adsorption onto the interface. In fact, PEG-PE promotes melittin binding, most likely because of attractive electrostatic interactions with the negative interfacial charge density of the PEG-PE-containing liposomes. However, PEG-lipids limit the lytic potential of melittin. The phenomenon is proposed to be associated with the change in the polymorphic tendencies of the liposome bilayers. The present findings reveal that the protective effect associated with interfacial hydrophilic polymers is not universal. Molecules like melittin can sense surface charges borne by PEG-lipids, and the influence of PEG-lipids on liposomal properties such as the polymorphic propensities may be involved in the so-called protective effect.  相似文献   

13.
BACKGROUND: Control of the structure and physicochemical properties of DNA complexed with nonviral vectors is essential for efficient biodistribution and gene delivery to cells. Cationic liposomes interact with DNA giving transfection competent but large and heterogeneous aggregates. On the other hand, cationic detergents condense DNA into small homogeneous but reversible complexes inefficient for transfection. METHODS: In order to combine the favorable features of both vectors, ternary complexes were prepared by adding cationic liposomes to plasmid DNA condensed by cationic detergents. The structure and physicochemical properties of these complexes were investigated by electron microscopy, quasi-elastic light scattering, gel electrophoresis and fluorescence techniques. These data were then correlated with the transfection efficiency and intracellular trafficking of the ternary complexes determined by luciferase gene expression and confocal microscopy, respectively. RESULTS: The ternary complexes were found to form small, homogeneous, globular, stable and positively charged particles with a highly dense and packed lamellar internal structure differing from the multilamellar structure (L(alpha)(C)) of the corresponding lipoplexes. In the presence of serum, the ternary complexes were more efficiently internalized into cells, less toxic and showed 20-fold higher transfection efficiency than lipoplexes. CONCLUSIONS: This study showed that small, monodisperse and highly stable complexes could be obtained by precompaction of DNA with cetyltrimethylammonium bromide, followed by addition of cationic lipids. The higher efficiency of the ternary complexes with respect to their corresponding lipoplexes was related to their internal structure which prevents their dissociation by serum proteins and allows efficient internalization in the target cells.  相似文献   

14.
The interactive properties of liposomes containing phospholipids with covalently attached poly(ethylene glycol) (PEG-lipids) are of interest because such liposomes are being developed as drug delivery vehicles and also are ideal model systems for measuring the properties of surface-grafted polymers. For bilayers containing PEG-lipids with PEG molecular weights of 350, 750, 2000, and 5000, pressure-distance relations have been measured by X-ray diffraction analysis of liposomes subjected to known applied osmotic pressures. The distance between apposing bilayers decreased monotonically with increasing applied pressure for each concentration of a given PEG-lipid. Although for bilayers containing PEG-350 and PEG-750 the contribution of electrostatic repulsion to interbilayer interactions was significant, for bilayers containing PEG-2000 and PEG-5000 the major repulsive pressure between bilayers was a steric pressure due to the attached PEG. The range and magnitude of this steric pressure increased both with increasing PEG-lipid concentration and PEG size, and the extension length of the PEG from the bilayer surface at maximum PEG-lipid concentration depended strongly on the size of the PEG, being less than 35 A for PEG-750, and about 65 A for PEG-2000 and 115 A for PEG-5000. The measured pressure-distance relations have been modeled in terms of current theories (deGennes, 1987; Milner et al., 1988b) for the steric pressure produced by surface-grafted polymers, as modified by us to take into account the effects of polymer polydispersity and the possibility that, at low grafting densities, polymers from apposing bilayers surfaces can interpenetrate or interdigitate. No one theoretical scheme is sufficient to account for all the experimental results. However, for a given pressure regime, PEG-lipid size, and PEG-lipid surface density, the appropriately modified theoretical treatment gives a reasonable fit to the pressure-distance data.  相似文献   

15.
The chain-melting transition temperature of dipalmitoyl phosphatidylcholine (DPPC) bilayer membranes containing poly(ethylene glycol)-grafted dipalmitoyl phosphatidylethanolamine (PEG-DPPE) was determined by optical turbidity measurements. The dependence on content, Xp, of PEG-DPPE lipid was studied for different polar headgroup sizes, np, of the polymer lipid, throughout the lamellar phase of the mixtures with DPPC. Mean-field theory for the polymer brush regime predicts that the downward shift in transition temperature should vary with polymer size and content as npXp(5/3) (approximately npXp(11/6) for scaling theory). Any shift induced by the charge on PEG-lipids is independent of polymer size. These predictions are reasonably borne out for the longer polymer lipids (PEG molecular masses 750, 2000 and 5000 Da). Transition temperature shifts in the lamellar phase, before the onset of micellisation, are in the region of -1 to -2 degrees C (+/-0.1-0.2 degrees C) in reasonable accord with theoretical estimates of the lateral pressure exerted by the polymer brush. Shifts of this size are significant to the design of liposomes for controlled release of contents by mild hyperthermia.  相似文献   

16.
The incorporation of poly(ethylene glycol) (PEG)-conjugated lipids in lipid-based carriers substantially prolongs the circulation lifetime of liposomes. However, the mechanism(s) by which PEG-lipids achieve this have not been fully elucidated. It is believed that PEG-lipids mediate steric stabilization, ultimately reducing surface-surface interactions including the aggregation of liposomes and/or adsorption of plasma proteins. The purpose of the studies described here was to compare the effects of PEG-lipid incorporation in liposomes on protein binding, liposome-liposome aggregation and pharmacokinetics in mice. Cholesterol-free liposomes were chosen because of their increasing importance as liposomal delivery systems and their marked sensitivity to protein binding and aggregation. Specifically, liposomes containing various molecular weight PEG-lipids at a variety of molar proportions were analyzed for in vivo clearance, aggregation state (size exclusion chromatography, quasi-elastic light scattering, cryo-transmission and freeze fracture electron microscopy) as well as in vitro and in vivo protein binding. The results indicated that as little as 0.5 mol% of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) modified with PEG having a mean molecular weight of 2000 (DSPE-PEG(2000)) substantially increased plasma circulation longevity of liposomes prepared of 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). Optimal plasma circulation lifetimes could be achieved with 2 mol% DSPE-PEG(2000). At this proportion of DSPE-PEG(2000), the aggregation of DSPC-based liposomes was completely precluded. However, the total protein adsorption and the protein profile was not influenced by the level of DSPE-PEG(2000) in the membrane. These studies suggest that PEG-lipids reduce the in vivo clearance of cholesterol-free liposomal formulations primarily by inhibition of surface interactions, particularly liposome-liposome aggregation.  相似文献   

17.
18.
The incorporation of poly(ethylene glycol) (PEG)-conjugated lipids in lipid-based carriers substantially prolongs the circulation lifetime of liposomes. However, the mechanism(s) by which PEG-lipids achieve this have not been fully elucidated. It is believed that PEG-lipids mediate steric stabilization, ultimately reducing surface-surface interactions including the aggregation of liposomes and/or adsorption of plasma proteins. The purpose of the studies described here was to compare the effects of PEG-lipid incorporation in liposomes on protein binding, liposome-liposome aggregation and pharmacokinetics in mice. Cholesterol-free liposomes were chosen because of their increasing importance as liposomal delivery systems and their marked sensitivity to protein binding and aggregation. Specifically, liposomes containing various molecular weight PEG-lipids at a variety of molar proportions were analyzed for in vivo clearance, aggregation state (size exclusion chromatography, quasi-elastic light scattering, cryo-transmission and freeze fracture electron microscopy) as well as in vitro and in vivo protein binding. The results indicated that as little as 0.5 mol% of 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE) modified with PEG having a mean molecular weight of 2000 (DSPE-PEG2000) substantially increased plasma circulation longevity of liposomes prepared of 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). Optimal plasma circulation lifetimes could be achieved with 2 mol% DSPE-PEG2000. At this proportion of DSPE-PEG2000, the aggregation of DSPC-based liposomes was completely precluded. However, the total protein adsorption and the protein profile was not influenced by the level of DSPE-PEG2000 in the membrane. These studies suggest that PEG-lipids reduce the in vivo clearance of cholesterol-free liposomal formulations primarily by inhibition of surface interactions, particularly liposome-liposome aggregation.  相似文献   

19.
Zhou S  Liang D  Burger C  Yeh F  Chu B 《Biomacromolecules》2004,5(4):1256-1261
Synchrotron small-angle X-ray scattering was used to study the nanostructures of the complexes formed by calf thymus DNA interacting with cationic lipids (or surfactants) of didodecyldimethylammonium bromide (DDAB), cetyltrimethylammonium bromide (CTAB), and their mixture with a zwitterionic lipid of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (PHGPC). The effects of lipid/DNA ratios, DNA chain flexibility, lipid topology, and neutral lipid mixing on the nanostructures of DNA-lipid complexes were investigated. The complexes between double-stranded DNA (dsDNA) and double-tailed DDAB formed a bilayered lamellar structure, whereas the complexes between dsDNA and single-tailed CTAB preferred a structure of 2D hexagonal close packing of cylinders. With single stranded DNA (ssDNA) interacting with CTAB, the complexes showed a Pm3n cubic structure due to the different chain flexibility between dsDNA and ssDNA. The lipid molecules bound by rigid dsDNA like to form cylindrical micelles, whereas lipids bound to flexible ssDNA could form spherical or short cylindrical micelles. The addition of the neutral single-chained PHGPC lipids to the CTAB lipids could induce a structural transition of dsDNA-lipid complexes from a 2D hexagonal to a multi-bilayered lamellar structure. The parallel DNA strands were intercalated in the water layers of lamellar stacks of the mixed lipid bilayers. The DNA-DNA spacing depended on the ratios of charged lipid to neutral lipid, and charged lipid to DNA, respectively.  相似文献   

20.
BACKGROUND: Gene carriers based on lipids or polymers-rather than on engineered viruses-constitute the latest technique for delivering genes into cells for gene therapy. Cationic liposome-DNA (CL-DNA) complexes have emerged as leading nonviral vectors in worldwide gene therapy clinical trials. To arrive at therapeutic dosages, however, their efficiency requires substantial further improvement. METHODS: Newly synthesized multivalent lipids (MVLs) enable control of headgroup charge and size. Complexes comprised of MVLs and DNA have been characterized by X-ray diffraction and ethidium bromide displacement assays. Their transfection efficiency (TE) in L-cells was measured with a luciferase assay. RESULTS: Plots of TE versus the membrane charge density (sigmaM, average charge/unit area of membrane) for the MVLs and monovalent 2,3-dioleyloxypropyltrimethylammonium chloride (DOTAP) merge onto a universal, bell-shaped curve. This bell curve leads to the identification of three distinct regimes, related to interactions between complexes and cells: at low sigmaM, TE increases with increasing sigmaM; at intermediate sigmaM, TE exhibits saturated behavior; and unexpectedly, at high sigmaM, TE decreases with increasing sigmaM. CONCLUSIONS: Complexes with low sigmaM remain trapped in the endosome. In the high sigmaM regime, accessible for the first time with the new MVLs, complexes escape by overcoming a kinetic barrier to fusion with the endosomal membrane (activated fusion), yet they exhibit a reduced level of efficiency, presumably due to the inability of the DNA to dissociate from the highly charged membranes in the cytosol. The intermediate, optimal regime reflects a compromise between the opposing demands on sigmaM for endosomal escape and dissociation in the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号