首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbicide-resistant sweet potato plants were produced through biolistics of embryogenic calli derived from shoot apical meristems. Plant materials were bombarded with the vectors containing the β-glucuronidase gene (gusA) and the herbicide-resistant gene (bar). Selection was carried out using phosphinothricin (PPT). Transformants were screened by the histochemical GUS and Chlorophenol Red assays. PCR and Southern-blot analyses indicated the presence of introduced bar gene in the genomic DNA of the transgenic plants. When sprayed with Basta, the transgenic sweet potato plants was tolerant to the herbicide. Hence, we report successful transformation of the bar gene conferring herbicide resistance to sweet potato.  相似文献   

2.
 Transgenic plants of cassava (Manihot esculenta) resistant to the herbicide Basta were obtained through Agrobacterium-mediated transformation. The plants also expressed the uidA gene and two were positive for PCR- and/or Southern-based detection of the nptII gene. Somatic-embryo-derived cotyledons were used as source of explants. A non-disarmed Agrobacterium strain (CIAT 1182) was used to transfer the genes of interest into cassava cultivar MPer183. Greenhouse tests of resistance to Basta (Hoechst) showed three plant lines with different levels of tolerance to the herbicide. Based on Southern tests of transgenesis, the transformation efficiency was 1%. The results constitute the first report of the bar gene conferring herbicide resistance to cassava plants. Received: 9 January 1999 / Revision received: 10 May 1999 / Accepted: 15 June 1999  相似文献   

3.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   

4.
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants.  相似文献   

5.
Transgenic cotton plants were developed by pistil drip inoculation in a solution containing Agrobacterium carrying a gene for resistance to the herbicide Basta (bar), 10% (w/v) sucrose, 0.05% (v/v) Silwet L-77 and 40 mg acetosyringone l−1. Pistil drip during 17:00–19:00 on the first day of flowering resulted in 0.07–0.17% Basta-resistant plants/number of viable seeds generated, and stigma excision prior to pistil drip during this time period gave rise to a transformation efficiency of 0.46–0.93%, in contrast with 0.04–0.06% generated from pistil drip during 9:00–11:00 on the second day of flowering. PCR and Southern blot analysis confirmed the integration of the bar gene into the cotton genome, and a T1 and T2 generation herbicide resistance test consistently revealed expression and stable heritability of the bar gene in the two generations.  相似文献   

6.
Three constructs harbouring novel Bacillus thuringiensis genes (Cry1C, Cry2A, Cry9C) and bar gene were transformed into four upland cotton cultivars, Ekangmian10, Emian22, Coker201 and YZ1 via Agrobacterium-mediated transformation. With the bar gene as a selectable marker, about 84.8 % of resistant calli have been confirmed positive by polymerase chain reaction (PCR) tests, and totally 50 transgenic plants were regenerated. The insertions were verified by means of Southern blotting. Bioassay showed 80 % of the transgenic plantlets generated resistance to both herbicide and insect. We optimized conditions for improving the transformation efficiency. A modified in vitro shoot-tip grafting technique was introduced to help entire transplantation. This result showed that bar gene can replace antibiotic marker genes (ex. npt II gene) used in cotton transformation.  相似文献   

7.
Transgenic herbicide tolerant Acacia sinuata plants were produced by transformation with the bar gene conferring phosphinothricin resistance. Precultured hypocotyl explants were infected with Agrobacterium tumefaciens strain EHA105 in the presence of 100 μM acetosyringone and shoots regenerated on MS (Murashige and Skoog, 1962, Physiol Plant 15:473–497) medium with 13.3 μM benzylaminopurine, 2.6 μM indole-3-acetic acid, 1 g l−1 activated charcoal, 1.5 mg l−1 phosphinothricin, and 300 mg l−1 cefotaxime. Phosphinothricin at 1.5 mg l−1 was used for the selection. Shoots surviving selection on medium with phosphinothricin expressed GUS. Following Southern hybridization, eight independent shoots regenerated of 500 cocultivated explants were demonstrated to be transgenic, which represented transformation frequency of 1.6%. The transgenics carried one to four copies of the transgene. Transgenic shoots were propagated as microcuttings in MS medium with 6.6 μM 6-benzylaminopurine and 1.5 mg l−1 phosphinothricin. Shoots elongated and rooted in MS medium with gibberellic acid and indole-3-butyric acid, respectively both supplemented with 1.5 mg l−1 phosphinothricin. Micropropagation of transgenic plants by microcuttings proved to be a simple means to bulk up the material. Several transgenic plants were found to be resistant to leaf painting with the herbicide Basta.  相似文献   

8.
We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.  相似文献   

9.
Transgenic radish (Raphanus sativus L. longipinnatus Bailey) plants were produced from the progeny of plants which were dipped into a suspension of Agrobacterium carrying both the -glucuronidase (gusA) gene and a gene for resistance to the herbicide Basta (bar) between T-DNA border sequences. The importance of development of the floral-dipped plant and presence of surfactant in the inoculation medium were evaluated in terms of transgenic plant production. Plants dipped at the primary bolt stage of growth, into a suspension of Agrobacterium containing 0.05% (v/v) Silwet L-77 resulted in optimum transformation efficiency, with 1.4% from 1110 seeds. The presence of Pluronic F-68 or Tween 20 in the inoculation medium was beneficial towards transgenic plant output compared to treatments without surfactant. Putative transformed T1 plants were efficiently selected by spraying with 0.03% (v/v) Basta and all herbicide-resistant plants tested positive for GUS activity when analysed both histochemically and fluorometrically. Southern analysis revealed that both the gusA and bar genes integrated into the genome of transformed plants and segregated as dominant Mendelian traits. These results demonstrate that radish can be genetically modified for the improvement of this important vegetable crop.  相似文献   

10.
Genetic engineering provides new opportunities for improving economically important traits in sugarcane cultivars. In this study, an efficient Agrobacterium-mediated transformation system that uses the bar gene (a herbicide resistance gene that is used in conjunction with the herbicide Basta) as a selection marker was developed. Using this transformation selection system, all of the resistant plants after selection were nearly 100% polymerase chain reaction (PCR) detection positive and showed herbicide resistance. Each gram of sugarcane calli used for transformation produced approximately 12 transgenic lines. It took approximately 4 months to generate transgenic plants that measured 10 cm in height for greenhouse transplantation.  相似文献   

11.
This paper presents a method of Agrobacterium-mediated transformation for two diploid breeding lines of potato, and gives a detailed analysis of reporter gene expression. In our lab, these lines were also used to obtain tetraploid somatic hybrids. We tested four newly prepared constructs based on the pGreen vector system containing the selection gene nptII or bar under the 35S or nos promoter. All these vectors carried gus under 35S. We also tested the pDM805 vector, with the bar and gus genes respectively under the Ubi1 and Act1 promoters, which are strong for monocots. The selection efficiency (about 17%) was highest in the stem and leaf explants after transformation with pGreen where nptII was under 35S. About half of the selected plants were confirmed via PCR and Southern blot analysis to be transgenic and, depending on the combination, 0 to 100% showed GUS expression. GUS expression was strongest in multi-copy transgenic plants where gus was under Act1. The same potato lines carrying multi-copy bar under Ubi1 were also highly resistant to the herbicide Basta. The suggestion of using Agrobacterium-mediated transformation of diploid lines of potato as a model crop is discussed herein.  相似文献   

12.
Two pathogenesis-related (PR) protein genes consisting of a barley chitinase (chi-2) and a wheat lipid-transfer-protein (ltp) were introduced singly and in combination into carrot plants via Agrobacterium-mediated transformation using the phosphinothricin acetyl transferase (bar) gene as a selectable marker. Over 75% of regenerated plants were confirmed to be positive for the transgenes by PCR and RT-PCR and were resistant to the herbicide Liberty (0.2%, v/v). Northern analysis and immunoblotting confirmed the expression of the transgenes in about 70% of the plants, with variable expression levels among individual lines. Southern analysis revealed from one to three copies of each transgene. Transgenic plants were inoculated with two necrotrophic foliar fungal pathogens, Alternaria radicicola and Botrytis cinerea, and showed significantly higher resistance when both PR genes were expressed compared to single-gene transformants. The level of disease reduction in plants expressing both genes was 95% for Botrytis and 90% for Alternaria infection compared to 40–50% for single-gene transformants. The chi2 and ltp genes could be deployed in combination in other crop plants to significantly enhance resistance to necrotrophic fungal pathogens.  相似文献   

13.
Glufosinate resistance gene isolated from Streptomyces hygromicinroscopicus (bar) that confers the resistance of herbicide Liberty, a broad-spectrum grass and broadleaf contact herbicide widely used for weed control, was introduced into triploid bermudagrass by Agrobacterium-mediated transformation. Embryogenic calluses derived from stolonous nodal segment were co-cultured with the disarmed strain EHA105 harboring the binary vector pBG1300H containing the bar gene under the control of adh-1 promoter. A total of 18 independent transgenic lines were obtained. The integration of bar gene into plant genome was confirmed by the GUS histochemical staining assay, PCR amplification, and Southern blotting. Herbicide bioassay indicated that the bar-expressing transgenic plants exhibited greater herbicide resistance than the wild type and the non-transformed tissue culture-derived plants.  相似文献   

14.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   

15.
Transgenic pakchoi (Brassica rapa L. ssp. chinensis) plants were obtained in the progeny of plants infiltrated by an Agrobacterium tumefaciens strain carrying a gene for resistance to the herbicide phosphinotricin (Basta). Genetic analysis demonstrates the transmission of the herbicide resistant trait to the progeny. Molecular analyses show that the transgene was inserted in the plant genome and expressed. This work demonstrates that the infiltration transformation method originally devised for Arabidopsis thaliana can be adapted for other crucifer species and opens up the possibility of genetic engineering of pakchoi, an important vegetable plant.  相似文献   

16.
 Transgenic white poplar plants (Populus alba L.) expressing the nptII gene and the bar gene from Streptomyces hygroscopicus have been produced using Agrobacterium tumefaciens-mediated gene transfer. Eleven kanamycin-resistant plant lines were obtained with a transformation frequency of 7%. Successful genetic transformation was confirmed by Southern and northern analyses. The level of resistance to the commercial preparation of phosphinothricin (Basta; Roussel-Hoechst Agrovet) was evaluated by in vitro and in vivo assays. Using in vitro selective conditions for phosphinothricin, only plantlets from four kanamycin-resistant independent lines remained green and continued to grow and root. After transfer to the growth chamber, all selected transgenic lines were shown to be completely resistant to the herbicide Basta with doses equivalent to 6 l ha–1 (normal field dosage) and were tolerant at concentration of 12 l ha–1. This is the first report describing the genetic transformation of a P. alba clonal cultivar of commercial interest with a gene of agronomic value. Received: 12 June 1999 / Revision received: 6 March 2000 / Accepted: 7 March 2000  相似文献   

17.
Summary We have established an efficient Agrobacterium-mediated transformation procedure for Arabidopsis thaliana genotype C24 using the chimeric bialaphos resistance gene (bar) coding for phosphinothricin acetyltransferase (PAT). Hypocotyl explants from young seedlings cocultivated with agrobacteria carrying a bar gene were selected on shoot-inducing media containing different concentrations of phosphinothricin (PPT) which is an active component of bialaphos. We found that 20 mg/l of PPT completely inhibited the control explants from growing whereas the explants transformed with the bar gene gave rise to multiple shoots resistant to PPT after 3 weeks under the same selection conditions. The transformation system could also be applied to root explants. Resulting plantlets could produce viable seeds in vitro within 3 months after preparation of the explants. The stable inheritance of the resistance trait, the integration and expression of the bar gene in the progeny were confirmed by genetic tests, Southern analysis and PAT enzyme assay, respectively. In addition, the mature plants in soil showed tolerance to the herbicide Basta.Abbreviations bar bialaphos resistance gene - CIM callus-inducing medium - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - GM germination medium - HPT hygromycin phosphotransferase - MS Murashige and Skoog salts - NPTII neomycin phosphotransferase II - PAT phosphinothricin acetyltransferase - PPT phosphinothricin - SIM shoot-inducing medium  相似文献   

18.
Agave salmiana was transformed using two different protocols: co-cultivation with Agrobacterium tumefaciens and particle bombardment. The uidA (β-glucuronidase) gene was used as a reporter gene for both methods whereas the nptII and bar genes were used as selectable markers for A. tumefaciens and biolistic transformation respectively. Previous reports for in vitro regeneration of A. salmiana have not been published; therefore the conditions for both shoot regeneration and rooting were optimized using leaves and embryogenic calli of Agave salmiana. The transgenes were detected by Polymerase Chain Reaction (PCR) in 11 month old plants. The transgenic nature of the plants was also confirmed using GUS histochemical assays. Transformation via co-cultivation of explants with Agrobacterium harbouring the pBI121 binary vector was the most effective method of transformation, producing 32 transgenic plants and giving a transformation efficiency of 2.7%. On the other hand, the biolistic method produced transgenic calli that tested positive with the GUS assay after 14 months on selective medium while still undergoing regeneration.  相似文献   

19.
Sweet potato [Ipomoea batatas (L.) Lam] is considered to be recalcitrant to transformation and regeneration because of its genotype-dependent in vitro responses. The lack of a genotype-independent transformation and regeneration system limits biotechnological applications in this plant species. To establish a transformation system for a diverse group of sweet potato genotypes, we examined sweet potato regeneration after transformation in five cultivars. An Agrobacterium tumefaciens transformation system was used for the introduction of mammalian cytochrome P450 genes, which are capable of conferring herbicide tolerance. Among the different factors studied, including explant type, plasmid vectors, and auxin type in the initiation media, auxin type had the greatest effect on the regeneration response. Of the auxins tested, only 4-fluorophenoxyacetic acid (4FA) induced regeneration from all cultivars. In terms of the quality of calli, 4FA promoted the induction of type I calli, which were capable of somatic embryo formation, whereas type II calli fail to produce somatic embryos. The frequency of somatic embryo formation was also affected by the composition of the embryo-induction media. Transgenic plants were regenerated from all cultivars. The stable integration and expression of transgenes was confirmed by several approaches. This Agrobacterium-mediated transformation system should be applicable to a wide range of sweet potato cultivars.  相似文献   

20.
We utilized gene transfer technology for genetic perennial ryegrass improvement, efficient regeneration, and Agrobacterium-mediated transformation of phosphinothricin acetyltransferase gene (bar). Four growth regulator combinations were compared and intact seeds of six turf-type cultivars as mature embryo sources were tested to optimize the regeneration conditions. Callus formation and regeneration were observed in all seeds. The highest callus formation frequency was observed in the seeds cultured on MS medium supplemented with 9 mg/l 2,4-D, without benzyladenine. Cv. TopGun revealed the highest callus induction and regeneration frequencies of 96 and 48.9%, respectively. By using an optimized regeneration system, embryogenic calli were transformed by an Agrobacterium strain LBA4404 containing the plasmid pCAMBIA3301. After the selection of the potentially transgenic calli with phosphinothricin, a herbicide, 22 transgenic resistant plants were regenerated. With PCR, Southern-blot hybridizations, and GUS expression techniques, we confirmed that some regenerants were transgenic. Two of the tested transgenic plants showed herbicide resistance. Our results indicated that embryogenic calli from mature seeds can be directly used for perennial ryegrass efficient regeneration and transformation and this protocol is applicable for genetic engineering of herbicide-resistant plants. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 590–596. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号