首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation.  相似文献   

2.
3.
The enzyme arylsulfatase B (N-acetylgalactosamine-4-sulfatase; ARSB; ASB) removes 4-sulfate groups from the sulfated glycosaminoglycans (sGAG) chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Inborn deficiency of ARSB leads to the lysosomal storage disease mucopolysaccharidosis VI, characterized by accumulation of sGAG in vital organs, disruption of normal physiological processes, severe morbidity, and premature death. Recent published work demonstrated extra-lysosomal localization with nuclear and cell membrane ARSB observed in bronchial and colonic epithelial cells, cerebrovascular cells, and hepatic cells. In this report, the authors present ARSB immunostaining in a colonic microarray and show differences in distribution, intensity, and pattern of ARSB staining among normal colon, adenomas, and adenocarcinomas. Distinctive, intense luminal membrane staining was present in the normal epithelial cells but reduced in the malignancies and less in the grade 3 than in the grade 1 adenocarcinomas. In the normal cores, a distinctive pattern of intense cytoplasmic positivity at the luminal surface was followed by reduced staining deeper in the crypts. ARSB enzymatic activity was significantly greater in normal than in malignant tissue. These study findings affirm extra-lysosomal localization of ARSB and suggest that altered ARSB immunostaining and reduced activity may be useful indicators of malignant transformation in human colonic tissue.  相似文献   

4.
The presence of sulfated glycosaminoglycans (GAGs) was demonstrated in the connective tissue of bovine and cod skeletal muscle by histochemical staining using Alcian blue added MgCl2 (0.06 M and 0.4 M, respectively). For further identification of the sulfated GAGs, a panel of monoclonal antibodies, 1B5, 2B6, 3B3 and 5D4 was used that recognizes epitopes in chondroitin-0-sulfate (C0S), chondroitin-4-sulfate/dermatan sulfate (C4S/DS), chondroitin-6-sulfate (C6S) and keratan sulfate (KS), respectively. Light microscopy and Western blotting techniques showed that in bovine and cod muscle C0S and C6S were primarily localized pericellularly, whereas cod exhibited a more intermittent staining. C4S was expressed around the separate cells and also in the perimysium and myocommata. In contrast to bovine muscle, which hardly expressed highly sulfated KS, cod exhibited a very strong and consistent staining. Western blotting showed that C0S and C6S were mainly associated with proteoglycans (PGs) of high molecular sizes in both species. Contrary to bovine muscle, C4S in cod was associated with molecules of various sizes. Both cod and bovine muscle contained KSPGs of similar sizes as C4S. KSPGs of different sizes and buoyant densities, sensitive to keratanase I and II were found expressed in cod.  相似文献   

5.
Glycosaminoglycans (GAG) and proteoglycans, which are components of the extracellular bone matrix, are also localized in and at the membrane of osteoblasts and in the pericellular matrix. Due to their interaction with several growth factors, water and cations these molecules play an important role in regulating proliferation and differentiation of osteoblasts and bone development. The aim of this study was to assess in vitro the effects of two chemically sulfated hyaluronan (HyaS) derivatives on the proliferation of rat calvarial osteoblasts and to compare with those of native hyaluronan (Hya) and natural sulfated GAG such as chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), dermatan sulfate (DS) and heparan sulfate (HS). Moderately and highly sulfated HyaS derivatives caused a time-dependent reduction of osteoblast proliferation. The anti-proliferative effect of HyaS was accompanied by a cell cycle arrest in the G1 phase, but was not associated with cell death. Whereas non-sulfated high molecular weight (HMW)- and low molecular weight (LMW)-Hya as well as C4S, C6S, DS and HS showed no effect on the cell proliferation.  相似文献   

6.
The enzyme arylsulfatase B (N-acetylgalactosamine 4-sulfatase; ASB; ARSB), which removes 4-sulfate groups from the nonreducing end of chondroitin-4-sulfate (C4S;CSA) and dermatan sulfate, has cellular effects, beyond those associated with the lysosomal storage disease mucopolysaccharidosis VI. Previously, reduced ASB activity was reported in cystic fibrosis patients and in malignant human mammary epithelial cell lines in tissue culture compared to normal cells. ASB silencing and overexpression were associated with alterations in syndecan-1 and decorin expression in MCF-7 cells and in IL-8 secretion in human bronchial epithelial cells. In this report, we present the role of ASB in the regulation of the kininogen–bradykinin axis owing to its effect on chondroitin-4-sulfation and the interaction of C4S with kininogen. Silencing or overexpression of ASB in normal rat kidney epithelial cells in tissue culture modified the content of total sulfated glycosaminoglycans (sGAGs), C4S, kininogen, and bradykinin in spent media and cell lysates. Treatment of the cultured cells with chondroitinase ABC also increased the secretion of bradykinin into the spent media and reduced the C4S-associated kininogen. When ASB was overexpressed, the cellular kininogen that associated with C4S declined, suggesting a vital role for chondroitin-4-sulfation in regulating the kininogen–C4S interaction. These findings suggest that ASB, owing to its effect on chondroitin-4-sulfation, may impact on the kininogen–bradykinin axis and, thereby, may influence blood pressure.Because ASB activity is influenced by several ions, including chloride and phosphate, ASB activity may provide a link between salt responsiveness and the bradykinin-associated mechanism of blood pressure regulation.  相似文献   

7.
Glycosaminoglycans (GAGs) were prepared from the urine of three patients and from normal individuals by cetylpyridinium chloride precipitation and Pronase digestion. The GAGs were analyzed by electrophoresis, anion-exchange chromatography, and enzymatic and chemical degradation. Each of the three patients showed a four- to fivefold increase in urinary GAG excretion compared to normal controls and in one patient a tenfold increase was measured during a period of behavioral agitation which included joint swelling. Urinary GAGs from affected individuals were characterized by a high proportion of low sulfated molecules. The predominant low sulfated component was chondroitin-4-sulfate (C4S); however, small amounts of chondroitin-6-sulfate (C6S) were also present. Heparan sulfate (HS) was present in normal proportion (5-10%) and most of it was not low sulfated. Abnormal excretion of chondroitin (Ch), hyaluronic acid (HA), and dermatan sulfate (DS) was not detected. These findings suggest that the clinical manifestations of Lowe syndrome may be caused by a defect in GAG metabolism.  相似文献   

8.
To elucidate the roles of proteoglycans (PGs), bone sialoprotein (BSP), and osteopontin (OPN) in cementogenesis, their distribution was investigated in developing and established acellular cementum of rat molars by an immunoperoxidase method. To characterize PGs, antibodies against five species of glycosaminoglycans (GAGs), chondroitin-4-sulfate (C4S), chondroitin-6-sulfate (C6S), unsulfated chondroitin (C0S), dermatan sulfate (DS), and keratan sulfate (KS) were used. Routine histological staining was also applied. With onset of dentin mineralization, the initial cementum appeared on the dentin surface as a hematoxylin-stained fibril-poor layer. Subsequently, primitive principal fibers attached to the initial cementum. As the acellular cementum containing extrinsic fibers covered the initial cementum, the initial cementum formed the cemento-dentinal junction. Following immunohistochemistry at the earliest time of cementogenesis, the initial cementum was intensely immunoreactive for C4S, C6S, C0S, BSP, and OPN. After the initial cementum was embedded, neither the cemento-dentinal junction nor the cementum was immunoreactive for any GAG species. However, the cementum and cemento-dentinal junction were consistently immunoreactive for BSP. Although the cemento-dentinal junction was consistently immunoreactive for OPN, the remaining cementum showed no significant immunoreactivity. Thus, initial acellular cementogenesis requires a dense accumulation of PGs, BSP, and OPN, which may be associated with the mineralization process independently of collagen fibrils and initial principal fiber attachment.  相似文献   

9.
The common food additive carrageenan (CGN) predictably induces intestinal inflammation in animal models. Mechanisms of CGN-induced nuclear factor κB and interleukin-8 (IL-8) stimulation include an immune-mediated pathway involving toll-like receptor 4 (TLR4) and B-cell lymphoma/leukemia 10 (BCL10) and a reactive oxygen species (ROS)-mediated pathway. To determine how the structure of CGN contributes to its initiation of inflammation through these two distinct mechanisms, we treated CGNs with galactosidases and carrageenases (CGNases) and determined the impact on IL-8 secretion and BCL10 production. Hydrolysis of CGN by the enzyme α-1→(3,6)-galactosidase significantly reduced increases in IL-8 and BCL10, but other galactosidases tested, including α-1→6-galactosidase, β-1→4-galactosidase and β-1→3,6-galactosidase, had no effect. In contrast, specific κ-CGNases or ι-CGNases, which hydrolyze β-1,4-galactosidic bonds, produced increases in IL-8 and BCL10 attributable to increased exposure of the immunogenic α-1→3-galactosidic epitope of CGN to TLR4. These results were consistent with induction of innate immune response by an interaction of TLR4 with the unusual α-d-Gal-(1→3)-d-Gal epitope present in CGN. Activation of the ROS-mediated pathway was unaffected by treatment of κ-CGN with either κ-CGNase (3 mg/L), α-1→(3,6)-galactosidase (20 mU/ml) or these enzymes in combination, indicating that changes in IL-8 production were attributable to the effects of induction of inflammation on the TLR4–BCL10-mediated innate immune pathway. These findings provide new information about the specificity of carbohydrate–protein interaction between CGN and TLR4 and may help to devise treatments that modify the immune reactivity induced by carbohydrate antigens.  相似文献   

10.
11.
The ability of chondrocytes to synthesize chondroitin-4-sulfate (C4S) as opposed to chondroitin-6-sulfate (C6S) is a phylogenetically related phenomenon seen among adult higher vertebrates and developmentally during the embryogenesis of these vertebrates. While the embryonic cartilage may be initially a C6S matrix, C4S synthesis is seen to develop with time. We have histochemically localized these differences in sulfation with the cationic carbocyanine dye, Stains-all, in a spectrum of cartilages that vary in the sulfation position of their chondroitin sulfate. Cartilages from the rat and rabbit that are predominantly C4S stained magenta at pH 4.3, while the C6S-rich cartilage matrices from the regenerating rabbit ear and lamprey cranium stained blue. Embryonic chicken cartilages develop a gradient of magenta matrix with age, with increased concentration toward the articular surface. Both magenta and blue matrices were absent after pretreatment with chondroitinase ABC but were present after Streptomyces hyaluronidase digestion. The magenta staining was a property of the cartilage matrix as a whole, since isolated C4S and C6S stained blue. The differential staining was seen at pH 4.3, but not at pH 8.8, suggesting an interaction between the chondroitin sulfate and the adjacent tissue proteins.  相似文献   

12.
The water sorptive and retentive capacities of three corneal proteoglycans with different keratan sulfate/chondroitin-4-sulfate compositions were investigated. The calcium salt of a predominantly keratan sulfate containing proteoglycan had hydration properties similar to that of calcium keratan sulfate. The proteoglycan containing predominantly calcium chondroitin-4-sulfate side chains sorbed water to a greater extent than pure calcium chondroitin-4-sulfate but its retentive power was somewhat less. The proteoglycan containing about twice as much keratan sulfate as chondroitin-4-sulfate, on a disaccharidic molar basis and had hydration properties which were closer to the behavior of chondroitin-4-sulfate than keratan sulfate. The results are discussed in terms of structure and polymer interaction in the proteoglycan matrices.  相似文献   

13.
The water sorptive and retentive capacities of three corneal proteoglycans with different keratan sulfate/chondroitin-4-sulfate compositions were investigated. The calcium salt of a predominantly keratan sulfate containing proteoglycan had hydration properties similar to that of calcium keratan sulfate. The proteoglycan containing predominantly calcium chondroitin-4-sulfate side chains sorbed water to a greater extent than pure calcium chondroitin-4-sulfate but its retentive power was somewhat less. The proteoglycan containing about twice as much keratan sulfate as chondroitin-4-sulfate, on a dissaccharidic molar basis and had hydration properties which were closer to the behavior of chondroitin-4-sulfate than keratan sulfate. The results are discussed in terms of structure and polymer interaction in the proteoglycan matrices.  相似文献   

14.
Sulfated glycosaminoglycan (GAG) synthesis by primary cultures of embryo, yolk sac, and trophoblast was compared with synthesis by the same tissues in utero. In general, the in vivo and in vitro results were in good agreement. As was the case in vivo, the three tissues synthesized chondroitin-4-sulfate and chondroitin-6-sulfate (but no dematan sulfate) at characteristic ratios.Cultured embryos are already capable of synthesizing chondroitin sulfates, primarily chondroitin-4-sulfate, before, or at, the 64-cell stage. During the attachment and initiation of outgrowth stages, blastocysts synthesize more chondroitin-6-sulfate than chondroitin-4-sulfate. Thereafter, progressively more chondroitin-4-sulfate is synthesized so that the 4:6 ratio increases, resembling that of trophoblast cells.Blastocyst-derived cell lines and teratoma cell cultures were also studied. One blastocyst-derived line, MB4, synthesized GAG with a pattern similar to that of yolk sac, which it resembles biochemically in other respects as well. The GAG profile of MB2, a parietal endoderm-like cell line resembled neither that of embryo, yolk sac, nor trophoblast cells. Embryonal carcinoma (undifferentiated teratoma) cells had a chondroitin sulfate pattern different from that of most of the other cultures.  相似文献   

15.
Glycosaminoglycans, the sugar moieties of proteoglycans, modulate axonal growth in vitro. However, their anatomical distribution in relation to developing axonal tracts in the rat brain has not been studied. Here, we examined the immunohistochemical distribution of chondroitin-6-sulfate and chondroitin-4-sulfate, two related glycosaminoglycan epitopes, which are present in three types of glycosaminoglycans: chondroitin sulfate C, chondroitin sulfate A, and chondroitin sulfate B. Further, we compared their distribution pattern to that of axonal tract development. Both glycosaminoglycan epitopes showed a heterogeneous spatiotemporal distribution within the developing rat brain. However, the expression of chondroitin-4-sulfate was more restricted than that of chondroitin-6-sulfate, although both epitopes were detected from embryonic day 13 until the day of birth, overlapping in many regions of the central nervous system including cortex, hippocampus, thalamus, and hindbrain. After birth, the levels of expression of both glycosaminoglycan epitopes progressively decreased and were practically undetectable after the first postnatal week. The expression of chondroitin-6-sulfate and, to a lesser extent, that of chondroitin-4-sulfate, was preferentially associated to the extracellular matrix surrounding specific axon bundles. However, the converse association was not true, and several apparently similar types of axon developed on a substrate devoid of both types of glycosaminoglycan epitopes. These results provide an anatomical background for the idea that different types of glycosaminoglycans may contribute to establish the complex set of guidance cues necessary for the specific development of defined axon tracts in the central nervous system. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Composition of glycosaminoglycans in human pancreatic cancer   总被引:1,自引:0,他引:1  
Five glycosaminoglycans were isolated from tryptic digestion of both cancerous and normal tissues of the human pancreas and were assayed by determining the carbohydrate content of materials. Separation of these five polymers was achieved by Dowex 1-X2 column chromatography and fractionation with Benedict's solution. They were identified as hyaluronic acid, heparan sulfate, dermatan sulfate, chondroitin-4-sulfate, and chondroitin-6-sulfate, respectively. The total amount of glycosaminoglycans in cancer tissue increased in comparison to the controls. The increase in tissue content of glycosaminoglycans was accompanied by increases in chondroitin-4-sulfate and chondroitin-6-sulfate levels.  相似文献   

17.
Arylsulfatase B (ARSB) is the lysosomal enzyme that catalyzes the hydrolysis of 4-sulfate groups from N-acetylgalactosamine 4-sulfate moieties on the glycosaminoglycans, dermatan sulfate and chondroitin sulfate A. In man, a deficiency of this enzymatic activity causes the lysosomal storage disorder, Maroteaux-Lamy disease (mucopolysaccharidosis Type VI; MPS VI). MPS VI in Siamese cats also has been described, and the comparative pathologic and biochemical abnormalities of the human and feline disorders have been well characterized. The present study describes the isolation and expression of cDNAs encoding feline ARSB and the assignment of the feline ARSB gene to feline chromosome A1. The full-length feline ARSB cDNA sequence is 1939 bp, including 3 and 328 bp of 5' and 3' untranslated sequences, respectively, and a 1608-bp open reading frame encoding 535 amino acids. The predicted human and feline ARSB proteins are 91% identical and 94% similar. However, despite this high homology, the predicted feline ARSB polypeptide has nine cysteine residues, while the human enzyme has eight. The presence of the extra cysteine residue at position 451 in the feline enzyme may explain why feline ARSB is a homodimer and the human enzyme is a monomer. To facilitate comparative structure/function studies of the human and feline enzymes and to initiate somatic gene therapy trials in the MPS VI cats, a full-length feline ARSB cDNA was reconstructed from a 1440-bp partial cDNA and an ARSB fragment amplified from feline first-strand cDNA by the polymerase chain reaction. The functional integrity of this cDNA was demonstrated by transient expression in human embryonic kidney cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Ester sulfate containing glycosaminoglycans comprising approx. 3% of the total glycosaminoglycan content, have been isolated from protease-digested bovine vitreous body by stepwise fractionation on AG-1X2(Cl?) and gel filtration on Bio-Gel P-300. Two heparan sulfate and two chondroitin-4-sulfate fractions were isolated in nearly pure form. The heparan sulfate fractions were undersulfated and contained the same relative proportions of N- and O-sulfate (1 : 2), although the total sulfate content differed by approx. 100%. No chondroitin-6-sulfate was present in the isolates, based on evidence obtained from chondroitin ABC lyase experiments.  相似文献   

19.
We analyzed the main disaccharide units of glycosaminoglycans synthesized by cardiac myxoma cells in vivo and in cell culture using high-performance liquid chromatography after 1-phenyl-3-methyl-5-pyrasolone labeling. Cardiac myxoma tissues contained large amounts of chondroitin-6-sulfate (46%) and hyaluronic acid (32%), along with some chondroitin-4-sulfate (13%), chondroitin (6%), and much less dermatan sulfate (3%). Cultured cardiac myxoma cells synthesized mainly chondroitin-6-sulfate. The abundant glycosaminoglycans in myxoma tissues may make up the characteristic friable gelatinous matrix which is favorable for embolism and tumor cell growth.  相似文献   

20.
Incorporation of [35S]sulfate into sulfated mucopolysaccharides has been characterized in midgestation mouse embryo, yolk sac, trophoblast, and decidua. Enzymatic analysis indicated that chondroitin sulfates contained approximately half of the label in embryo, trophoblast, and decidua, but less than 20% in yolk sac. While the labeled chondroitin sulfate fraction of trophoblast and decidua was mainly chondroitin-4-sulfate, only embryo contained a significant proportion of labeled chondroitin-6-sulfate. The relative incorporation into embryo chondroitin-6-sulfate was also substantially higher than that observed in four adult soft tissues. Labeled dermatan sulfate was absent from the embryo and yolk sac, but small amounts might have been synthesized by the placenta. Nitrous acid degradation studies revealed that essentially all the chondroitinase resistant MPS was N-sulfated, i.e., heparan sulfate and/or heparin. Electrophoretic profiles indicate that the bulk of the N-sulfated material resembles heparan sulfate rather than heparin. Electrophoretic heterogeneity and slow migration rates relative to standard markers suggest that the majority of labeled chondroitin sulfates may be undersulfated. The different mucopolysaccharide patterns in the various tissues may reflect their specialized properties and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号