首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 308 毫秒
1.
Paul RK  Takeuchi H  Kubo T 《Zoological science》2006,23(12):1085-1092
We previously demonstrated that two ecdysteroid-regulated genes, Mblk-1/E93 and E74, are expressed selectively in Kenyon cell subtypes in the mushroom bodies of the honeybee (Apis mellifera L.) brain. To further examine the possible involvement of ecdysteroid-regulated genes in brain function as well as in oogenesis in the honeybee, we isolated cDNAs for two other ecdysteroid-regulated genes, Broad-Complex (BR-C) and E75, and analyzed their expression in the worker brain as well as in the queen abdomen. In situ hybridization revealed that BR-C, like Mblk-1/ E93, is expressed selectively in the large-type Kenyon cells of the mushroom bodies in the worker brain, whereas E75 is expressed in all mushroom body neuron subtypes, suggesting a difference in the mode of response to ecdysteroid among Kenyon cell subtypes. In the queen ovary, both BR-C and E75 are expressed preferentially in the follicle cells that surround egg cells at the late stage, suggesting their role in oogenesis. These results suggest that BR-C and E75 are involved in the regulation of brain function as well as in reproductive physiology in the adult honeybee.  相似文献   

2.
3.

Background

The importance of visual sense in Hymenopteran social behavior is suggested by the existence of a Hymenopteran insect-specific neural circuit related to visual processing and the fact that worker honeybee brain changes morphologically according to its foraging experience. To analyze molecular and neural bases that underlie the visual abilities of the honeybees, we used a cDNA microarray to search for gene(s) expressed in a neural cell-type preferential manner in a visual center of the honeybee brain, the optic lobes (OLs).

Methodology/Principal Findings

Expression analysis of candidate genes using in situ hybridization revealed two genes expressed in a neural cell-type preferential manner in the OLs. One is a homologue of Drosophila futsch, which encodes a microtubule-associated protein and is preferentially expressed in the monopolar cells in the lamina of the OLs. The gene for another microtubule-associated protein, tau, which functionally overlaps with futsch, was also preferentially expressed in the monopolar cells, strongly suggesting the functional importance of these two microtubule-associated proteins in monopolar cells. The other gene encoded a homologue of Misexpression Suppressor of Dominant-negative Kinase Suppressor of Ras 2 (MESK2), which might activate Ras/MAPK-signaling in Drosophila. MESK2 was expressed preferentially in a subclass of neurons located in the ventral region between the lamina and medulla neuropil in the OLs, suggesting that this subclass is a novel OL neuron type characterized by MESK2-expression. These three genes exhibited similar expression patterns in the worker, drone, and queen brains, suggesting that they function similarly irrespective of the honeybee sex or caste.

Conclusions

Here we identified genes that are expressed in a monopolar cell (Amfutsch and Amtau) or ventral medulla-preferential manner (AmMESK2) in insect OLs. These genes may aid in visualizing neurites of monopolar cells and ventral medulla cells, as well as in analyzing the function of these neurons.  相似文献   

4.
To identify protein(s) with different expression patterns in the mushroom bodies (MBs) in the honeybee brain, we compared the protein profiles of MBs and optic lobes (OLs) using proteomics. Two-dimensional gel electrophoresis revealed that five and three spots were selectively expressed in the MBs or OLs, respectively. Liquid chromatography tandem mass spectrometry analysis identified juvenile hormone diol kinase and glyceraldehyde-3-phosphate dehydrogenase as MB- and OL-selective proteins, respectively. In situ hybridization revealed that jhdk expression was upregulated in MB neuron subsets, whereas gapdh expression was downregulated, indicating that MBs have a distinct gene and protein expression profile in the honeybee brain.  相似文献   

5.
Chemosensory neurons of the vomeronasal organ (VNO) are supposed to detect pheromones controlling social and reproductive behavior in most terrestrial vertebrates. Recent studies indicate that pheromone signaling in VNO neurons is mediated via phospholipase C (PLC) activation generating the two second messengers inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Since G alpha(i) and G alpha(o) predominantly expressed in VNO neurons are usually not involved in activating PLC, it was explored if PLC activation may be mediated by G beta gamma subunits. It was found that a scavenger for beta gamma dimers reduced the urine-induced IP3 formation in VNO preparations in a dose-dependent manner indicating a role for G beta gamma complexes. Towards an identification of the relevant G beta and G gamma subunit(s), PCR approaches as well as immunohistochemical experiments were performed. It was found that out of the five known G beta subtypes, only G beta2 was expressed in both G alpha(i) as well as G alpha(o) neurons. Experimental approaches focusing on the spatial expression profile of identified G gamma subtypes revealed that G gamma8-positive neurons are preferentially localized to the basal region of the vomeronasal epithelium, whereas G gamma2-reactive cells are restricted to the apical G alpha(i)-positive layer of the sensory epithelium. As IP3 formation induced upon stimulation with volatile urinary compounds was selectively blocked by G gamma2-specific antibodies whereas second messenger formation elicited upon stimulation with alpha2u globulin was inhibited by antibodies recognizing G gamma8, it is conceivable that PLC activation in the two populations of chemosensory VNO neurons is mediated by different G beta gamma complexes.  相似文献   

6.
Major royal jelly proteins (named MRJP1-5) of honeybee (Apis mellifera), yellow proteins of Drosophila, together with putative proteins found in several bacteria, form a protein family termed the MRJP/yellow family. Members of the family exert diverse physiological functions and amongst eukaryotes appear to be restricted to the order Insecta. MRJPs constitute about 90% of total protein of royal jelly, which is secreted by nurse bees to feed the queen and growing larvae. We looked for mrjp and yellow homologues in a honeybee brain expressed sequence tags (EST) library. In addition to the five mrjp cDNAs previously characterized, we found three additional cDNAs encoding novel MRJPs and importantly, two cDNAs coding for orthologues of Drosophila yellow proteins. One yellow cDNA and all three cDNAs coding for the novel MRJPs were assembled completely, the sequence of the other yellow homologue was partially assembled. The data we present here supports the view that repeated duplications and functional divergence occurred during the evolution of MRJPs in honeybees, with even closely related MRJPs appearing to perform diverse physiological functions. Conversely, yellow protein orthologues appear to be conserved and thus candidates for maintaining the former function(s) of yellow proteins.  相似文献   

7.
The expression of the genes for two types of myrosinase (EC 3.2.3.1), designated MA and MB, during embryo and seedling development was investigated in Sinapis alba L. by in-situ and RNA slot-blot analyses. The expression of MA and MB genes followed similar temporal profiles during embryogenesis, but MB mRNA was present in considerably higher amounts than MA mRNA. In the embryo, both MA and MB genes are activated in cotyledons and axis. The MB genes are preferentially expressed in the cotyledons whereas MA genes are preferentially expressed in the axis. In the developing seedling, MA mRNA was not present in the organs investigated. By contrast, MB mRNA was found in appreciable amounts in hypocotyls, cotyledons and developing leaves. The MB genes seem to be activated preferentially in tissues undergoing rapid cell division and — or cell expansion.Abbreviations DAP days after pollination - MA, MB A type, B type myrosinases in Sinapis alba Anna-Stina Höglund (Uppsala Genetic Center) is gratefully acknowledged for valuable discussion, Anders Gobl (Department of Immunology, Uppsala University) for kindly advice with the labeling of probes and Qingzhu Zhai (Department of Pharmaceutical Biosciences, Uppsala University) for help with seed harvest. This work was supported by grants from the Swedish Research Council for Forestry and Agriculture.  相似文献   

8.
Inositol 1,4,5-trisphosphate 3-kinase (IP(3)-3K) catalyses the phosphorylation of inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. cDNAs encoding three mammalian isoforms have been reported and referred to as IP(3)-3KA, IP(3)-3KB, and IP(3)-3KC. IP(3)-3KB is particularly sensitive to proteolysis at the N-terminus, a mechanism known to generate active fragments of lower molecular mass. Endogenous IP(3)-3KB has therefore not been formally identified in tissues. We have probed a series of murine tissues with an antibody directed against the C-terminus of IP(3)-3KB and used IP(3)-3KB deficient mouse tissues as negative controls. IP(3)-3KB was shown to be particularly well expressed in brain, lung, and thymus with molecular masses of 110-120kDa. The identification of the native IP(3)-3KB by Western blotting for the first time will facilitate further studies of regulation of its activity by specific proteases and/or phosphorylation.  相似文献   

9.
Intracellular inositol 1,4,5-trisphosphate receptors (IP(3)Rs) form tetrameric Ca2+-release channels that are crucial for Ca2+ signalling in many eukaryotic cells. IP(3)R subunits contain an N-terminal, cytoplasmic, ligand binding domain linked by a modulatory domain to a channel-forming, hydrophobic C-terminal domain. We assembled and sequenced cDNAs encoding the SI-/SII+/SIII+ splice variant of the human brain type I IP(3)R, and functionally expressed the full-length receptor, and a C-terminally truncated receptor lacking the final 20% of the protein, in mammalian and insect cells. Both proteins were insoluble, consistent with in vivo immunofluorescence and ligand binding studies. This contrasted with the behaviour of recombinant FIKBP12 (a soluble control protein). The truncated receptor also fractionated with the "membrane" pellet after alkaline carbonate treatment. We conclude that the human type I IP(3)R forms high MW aggregates or complexes in cells when expressed without the C-terminal hydrophobic domain. This behaviour should be considered when expressing and refolding "soluble" human type I IP(3)R domains for structural studies.  相似文献   

10.
We previously demonstrated that six genes involved in ecdysteroid signaling are expressed preferentially in Kenyon-cell subtypes in the mushroom bodies of the honeybee (Apis mellifera L.). To further examine the possible involvement of ecdysteroid signaling in honeybee brain function, we isolated a cDNA for the A isoform of the ecdysone receptor gene homolog AmEcR-A and analyzed its expression in the brain. In situ hybridization revealed that AmEcR-A is expressed selectively in the small-type Kenyon cells of the mushroom bodies in the worker and queen brain, like AmE74 and AmHR38, suggesting a possible association of these gene products. Analysis of AmEcR-A expression in queen and worker abdomens demonstrated that AmEcR-A is strongly expressed in nurse cells of the queen ovary, suggesting that ecdysteroid and ecdysteroid signaling have roles in oogenesis. Our present results further support the possible involvement of ecdysteroid signaling in brain function, as well as in regulating queen reproductive physiology in the adult honeybee.  相似文献   

11.
Identification of three MADS-box genes expressed in sunflower capitulum   总被引:1,自引:0,他引:1  
Three cDNA clones, HaPI, HaAG and HaAP3, were isolated from sunflower inflorescences at the R2 stage of development. The cDNAs share high sequence similarity with the PISTILLATA, AGAMOUS, and APETALA3 genes from Arabidopsis, respectively, which contain a MADS-box and are involved in floral organ development. Expression of the corresponding genes was analysed by northern blots and in situ hybridization. They are expressed preferentially in the R3 and R4 stages of capitulum development. HaAG accumulates in fertile flowers, mainly in stamens, while HaPI and HaAP3 are preferentially expressed in ray (sterile) flowers and more weakly in petals and stamens of fertile flowers.  相似文献   

12.
13.
The mushroom bodies (a higher center) of the honeybee (Apis mellifera L) brain were considered to comprise three types of intrinsic neurons, including large- and small-type Kenyon cells that have distinct gene expression profiles. Although previous neural activity mapping using the immediate early gene kakusei suggested that small-type Kenyon cells are mainly active in forager brains, the precise Kenyon cell types that are active in the forager brain remain to be elucidated. We searched for novel gene(s) that are expressed in an area-preferential manner in the honeybee brain. By identifying and analyzing expression of a gene that we termed mKast (middle-type Kenyon cell-preferential arrestin-related protein), we discovered novel ‘middle-type Kenyon cells’ that are sandwiched between large- and small-type Kenyon cells and have a gene expression profile almost complementary to those of large– and small-type Kenyon cells. Expression analysis of kakusei revealed that both small-type Kenyon cells and some middle-type Kenyon cells are active in the forager brains, suggesting their possible involvement in information processing during the foraging flight. mKast expression began after the differentiation of small- and large-type Kenyon cells during metamorphosis, suggesting that middle-type Kenyon cells differentiate by modifying some characteristics of large– and/or small-type Kenyon cells. Interestingly, CaMKII and mKast, marker genes for large– and middle-type Kenyon cells, respectively, were preferentially expressed in a distinct set of optic lobe (a visual center) neurons. Our findings suggested that it is not simply the Kenyon cell-preferential gene expression profiles, rather, a ‘clustering’ of neurons with similar gene expression profiles as particular Kenyon cell types that characterize the honeybee mushroom body structure.  相似文献   

14.
The vegetative-to-floral transition ofBrassica campestris cv. Osome was induced by vernalization. Poly(A)+RNA was isolated from the transition shoot apex after 6 weeks of vernalization, the floral apex after 12 weeks of vernalization and the expanded leaves just before vernalization, and cDNAs were synthesized. These cDNAs were used for subtraction and differential screening to select cDNA preferentially present in the transition and floral apices. Nucleotide sequences of the resulting 14 cDNA clones were determined, and northern blot analysis was carried out on six cDNAs. Two cDNA clones which did not show significant similarity to known genes were shown to be preferentially expressed in the floral apex.  相似文献   

15.
The antennae of honeybee (Apis mellifera) workers and drones differ in various aspects. One striking difference is the presence of Sensilla basiconica in (female) workers and their absence in (male) drones. We investigate the axonal projection patterns of olfactory receptor neurons (ORNs) housed in S. basiconica in honeybee workers by using selective anterograde labeling with fluorescent tracers and confocal-microscopy analysis of axonal projections in antennal lobe glomeruli. Axons of S. basiconica-associated ORNs preferentially projected into a specific glomerular cluster in the antennal lobe, namely the sensory input-tract three (T3) cluster. T3-associated glomeruli had previously been shown to be innervated by uniglomerular projection (output) neurons of the medial antennal lobe tract (mALT). As the number of T3 glomeruli is reduced in drones, we wished to determine whether this was associated with the reduction of glomeruli innervated by medial-tract projection neurons. We retrogradely traced mALT projection neurons in drones and counted the innervated glomeruli. The number of mALT-associated glomeruli was strongly reduced in drones compared with workers. The preferential projections of S. basiconica-associated ORNs in T3 glomeruli together with the reduction of mALT-associated glomeruli support the presence of a female (worker)-specific olfactory subsystem that is partly innervated by ORNs from S. basiconica and is associated with the T3 cluster of glomeruli and mALT projection neurons. We propose that this olfactory subsystem supports parallel olfactory processing related to worker-specific olfactory tasks such as the coding of colony odors, colony pheromones and/or odorants associated with foraging on floral resources.  相似文献   

16.
Abstract: The neurotransmitter dopamine is an important regulator of physiological and behavioral functions in both vertebrates and invertebrates. We have isolated a homologue of the vertebrate dopamine D1 receptor subfamily from the honeybee Apis mellifera . [3H]Lysergic acid diethylamide specifically binds to the heterologously expressed receptor with K D∼5 n M . Dopaminergic receptor ligands compete for this high-affinity binding, with the following order of potency: R (+)-lisuride > chlorpromazine = cis ( Z )-flupentixol > dopamine > S (+)-butaclamol > R (+)-SCH 23390 > haloperidol. Activation of the heterologously expressed receptor of Apis mellifera leads to cyclic AMP production. Receptor mRNA is expressed in perikarya of different brain neuropils, including those of mushroom body intrinsic neurons. These results suggest that this dopamine receptor is involved in signal processing of visual and olfactory information in the honeybee.  相似文献   

17.
We found a novel subtype of prostaglandin (PG) I(2) receptor (IP(2)) expressed in the central nervous system. Recently we have demonstrated that (15R)-16-m-tolyl-17,18,19, 20-tetranorisocarbacyclin (15R-TIC) and 15-deoxy-16-m-tolyl-17,18,19, 20-tetranorisocarbacyclin (15-deoxy-TIC), IP(2)-specific ligands, significantly prevented high (50%) oxygen-induced apoptotic neuronal death in cultured hippocampal neurons. We report here a potent neuroprotective effect of such analogs on delayed neuronal death of hippocampal CA1 neurons following transient ischemia for 3 min in gerbils. (15S)-16-m-tolyl-17,18,19,20-tetranorisocarbacyclin (15S-TIC), which nonselectively acts both on the PGI(2) receptor expressed in the peripheral tissue (IP(1)) and on IP(2), also showed a neuroprotective effect on such an ischemic model at higher doses than those for 15R-TIC and 15-deoxy-TIC. These PGI(2) analogs did not affect brain temperature, indicating that the agents showed the neuroprotective effect not by a hypothermic effect, but rather by the direct action on neurons.  相似文献   

18.
19.
Inositol 1,4,5-trisphosphate receptor type1 (IP3R1) plays an important role in neuronal functions; however, the lateral diffusion of IP3R1 on the endoplasmic reticulum membrane and its regulation in the living neurons remain unknown. We expressed green fluorescent protein-tagged IP3R1 in cultured rat hippocampal neurons and observed the lateral diffusion by the fluorescence recovery after photobleaching technique. IP3R1 showed lateral diffusion with an effective diffusion constant of approximately 0.3 microm2/s. Depletion of actin filaments increased the diffusion constant of IP3R1, suggesting that the diffusion of IP3R1 is regulated negatively through actin filaments. We also found that protein 4.1N, which binds to IP3R1 and contains an actin-spectrin-binding region, was responsible for this actin regulation of the IP3R1 diffusion constant. Overexpression of dominant-negative 4.1N and blockade of 4.1N binding to IP3R1 increased the IP3R1 diffusion constant. The diffusion of IP3R type 3 (IP3R3), one of the isoforms of IP3Rs lacking the binding ability to 4.1N, was not dependent on actin filaments but became dependent on actin filaments after the addition of a 4.1N-binding sequence. These data suggest that 4.1N serves as a linker protein between IP3R1 and actin filaments. This actin filament-dependent regulation of IP3R1 diffusion may be important for the spatiotemporal regulation of intracellular Ca2+ signaling.  相似文献   

20.
A new method for finding differentially expressed genes, termed ordered differential display of mRNAs (ODD), was used in the search for region-specific molecular markers of freshwater planarian Dugesia tigrina. In this method, the effect of selective suppression of a polymerase chain reaction (PCR) is used for the differential amplification of a pool of 3'-terminal cDNA fragments generated by digestion of cDNAs with a restriction endonuclease. In the resulting amplified cDNAs, every mRNA is represented by a cDNA fragment whose length is determined by the position of the restriction site nearest to the 3'-terminus. Subsequent PCR with primers 3'-extended by two random nucleotides allowed the amplification of 1/192 part of all cDNA molecules present in the sample. The comparison of the generated pools of cDNA molecules separated by PAGE leads to the identification of differentially expressed sequences. The systematic study of the total mRNA pool is achieved by the successive use of all possible combinations of extended primers. Some sequences preferentially expressed along the anterior-posterior axis of planarian were identified using ODD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号