首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although newly described, Pseudopolydora vexillosa is one of the most conspicuous surface-feeding spioniform polychaetes in subtropical waters. This is the first report on larval growth and metamorphosis of P. vexillosa. Newly hatched (3-chaetigers stage) larvae of P. vexillosa reached metamorphic competence at 12-17 chaetigers stage when fed with Chaetoceros gracilis or Dunaliella tertiolecta at a concentration of ∼ 105 cells ml− 1 for 6 to 8 days at 32 psu and 27 °C. Larvae on these two diets achieved comparable levels, of approximately 70% metamorphosis. On the other hand, larvae fed with Isochrysis galbana or starved in 0.22 μm filtered seawater never reached competence during the 10 days of study. The effect of organic matter on larval substrate selection was examined using glass beads, manipulated sediments and natural sediments. A significantly higher percentage of larvae metamorphosed on glass beads that had been submerged in unfiltered natural seawater for 5 days as compared to the control; when manipulating the organic content of sediment as a substratum, significantly more larvae metamorphosed in 100% natural sediment, compared with 0%, 25%, 50%, and 75% natural sediment mixed with different portions of ashed sediment. Surprisingly, with natural undisturbed surface sediment sampled along a transect perpendicular to a sewage discharge site, these laboratory bioassays demonstrate that the larvae of P. vexillosa are capable of responding to sedimentary cues in complex ways to find a habitat suitable for metamorphosis and survival.  相似文献   

2.
3.

Background  

Balanus amphitrite is a barnacle commonly used in biofouling research. Although many aspects of its biology have been elucidated, the lack of genetic information is impeding a molecular understanding of its life cycle. As part of a wider multidisciplinary approach to reveal the biogenic cues influencing barnacle settlement and metamorphosis, we have sequenced and annotated the first cDNA library for B. amphitrite. We also present a systematic validation of potential reference genes for normalization of quantitative real-time PCR (qRT-PCR) data obtained from different developmental stages of this animal.  相似文献   

4.
Abstract

The impact of a commonly-used antifouling algicide, Irgarol 1051, on the larval development and post-settlement metamorphosis of the barnacle, Balanus albicostatus Pilsbry (Crustacea: Cirripedia), and the larval metamorphosis of a serpulid polycheate, Pomatoleios kraussii Baird, was evaluated. In the case of B. albicostatus, larval mortality increased with an increase in the concentration of Irgarol 1051, and there was a shift in the larval stage targeted from advanced instars to early instars. Nauplii that survived to the cyprid instar stage when reared in the presence of Irgarol 1051 showed prolonged instar and total naupliar duration when compared to the controls. The post-settlement metamorphosis of cyprids significantly varied with Irgarol concentration and also with biofilm age. One and 2-d-old untreated biofilms showed higher metamorphosis when compared to 5-d-old biofilms. However, when the biofilms that promoted cyprid metamorphosis were treated with Irgarol 1051 at low concentrations, metamorphosis rates decreased. Cyprids were prevented from metamorphosing completely by biofilms treated at the highest concentration of Irgarol 1051. Inhibition of metamorphosis was also observed in the case of competent polychaete larvae when exposed to Irgarol 1051 compared to those exposed to metamorphosis inducers such as 3-iso-butyl-1-methylxanthine (IBMX) and natural biofilms. Identification of the pathway(s) that caused the promotory biofilms to become toxic when exposed to Irgarol 1051 is discussed.  相似文献   

5.
6.
7.
We cloned six cDNAs by screening cDNA libraries of cypris larvae from barnacles, Balanus amphitrite, and studied their expression by Northern blot analysis. All of them are expressed in the cypris larvae at the settlement stage, but not in the earlier nauplii larvae nor in later adult barnacles. Therefore, we designated them as barnacle cypris larva-specific genes (bcs); bcs-1, bcs-2, bcs-3, bcs-4, bcs-5 and bcs-6. During the process of larval attachment and metamorphosis, the amounts of bcs-1 and bcs-2 mRNAs decreased, whereas the bcs-3, bcs-4, bcs-5 and bcs-6 mRNAs increased. A homology search showed that all cDNAs encode novel peptides containing characteristic amino acid sequences. This study strongly suggests that these bcs gene products are involved in the cypris larval attachment and metamorphosis of barnacles.  相似文献   

8.
Mizolastine, an antihistamine pharmaceutical, was found to significantly inhibit larval settlement of the barnacle Amphibalanus (=Balanus) amphitrite, the bryozoan Bugula neritina, and the polychaete Hydroides elegans with EC50 values of 4.2, 11.2, and 4.1 µg ml?1, respectively. No toxicity against the larvae of these three species was observed at the concentration range tested during incubations with mizolastine. To determine whether the anti-settlement activity of mizolastine is reversible, recovery bioassays using these three species were conducted. More than 70% of the larvae that had been exposed for 4 h to mizolastine at concentrations four-fold greater than their respective EC50 values completed normal metamorphosis. The results of the recovery bioassay provide evidence that the anti-settlement effect of mizolastine is reversible in addition to being nontoxic. The anti-settlement activities of several intermediates of the synthesis process of mizolastine were also examined. One of the intermediates, 2-chloro-1-(4-fluorobenzyl)-1H-benzo[d]imidazole, inhibited larval settlement and metamorphosis with low toxicity. These results may improve the understanding of the key functional group responsible for the anti-settlement activity of mizolastine.  相似文献   

9.
Patterns of larval release, dispersal and settlement in sponges are poorly understood despite their significance in explaining adult ecology. Time of release, swimming speeds, phototaxis and vertical migration were quantified for larvae of the dictyoceratid sponge Coscinoderma matthewsi. The influence of cues associated with biofilms and coral rubble on larval settlement and metamorphosis was also measured. C. matthewsi is a brooding sponge and releases tufted parenchymellae larvae during the day. Upon release, larvae (>90%) have no phototactic response, maintaining their position at the water surface for 80 min ± 0 (mean ± SE) regardless of a light cue (natural daylight) before exhibiting negative phototaxis. At 28 h post-release, the majority of larvae (94.7% ± 6.1) exposed to light from the surface migrated to the bottom and assumed a demersal phase. Without light, larvae occupied the surface for up to 28 h post-release (89.3% ± 1.8) before migrating to the bottom. Larvae did not settle gregariously and began to settle and metamorphose after 28 h post-release without a cue. Settlement and metamorphosis were faster in the presence of a biofilm (settlement = 15.0% ± 8.7 and metamorphosis = 12.5% ± 9.5 at 28 h post-release), while the addition of coral rubble accelerated metamorphosis further (settlement = 10.0% ± 4.1 and metamorphosis = 27.5% ± 10.3 at 28 h post-release) compared to controls (sterile surfaces) (settlement = 0% and metamorphosis = 0% at 28 h post-release). However, both biofilms and coral rubble decrease total metamorphosis (control = 92.5% ± 4.8, biofilms = 67.5% ± 7.5 and coral rubble = 55.0% ± 13.2) due to mortality after 76 h post-release.  相似文献   

10.
Bioassay-guided isolation of an acetone extract from a terrestrial plant Piper betle produced four known piperamides with potent antifouling (AF) activities, as evidenced by inhibition of settlement of barnacle cypris larvae. The AF activities of the four piperamides and 15 synthesized analogues were compared and their structure–activity relationships were probed. Among the compounds, piperoleine B and 1-[1-oxo-7-(3′,4′-methylenedioxyphenyl)-6E-heptenyl]-piperidine (MPHP) showed strong activity against settlement of cyprids of the barnacle Balanus amphitrite, having EC50 values of 1.1?±?0.3 and 0.5?±?0.2?μg?ml?1, respectively. No toxicity against zebra fish was observed following incubation with these two compounds. Besides being non-toxic, 91% of piperoleine B-treated cyprids and 84% of MPHP-treated cyprids at a concentration of 100?μM completed normal metamorphosis in recovery bioassays, indicating that the anti-settlement effect of these two compounds was reversible. Hydrolysis and photolysis experiments indicated that MPHP could be decomposed in the marine environment. It is concluded that piperamides are promising compounds for use in marine AF coatings.  相似文献   

11.
The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life‐history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change‐related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ‐LC‐MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down‐regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down‐regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up‐regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.  相似文献   

12.

Settlement of cultured Balanus amphitrite cyprid larvae was tested on different non-solid hydrogel surfaces. Gels consisting of alginate (highly anionic), chitosan (highly cationic), polyvinyl alcohol substituted with light-sensitive stilbazolium groups (PVA-SbQ; very low cationic) and agarose (neutral) were applied in cell culture multi-well plates. Polystyrene served as a solid surface reference. Preliminary experiments were performed to determine whether any substances leaching out of the gels could inhibit barnacle settlement. Whilst leachate from the gels revealed no toxicity towards Artemia salina nauplius larvae, PVA-SbQ in solution at and above a concentration of 0.4 ppm inhibited B. amphitrite cyprid settlement. Gels were therefore washed to avoid such effects during further testing, and toxicity and settlement tests with B. amphitrite nauplii and cyprids, respectively, applied to verify that washing was effective. Settlement was tested directly on the different test materials, followed by a quality test of non-settled larvae. All gels inhibited barnacle settlement compared to the polystyrene controls. Gels consisting of 2.5% PVA-SbQ or 0.5% agarose showed promising antifouling properties. Although some settlement occurred on 2.5% PVA-SbQ gels, metamorphosis was clearly inhibited. Only 10% of the larvae had settled on 0.5% agarose gels after 8 d. Less than 40% settlement occurred on alginate gels, as well as on 2% chitosan gels. Quality testing showed that the majority of remaining non-settled larvae in all gel experiments were able to settle when offered a suitable solid substratum.  相似文献   

13.
How androdioecy (coexistence of hermaphrodites and males) is maintained is still poorly understood. Therefore, sex determination was studied in the androdioecious barnacle Scalpellum scalpellum L. First, 247 cypris larvae from seven broods were investigated for sexual dimorphism in larval morphology and found to be all identical. Second, experiments with cyprids showed that males and hermaphrodites differ distinctly in morphology as soon as 4–5 days after settlement. Third, 14 252 cyprids were allowed to settle on the bottom of their culture cages, and all surviving larvae developed into hermaphrodites and none into dwarf males. Fourth, larvae settled in hermaphrodite receptacles (i.e. future males) were removed at increasing intervals after settlement to study if the male and hermaphrodite sexual expressions are fixed or plastic. All larvae became dwarf males if allowed to stay there for more than 8 h after settlement. But if removed within 3 h after settlement, half of them developed into hermaphrodites. We conclude that an environmental sex determination mechanism operates in S. scalpellum. Together with a 1:1 hermaphrodite/male ratio observed in previously reported experiments offering a free choice of settlement, we suggest that all larvae are potential hermaphrodites, but only 50% can settle in hermaphrodite receptacles and yield males.  相似文献   

14.
This study examined the physiological effects of joint and separate parasitism and infection by the endoparasitoid Microplitis pallidipes Szépligeti and the nucleopolyhedrovirus (NPV), respectively, on haemolymph 20‐hydroxyecdysone (20‐E) titre in Spodoptera exigua (Hübner) larvae. The results indicated that in parasitized larvae, virus‐infected larvae (5.7 × 103 and 5.7 × 105 OB/ml) and parasitized larvae infected with virus at 5.7 × 105 OB/ml, compared to healthy larvae, the 20‐E all declined during the first 3 days but began to increase from day 4 after treatment, while in jointly parasitized and infected larvae (5.7 × 103 OB/ml), the 20‐E declined during the first 4 days but began to increase on day 5 after treatment. Meanwhile, compared to parasitized larvae, the 20‐E declined during the first 4 days but significantly increased on day 5 in jointly parasitized and infected larvae (5.7 × 103 OB/ml), while significantly increased during the first 2 days but began to decrease from day 3 after treatment in jointly parasitized and infected larvae (5.7 × 105 OB/ml). Finally, in larvae that were both parasitized and virus infected (5.7 × 103 OB/ml), compared to just virus‐infected larvae (5.7 × 103 OB/ml), the 20‐E was lower on days 3 and 4 but higher on other days after treatment; in larvae that were both parasitized and virus infected (5.7 × 105 OB/ml), compared to just virus‐infected larvae (5.7 × 105 OB/ml), the 20‐E was significantly higher at the first 2 days but lower from day 3 after treatment. Our results revealed that 2nd instar larval M. pallidipes in host bodies may release 20‐E into the haemolymph of S. exigua larvae and that NPV infection may stimulate S. exigua to release more 20‐E during its third to fourth instar larval moulting. We found that this stimulatory effect was greater with higher virus concentrations.  相似文献   

15.

Background  

Hormones frequently guide animal development via the induction of cascades of gene activities, whose products further amplify an initial hormonal stimulus. In Drosophila the transformation of the larva into the pupa and the subsequent metamorphosis to the adult stage is triggered by changes in the titer of the steroid hormone 20-hydroxyecdysone. singed wings (swi) is the only gene known in Drosophila melanogaster for which mutations specifically interrupt the transmission of the regulatory signal from early to late ecdysone inducible genes.  相似文献   

16.

Background

A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus.

Results

Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae.

Conclusions

We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis.  相似文献   

17.

Background  

Flatfish metamorphosis is a thyroid hormone (TH) driven process which leads to a dramatic change from a symmetrical larva to an asymmetrical juvenile. The effect of THs on muscle and in particular muscle sarcomer protein genes is largely unexplored in fish. The change in Troponin T (TnT), a pivotal protein in the assembly of skeletal muscles sarcomeres and a modulator of calcium driven muscle contraction, during flatfish metamophosis is studied.  相似文献   

18.
The responses of the larvae of the cirripede barnacle Peltogasterella gracilis (Crustacea: Cirripedia: Rhizocephala) that parasitizes the hermit crab Pagurus pectinatus to different combinations of seawater temperature (25, 22, 20, 16, and 12°C) and salinity (from 34 to 8) were studied in a laboratory. The nauplii of P. gracilis completed the entire cycle of development at 22 to 12°C in a narrow range of salinity (from 34 to 28), which agrees well with the environmental conditions of the crab hosts' habitat. At favorable temperatures (22–20°C) and salinity (34–28), the nauplii reached the cypris stage in 88 ± 2 h, while at 12°C and 34–30, the naupliar development took 156 ± 5 h. The cypris larvae appeared more resistant compared with the nauplii, in terms of changes in both the temperature and salinity of seawater. They actively swam at all experimental temperatures and in the salinity range of 34–18. At temperatures (22–16°C) and salinities (34–24) favorable for the cyprids, their longevity in plankton equaled 6–10 days. Thus, the nauplii of P. gracilis is the more vulnerable stage of development in the life cycle of this parasitic barnacle. The tolerance against changes in environmental factors is due to the adaptive capabilities of parasitic larvae and the environmental conditions in the habitats of its host, a typical marine crustacean. The insignificant parasitization rate of the hermit crab by its rhizocephalan parasite may be explained by the death of the nauplii of P. gracilis, which occurs when they enter to the surface water layer.  相似文献   

19.
Summary Whilst the significance of the phosphoinositide cycle in the activation of developmental events by extra-cellular signals is well established, the involvement of the phosphatidylcholine (PC) cycle is a matter just emerging. In the present study, the metabolism of phosphatidylcholine in early metamorphosis of Hydractinia echinata (Coelenterata; Hydrozoa) was investigated by incubation of planula larvae with 3H-choline, extraction of the metabolites and isolation of the metabolites by thin-layer chromatography (TLC). Phosphatidylcholine (PC), lysophosphatidylcholine (LPC), acetylcholine and glycerophosphocholine were the labelled metabolites. Induction of metamorphosis did not stimulate an increased incorporation of choline into PC. In larvae preincubated with 3H-choline to a steady state level of incorporation, a significant transient elevation of the radioactive label in LPC was observed 90 min after addition of metamorphosis stimulating agents. LPC probably derived from PC by the action of a phospholipase A2 (PLA2). LPCs from bovine and soybean origin as well as isolated larval LPC did not influence metamorphosis. PLA2 from bee venom promoted Cs+-induced metamorphosis but did not influence phorbol ester-induced metamorphosis. The data suggest that a PLA2 is activated during metamorphosis. This PLA2 activation does not occur in those putative receptor cells which receive the primary external inducing stimulus but in the many larval cells which resume proliferation or differentiation in response to a second, internally propagated signal. Offprint requests to: T. Leitz  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号