首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Natural polyphenols can exert protective action on a number of pathological conditions including neurodegenerative disorders. The neuroprotective effects of many polyphenols rely on their ability to permeate brain barrier and here directly scavenge pathological concentration of reactive oxygen and nitrogen species and chelate transition metal ions. Importantly, polyphenols modulate neuroinflammation by inhibiting the expression of inflammatory genes and the level of intracellular antioxidants. Parkinson’s disease (PD) is a neurodegenerative disorder characterized by several abnormalities including inflammation, mitochondrial dysfunction, iron accumulation and oxidative stress. There is considerable evidence showing that cellular oxidative damage occurring in PD might result also from the actions of altered production of nitric oxide (NO). Indeed, high levels of neuronal and inducible NO synthase (NOS) were found in substantia nigra of patients and animal models of PD. Here, we evaluate the involvement of NOS/NO in PD and explore the neuroprotective activity of natural polyphenol compounds in terms of anti-inflammatory and antioxidant action. Special issue article in honor of Dr. Anna Maria Giuffrida-Stella.  相似文献   

2.
神经退化性疾病生物能量代谢和氧化应激研究进展   总被引:7,自引:0,他引:7  
衰老是导致几种常见的神经系统退化性疾病的主要危险因素,包括帕金森氏病(Parkinson’s disease PD),肌萎缩性侧索硬化(Amyotrophic lateral sclerosis,ALS),早老性痴呆(Alzheimer’s disease AD)和亨廷顿氏病(Huntington’s disease HD)。最近研究表明,神经退化性疾病涉及到线粒体缺陷,氧化应激等因素。在脑和其它组织中,老化可导致线粒体功能的损伤和氧化损伤的增强。PD病人中,已发现线粒体复合酶体Ⅰ活性降低,氧化损伤增加和抗氧化系统活性的改变。在几例家族性ALS病人中,也发现Cu、Zn超氧化物歧化酶(Cu,Zn SOD)基因的突变,导致Cu、Zn超氧化物歧化酶活性减低;散发的ALS病人氧化损伤增高。在HD病人中已发现能量代谢异常  相似文献   

3.
The involvement of parkin, PINK1, and DJ1 in mitochondrial dysfunction, oxidative injury, and impaired functioning of the ubiquitin-proteasome system (UPS) has been intensively investigated in light of Parkinson's disease (PD) pathogenesis. However, these pathological mechanisms are not restricted to PD, but are common denominators of various neurodegenerative and neuroinflammatory disorders. It is therefore conceivable that parkin, PINK1, and DJ1 are also linked to the pathogenesis of other neurological diseases, including Alzheimer's disease (AD) and multiple sclerosis (MS). The importance of these proteins in mechanisms underlying neurodegeneration is reflected by the neuroprotective properties of parkin, DJ1, and PINK1 in counteracting oxidative stress and improvement of mitochondrial and UPS functioning. This review provides a concise overview on the cellular functions of the E3 ubiquitin ligase parkin, the mitochondrial kinase PINK1, and the cytoprotective protein DJ1 and their involvement and interplay in processes underlying neurodegeneration in common neurological disorders.  相似文献   

4.
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which there is no current therapy preventing cumulative neuronal loss. There is substantial evidence that mitochondrial dysfunction, oxidative stress, and associated caspase activity underlie the neurodegeneration observed. One potential drug therapy is the potent free radical scavenger and antioxidant cystamine, which has demonstrated significant clinical potential in models of neurodegenerative disorders and human neurological disease. This study examined the oral efficacy of cystamine in the MPTP and 6-hydroxydopamine neurotoxin models of PD. The neuroprotective effects of cystamine treatment significantly ameliorated nigral neuronal loss, preserved striatal dopaminergic projections, and improved striatal dopamine and metabolite levels, as compared to MPTP alone. Cystamine normalized striatal 8-hydroxy-2'-deoxyguanosine levels and ATP concentrations, consistent with reduced oxidative stress and improved mitochondrial function. Cystamine also protected against MPTP-induced mitochondrial loss, as identified by mitochondrial heat shock protein 70 and superoxide dismutase 2, with concomitant reductions in cytochrome c and caspase-3 activities. The neuroprotective value of cystamine was confirmed in the 6-hydroxydopamine model. Together these findings show cystamine's therapeutic benefit to reduce neuronal loss through attenuation of oxidative stress and mitochondrial dysfunction, providing the rationale for human clinical trials in PD patients.  相似文献   

5.
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder and in most patients its aetiology remains unknown. Molecular genetic studies in familial forms of the disease identified key proteins involved in PD pathogenesis, and support a major role for mitochondrial dysfunction, which is also of significant importance to the common sporadic forms of PD. While current treatments temporarily alleviate symptoms, they do not halt disease progression. Drugs that target the underlying pathways to PD pathogenesis, including mitochondrial dysfunction, therefore hold great promise for neuroprotection in PD. Here we summarize how the proteins identified through genetic research ( α-synuclein , parkin , PINK1 , DJ-1 , LRRK2 and HTRA2 ) fit into and add to our current understanding of the role of mitochondrial dysfunction in PD. We highlight how these genetic findings provided us with suitable animal models and critically review how the gained insights will contribute to better therapies for PD.  相似文献   

6.
Oxidative stress and mitochondrial dysfunction are involved in the progression and pathogenesis of multiple sclerosis (MS). MitoQ is a mitochondria-targeted antioxidant that has a neuroprotective role in several mitochondrial and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Here we sought to determine the possible effects of a systematic administration of MitoQ as a therapy, using an experimental autoimmune encephalomyelitis (EAE) mouse model. We studied the beneficial effects of MitoQ in EAE mice that mimic MS like symptoms by treating EAE mice with MitoQ and pretreated C57BL6 mice with MitoQ plus EAE induction. We found that pretreatment and treatment of EAE mice with MitoQ reduced neurological disabilities associated with EAE. We also found that both pretreatment and treatment of the EAE mice with MitoQ significantly suppressed inflammatory markers of EAE, including the inhibition of inflammatory cytokines and chemokines. MitoQ treatments reduced neuronal cell loss in the spinal cord, a factor underlying motor disability in EAE mice. The neuroprotective role of MitoQ was confirmed by a neuron-glia co-culture system designed to mimic the mechanism of MS and EAE in vitro. We found that axonal inflammation and oxidative stress are associated with impaired behavioral functions in the EAE mouse model and that treatment with MitoQ can exert protective effects on neurons and reduce axonal inflammation and oxidative stress. These protective effects are likely via multiple mechanisms, including the attenuation of the robust immune response. These results suggest that MitoQ may be a new candidate for the treatment of MS.  相似文献   

7.
Dopamine (DA) and its metabolites containing two hydroxyl residues exert cytotoxicity in dopaminergic neuronal cells, primarily due to the generation of highly reactive DA and DOPA quinones. Quinone formation is closely linked to other representative hypotheses such as mitochondrial dysfunction, inflammation, oxidative stress, and dysfunction of the ubiquitin-proteasome system, in the pathogenesis of neurodegenerative diseases such as Parkinson’s disease and methamphetamine-induced neurotoxicity. Therefore, pathogenic effects of the DA quinone have focused on dopaminergic neuron-specific oxidative stress. Recently, various studies have demonstrated that some intrinsic molecules and several drugs exert protective effects against DA quinone-induced damage of dopaminergic neurons. In this article, we review recent studies on some neuroprotective approaches against DA quinone-induced dysfunction and/or degeneration of dopaminergic neurons. Special issue article in honor of Dr. Akitane Mori.  相似文献   

8.
Respiratory chain dysfunction has been identified in several neurodegenerative disorders. In Friedreich's ataxia (FA) and Huntington's disease (HD), where the respective mutations are in nuclear genes encoding non-respiratory chain mitochondrial proteins, the defects in oxidative phosphorylation are clearly secondary. In Parkinson's disease (PD) the situation is less clear, with some evidence for a primary role of mitochondrial DNA in at least a proportion of patients. The pattern of the respiratory chain defect may provide some clue to its cause; in PD there appears to be a selective complex I deficiency; in HD and FA the deficiencies are most severe in complex II/III with a less severe defect in complex IV. Aconitase activity in HD and FA is severely decreased in brain and muscle, respectively, but appears to be normal in PD brain. Free radical generation is thought to be of importance in both HD and FA, via excitotoxicity in HD and abnormal iron handling in FA. The oxidative damage observed in PD may be secondary to the mitochondrial defect. Whatever the cause(s) and sequence of events, respiratory chain deficiencies appear to play an important role in the pathogenesis of neurodegeneration. The mitochondrial abnormalities induced may converge on the function of the mitochondrion in apoptosis. This mode of cell death is thought to play an important role in neurodegenerative diseases and it is tempting to speculate that the observed mitochondrial defects in PD, HD and FA result directly in apoptotic cell death, or in the lowering of a cell's threshold to undergo apoptosis. Clarifying the role of mitochondria in pathogenesis may provide opportunities for the development of treatments designed to reverse or prevent neurodegeneration.  相似文献   

9.
Parkinson's disease (PD) is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinson's disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD.  相似文献   

10.
11.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder involving both upper motor neurons (UMN) and lower motor neurons (LMN). Enormous research has been done in the past few decades in unveiling the genetics of ALS, successfully identifying at least fifteen candidate genes associated with familial and sporadic ALS. Numerous studies attempting to define the pathogenesis of ALS have identified several plausible determinants and molecular pathways leading to motor neuron degeneration, which include oxidative stress, glutamate excitotoxicity, apoptosis, abnormal neurofilament function, protein misfolding and subsequent aggregation, impairment of RNA processing, defects in axonal transport, changes in endosomal trafficking, increased inflammation, and mitochondrial dysfunction. This review is to update the recent discoveries in genetics of ALS, which may provide insight information to help us better understanding of the disease neuropathogenesis.  相似文献   

12.
Parkinson's disease (PD), the most prevalent neurodegenerative movement disorder, is characterized by an age-dependent selective loss of dopaminergic (DA) neurons. Although most PD cases are sporadic, more than 20 responsible genes in familial cases were identified recently. Genetic studies using Drosophila models demonstrate that PINK1, a mitochondrial kinase encoded by a PD-linked gene PINK1, is critical for maintaining mitochondrial function and integrity. This suggests that mitochondrial dysfunction is the main cause of PD pathogenesis. Further genetic and cell biological studies revealed that PINK1 recruits Parkin, an E3 ubiquitin ligase encoded by another PD-linked gene parkin, to mitochondria and regulates the mitochondrial remodeling process via the Parkin-mediated ubiquitination of various mitochondrial proteins. PINK1 also directly phosphorylates the mitochondrial proteins Miro and TRAP1, subsequently inhibiting mitochondrial transport and mitochondrial oxidative damage, respectively. Moreover, recent Drosophila genetic analyses demonstrate that the neuroprotective molecules Sir2 and FOXO specifically complement mitochondrial dysfunction and DA neuron loss in PINK1 null mutants, suggesting that Sir2 and FOXO protect mitochondria and DA neurons downstream of PINK1. Collectively, these recent results suggest that PINK1 plays multiple roles in mitochondrial quality control by regulating its mitochondrial, cytosolic, and nuclear targets.  相似文献   

13.
Green tea polyphenols exert a wide range of biochemical and pharmacological effects, and have been shown to possess antimutagenic and anticarcinogenic properties. Oxidative stress is involved in the pathogenesis of Parkinson's disease. However, although green tea polyphenols may be expected to inhibit the progression of Parkinson's disease on the basis of their known antioxidant activity, this has not previously been established. In the present study, we evaluated the neuroprotective effects of green tea polyphenols in the Parkinson's disease pathological cell model. The results show that the natural antioxidants have significant inhibitory effects against apoptosis induced by oxidative stress. 6-Hydroxydopamine (6-OHDA)-induced apoptosis in catecholaminergic PC12 cells was chosen as the in vitro model of Parkinson's disease in our study. Apoptotic characteristics of PC12 cells were assessed by MTT assay, flow cytometry, fluorescence microscopy and DNA fragmentation. Green tea polyphenols and their major component, EGCG at a concentration of 200 microM, exert significant protective effects against 6-OHDA-induced PC12 cell apoptosis. EGCG is more effective than the mixture of green tea polyphenols. The antioxidant function of green tea polyphenols may account for this neuroprotective effect. The present study supports the notion that green tea polyphenols have the potential to be effective as neuropreventive agents for the treatment of neurodegenerative diseases.  相似文献   

14.
Glutathione, oxidative stress and neurodegeneration.   总被引:24,自引:0,他引:24  
There is significant evidence that the pathogenesis of several neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Friedreich's ataxia and amyotrophic lateral sclerosis, may involve the generation of reactive oxygen species and mitochondrial dysfunction. Here, we review the evidence for a disturbance of glutathione homeostasis that may either lead to or result from oxidative stress in neurodegenerative disorders. Glutathione is an important intracellular antioxidant that protects against a variety of different antioxidant species. An important role for glutathione was proposed for the pathogenesis of Parkinson's disease, because a decrease in total glutathione concentrations in the substantia nigra has been observed in preclinical stages, at a time at which other biochemical changes are not yet detectable. Because glutathione does not cross the blood-brain barrier other treatment options to increase brain concentrations of glutathione including glutathione analogs, mimetics or precursors are discussed.  相似文献   

15.
Tsang F  Soong TW 《IUBMB life》2003,55(6):323-327
Parkinson's disease (PD) is a progressive neurodegenerative disease with no known cure and affects approximately 1% of the elderly population. The major question in PD relates to the selective loss of dopaminergic neurons in patients. The underlying mechanism of genetic dysfunction and environmental toxins in contributing to the pathogenesis of PD may be oxidative stress. The interactions of genetic and environmental factors in PD may provide some answers to the longstanding question. In particular, the possibility that iron may provide selectivity to genetic susceptibility or dopamine reactivity in dopaminergic neuronal death is enhanced by the neuroprotection demonstrated in transgenic mice overexpressing ferritin or the use of iron chelators in MPTP-induced PD mouse. It will be important to dissect and understand the contributions of genes, environment and intrinsic cellular states in the generation and progression of the pathophysiology of PD.  相似文献   

16.
Parkinson's disease (PD) is a neurodegenerative disorder marked by the selective degeneration of dopaminergic neurons in the nigrostriatal pathway. Several lines of evidence indicate that mitochondrial dysfunction contributes to its etiology. Other studies have suggested that alterations in sterol homeostasis correlate with increased risk for PD. Whether these observations are functionally related is, however, unknown. In this study, we used a toxin-induced mouse model of PD and measured levels of nine sterol intermediates. We found that lanosterol is significantly (~50%) and specifically reduced in the nigrostriatal regions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice, indicative of altered lanosterol metabolism during PD pathogenesis. Remarkably, exogenous addition of lanosterol rescued dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+)-induced cell death in culture. Furthermore, we observed a marked redistribution of lanosterol synthase from the endoplasmic reticulum to mitochondria in dopaminergic neurons exposed to MPP+, suggesting that lanosterol might exert its survival effect by regulating mitochondrial function. Consistent with this model, we find that lanosterol induces mild depolarization of mitochondria and promotes autophagy. Collectively, our results highlight a novel sterol-based neuroprotective mechanism with direct relevance to PD.  相似文献   

17.
The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neurodegeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. It can be suggested that autophagy dysfunction along with oxidative stress is considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases.  相似文献   

18.
Current therapies for Parkinson's disease significantly improve the quality of life for patients suffering from this neurodegenerative disease, yet none of the current therapies has been convincingly shown to slow or prevent the progression of disease. Much has been learned about the pathophysiology of Parkinson's disease in recent years, and these discoveries offer a variety of potential targets for protective therapy. Mechanisms implicated in the disease process include oxidative stress, mitochondrial dysfunction, protein aggregation and misfolding, inflammation, excitotoxicity, and apoptosis. At the same time, the involvement of these diverse processes makes modeling the disease and evaluation of potential treatments difficult. In addition, available clinical tools are limited in their ability to monitor the progression of the disease. In this review, we summarize the different pathogenic mechanisms implicated in Parkinson's disease and neuroprotective strategies targeting these mechanisms currently under clinical study or under preclinical development, with a view towards strategies that seem most promising.  相似文献   

19.
Parkinson's disease (PD) is one of the most common neurodegenerative disorders characterized by resting tremor, rigidity, and bradykinesia. The primary cause of PD is still unknown, but oxidative stress and mitochondrial dysfunction have been implicated as important contributors to neuronal death in substantia nigra (SN) of PD. Considering neurons as post-mitotic cells, neurons could have error-avoiding mechanism against oxidative DNA damage. Indeed, several DNA repairing enzymes such as MTH1, OGG1, and MUTYH express in human brain. All the three enzymes up-regulated in the SN of PD patients, suggesting these three enzymes cooperate in mitochondrial DNA repairing in PD brain.  相似文献   

20.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1), facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4) is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells) and in vivo (SOD1 G93A mutant mice) models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT) activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R) stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号