首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Some genital human papillomavirus (HPV) types, such as 16 and 18, are highly associated with malignant cervical tumors while others, such as HPV 6, are only rarely found in these malignancies. The E7 oncoproteins of HPV 6, 16 and 18 each have a 17 amino acid region with striking homology to adenovirus E1a and SV40 LT. E1a, LT and the E7 oncoprotein of HPV16 all bind the cellular Rb protein in vitro, and for E1a and LT this region of homology contains sequences essential for interaction with Rb. We have now found that in HPV 16 E7 this region (amino acids 21-37) contains two separate biochemical activities, each of which contributes to E7-mediated transformation. Rb binding was localized to the N terminus of this region, while the C terminus was shown to serve as a substrate for casein kinase (CK) II, which phosphorylated serine-31 and serine-32. Replacement of the two serines by non-phosphorylatable amino acids led to a reduction in transforming activity and abolished phosphorylation but did not affect Rb binding. Rb binding and CK II phosphorylation were also examined for the E7 proteins of HPV 6 and HPV 18. HPV 16 and 18 E7 bound similar amounts of Rb, but HPV 6 E7 consistently bound less. Phosphorylation rates also varied, with HPV 18 E7 being 2-fold faster than HPV 16 E7, which in turn was 2-fold faster than HPV 6 E7. We conclude that Rb binding and phosphorylation of E7 by CKII are independent activities which are required for efficient transformation by E7 and that these activities correlate directly with the relative oncogenic potential of these viruses.  相似文献   

2.
High risk human Papillomavirus (HPV) types are the major causative agents of cervical cancer. Reduced expression of major histocompatibility complex class I (MHC I) on HPV-infected cells might be responsible for insufficient T cell response and contribute to HPV-associated malignancy. The viral gene product required for subversion of MHC I synthesis is the E7 oncoprotein. Although it has been suggested that high and low risk HPVs diverge in their ability to dysregulate MHC I expression, it is not known what sequence determinants of HPV-E7 are responsible for this important functional difference. To investigate this, we analyzed the capability to affect MHC I of a set of chimeric E7 variants containing sequence elements from either high risk HPV16 or low risk HPV11. HPV16-E7, but not HPV11-E7, causes significant diminution of mRNA synthesis and surface presentation of MHC I, which depend on histone deacetylase activity. Our experiments demonstrate that the C-terminal region within the zinc finger domain of HPV-E7 is responsible for the contrasting effects of HPV11- and HPV16-E7 on MHC I. By using different loss- and gain-of-function mutants of HPV11- and HPV16-E7, we identify for the first time a residue variation at position 88 that is highly critical for HPV16-E7-mediated suppression of MHC I. Furthermore, our studies suggest that residues at position 78, 80, and 88 build a minimal functional unit within HPV16-E7 required for binding and histone deacetylase recruitment to the MHC I promoter. Taken together, our data provide new insights into how high risk HPV16-E7 dysregulates MHC I for immune evasion.  相似文献   

3.
R Davies  R Hicks  T Crook  J Morris    K Vousden 《Journal of virology》1993,67(5):2521-2528
The transforming function of human papillomavirus type 16 (HPV16) E7 has been shown to depend on activities additional to the ability to bind RB. In this paper we describe two further properties of E7 which may also contribute to transformation, an association with a histone H1 kinase at the G2/M phase of the cell cycle and an ability to bind the RB-related protein p107. The region of E7 identified previously as important for RB binding was found to be involved in the association with the kinase and complex formation with p107, although analysis of E7 point mutants within this region revealed a difference in the precise sequence requirement for RB and p107 binding. Association with the kinase activity correlated with the ability to bind RB, but the restriction of the kinase association to the G2/M phase of the cell cycle implies that this activity might not be directly mediated by RB binding. Since kinase-binding-deficient E7 mutants are also transformation defective, this may represent an independent function of E7 which plays a role in the G2/M phase of the cell cycle.  相似文献   

4.
Aims: To create and provide a strain of the food‐grade bacterium Lactococcus lactis able to efficiently secrete a modified form of the E7 protein from the human papilloma virus (HPV) type‐16. Methods and Results: We cloned the coding sequence of a modified E7 (E7m) from the HPV‐16 in a plasmid regulated by the strong expression promoter p59. Secretion of the E7m was made by the signal peptide of the usp45 gene. The E7m was detected by Western blot in the cell‐free‐medium fraction, showing no degradation or aberrant forms. Conclusions: We constructed a strain of L. lactis able to secrete efficiently a HPV‐16 E7 modified protein with diminished transforming activity. Significance and Impact of the Study: Human papilloma virus infection is associated with more than 99% of cervical cancers. Immunotherapy targeting E7 to treat HPV‐associated cervical malignancies has been demonstrated to be highly efficient. However, native E7 maintains transforming activity. We present this new strain of a food‐grade bacterium able to efficiently secrete a HPV‐16 E7‐modified protein with diminished transforming activity. This new strain could be used as a live vaccine to deliver E7 at a mucosal level and generate antitumour immune responses against HPV‐associated tumours.  相似文献   

5.
In studying biological roles of interferon regulatory factor (IRF)-1 tumor suppressor in cervical carcinogenesis, we found that HPV E7 is functionally associated with IRF-1. Binding assays indicate a physical interaction between IRF-1 and HPV E7 in vivo and in vitro. The carboxyl-terminal transactivation domain of IRF-1 was required for the interaction. Transient co-expression of E7 significantly inhibits the IRF-1-mediated activation of IFN-beta promoter in NIH-3T3 cells. Co-transfection of E7 mutants reveals that the pRb-binding portion of E7 is necessary for the E7-mediated inactivation of IRF-1. It was next determined whether histone deacetylase (HDAC) is involved in the inactivation mechanism as recently suggested, where the carboxyl-terminal zinc finger domain of E7 associates with NURD complex containing HDAC. When trichostatin A, an inhibitor of HDAC, was treated, the repressing activity of E7 was released in a dose-dependent manner. Furthermore, the mutation of zinc finger abrogates such activity without effect on the interaction with IRF-1. These results suggest that HPV E7 interferes with the transactivation function of IRF-1 by recruiting HDAC to the promoter. The immune-promoting role of IRF-1 evokes the idea that our novel finding might be important for the elucidation of the E7-mediated immune evading mechanism that is frequently found in cervical cancer.  相似文献   

6.
7.
《Journal of molecular biology》2014,426(24):4030-4048
The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the cyclic-AMP response element binding binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high-risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low-risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and on the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high-risk HPV16 E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.  相似文献   

8.
Binding of the retinoblastoma gene product (pRB) by viral oncoproteins, including the E7 of human papillomavirus type 16 (HPV 16), is thought to be important in transformation of cells. One of the steps in transformation is the immortalization process. Here we show that mutations in E7 within the full-length genome which inhibit binding of pRB do not abrogate the ability of the HPV 16 DNA to immortalize primary human epithelial (keratinocyte) cells. A mutation in one of the cysteines of a Cys-X-X-Cys motif which is contained in the carboxy half of the E7 and is part of a zinc finger arrangement completely eliminates the ability of HPV 16 DNA to immortalize cells. The results indicate the importance of E7 in the immortalization of primary keratinocytes but suggest that the binding of pRB is not essential.  相似文献   

9.
10.
The E7 oncoprotein of high-risk human papillomaviruses (HPVs) binds to and alters the action of cell cycle regulatory proteins such as members of the retinoblastoma (Rb) family of proteins as well as the histone deacetylases (HDACs). To examine the significance of the binding of E7 to HDACs in the viral life cycle, a mutational analysis of the E7 open reading frame was performed in the context of the complete HPV type 31 (HPV-31) genome. Human foreskin keratinocytes were transfected with wild-type HPV-31 genomes or HPV-31 genomes containing mutations in HDAC binding sequences as well as in the C-terminal zinc finger-like domain, and stable cell lines were isolated. All mutant genomes, except those with E7 mutations in the HDAC binding site, were found to be stably maintained extrachromosomally at an early passage following transfection. Upon further passage in culture, genomes containing mutations to the Rb binding domain as well as the zinc finger-like region quickly lost the ability to maintain episomal genomes. Genomes containing mutations abolishing E7 binding to HDACs or to Rb or mutations to the zinc finger-like motifs failed to extend the life span of transfected keratinocytes and caused cells to arrest at the same time as the untransfected keratinocytes. When induced to differentiate by suspension in methylcellulose, cells maintaining genomes with mutations in the Rb binding domain or the zinc finger-like motifs were impaired in their abilities to activate late viral functions. This study demonstrates that the interaction of E7 with HDACs and the integrity of the zinc finger-like motifs are essential for extending the life span of keratinocytes and for stable maintenance of viral genomes.  相似文献   

11.
Human papillomaviruses (HPVs) are the causative agents of several important genital and other mucosal cancers. The HPV16 E7 gene encodes a viral oncogene that is necessary for the continued growth of cancer cells, but its role in the normal, differentiation-dependent life cycle of the virus is not fully understood. The function of E7 in the viral life cycle was examined using a series of mutations of E7 created in the context of the complete HPV16 genome. The effect of these E7 mutations on key events of the viral life cycle, including immortalization, episomal maintenance, late promoter activation, and infectious virion synthesis, was examined. Our studies show that the pRb binding domain is indispensable for early viral activities, whereas the C-terminal zinc finger domain contributed primarily to very late events. Mutations of the casein kinase II phosphorylation site caused a complex phenotype involving both the function of E7 protein and a cis element necessary for the activation of the late promoter, identifying for the first time a promoter element important for late promoter function in the context of the viral genome. All mutant genomes tested showed reduced viral titers following growth in organotypic raft cultures. These studies clarify the role of E7 as a regulator of late events in the differentiation-dependent HPV life cycle.  相似文献   

12.
13.
E7 oncoprotein is the major transforming activity in human papillomavirus and shares sequence and functional properties with adenovirus E1A and SV40 T-antigen, in particular by targeting the pRb tumor suppressor. HPV 16 E7 forms spherical oligomers that display chaperone activity in thermal denaturation and chemical refolding assays of two model polypeptide substrates, citrate synthase and luciferase, and it does so at substoichiometric concentrations. We show that the E7 chaperone can stably bind model polypeptides and hold them in a state with significant tertiary structure, but does not bind the fully native proteins. The E7 oligomers bind native in vitro translated pRb without the requirement of it being unfolded, since the N-terminal domain of E7 containing the LXCXE binding motif is exposed. The N-terminal domain of E7 can interfere with pRb binding but not with the chaperone activity, which requires the C-terminal domain, as in most reported E7 activities. The ability to bind up to approximately 72 molecules of pRb by the oligomeric E7 form could be important either for sequestering pRb from Rb-E2F complexes or for targeting it for proteasome degradation. Thus, both the dimeric and oligomeric chaperone forms of E7 can bind Rb and various potential targets. We do not know at present if the chaperone activity of E7 plays an essential role in the viral life cycle; however, a chaperone activity may explain the large number of cellular targets reported for this oncoprotein.  相似文献   

14.
15.
The yeast SPT10 gene encodes a putative histone acetyltransferase that binds specifically to pairs of upstream activating sequence (UAS) elements found only in the histone gene promoters. Here, we demonstrate that the DNA-binding domain of Spt10p is located between residues 283 and 396 and includes a His(2)-Cys(2) zinc finger. The binding of Spt10p to the histone UAS is zinc-dependent and is disabled by a zinc finger mutation (C388S). The isolated DNA-binding domain binds to single histone UAS elements with high affinity. In contrast, full-length Spt10p binds with high affinity only to pairs of UAS elements with very strong positive cooperativity and is unable to bind to a single UAS element. This implies the presence of a "blocking" domain in full-length Spt10p, which forces it to search for a pair of UAS elements. Chromatin immunoprecipitation experiments indicate that, unlike wild-type Spt10p, the C388S protein does not bind to the promoter of the gene encoding histone H2A (HTA1) in vivo. The C388S mutant has a phenotype similar to that of the spt10Delta mutant: poor growth and global aberrations in gene expression. Thus, the C388S mutation disables the DNA-binding function of Spt10p in vitro and in vivo. The zinc finger of Spt10p is homologous to that of foamy virus integrase, perhaps suggesting that this integrase is also a sequence-specific DNA-binding protein.  相似文献   

16.
17.
Simian virus 40 large T antigen interacts with three cellular proteins, pRb, p107, and p130, through a common binding site on the T antigen protein called the E1A conserved region 2-like (CR2-like) domain. Mutations in this domain inactivate the transforming activity of large T antigen. Since these mutations have been demonstrated to abolish binding to pRb and p107, and presumably therefore affect binding to p130, assessment of the relative roles of these three proteins in transformation of rodent fibroblasts by T antigen has been difficult. We have examined the role of T antigen-pRb interactions in transformation. We have introduced a mutant T antigen, which is unable to bind any of these three proteins, into primary mouse fibroblasts derived from the embryos of mice in which the Rb gene encoding the retinoblastoma protein had been disrupted. This mutant is unable to transform the Rb-negative fibroblasts, indicating that inactivation of pRb is not the sole function of the CR2-like domain in the induction of transformation of mouse fibroblasts by simian virus 40.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号