首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mitochondrial sequences are widely used for species identification and for studying phylogenetic relationships among closely related species or populations of the same species. However, many studies of mammals have shown that the maternal history of the mitochondrial genome can be discordant with the true evolutionary history of the taxa. In such cases, the analyses of multiple nuclear genes can be more powerful for deciphering interspecific relationships.Here, we designed primers for amplifying 13 new exon-primed intron-crossing (EPIC) autosomal loci for studying shallow phylogeny and taxonomy of Laurasiatherian mammals. Three criteria were used for the selection of the markers: gene orthology, a PCR product length between 600 and 1200 nucleotides, and different chromosomal locations in the bovine genome. Positive PCRs were obtained from different species representing the orders Carnivora, Cetartiodactyla, Chiroptera, Perissodactyla and Pholidota.The newly developed markers were analyzed in a phylogenetic study of the tribe Bovini (the group containing domestic and wild cattle, bison, yak, African buffalo, Asian buffalo, and saola) based on 17 taxa and 18 nuclear genes, representing a total alignment of 13,095 nucleotides. The phylogenetic results were compared to those obtained from analyses of the complete mitochondrial genome and Y chromosomal genes. Our analyses support a basal divergence of the saola (Pseudoryx) and a sister-group relationship between yak and bison. These results contrast with recent molecular studies but are in better agreement with morphology. The comparison of pairwise nucleotide distances shows that our nuDNA dataset provides a good signal for identifying taxonomic levels, such as species, genera, subtribes, tribes and subfamilies, whereas the mtDNA genome fails because of mtDNA introgression and higher levels of homoplasy. Accordingly, we conclude that the genus Bison should be regarded as a synonym of Bos, with the European bison relegated to a subspecies rank within Bos bison. We compared our molecular dating estimates to the fossil record in order to propose a biogeographic scenario for the evolution of Bovini during the Neogene.  相似文献   

2.
Elucidating genetic influences on bison growth and body composition is of interest, not only because bison are important for historical, cultural, and agricultural reasons, but also because their unusual population history makes them valuable models for finding influential loci in both domestic cattle and humans. We tested for trait loci associated with body weight, height, and bison mass index (BMI) while controlling for estimated ancestry to reduce potential confounding effects due to population admixture in 1316 bison sampled from four U.S. herds. We used 60 microsatellite markers to model each phenotype as a function of herd, sex, age, marker genotypes, and individual ancestry estimates. Statistical significance for genotype and its interaction with ancestry was evaluated using the adaptive false discovery rate. Of the four herds, two appeared to be admixed and two were nonadmixed. Although none of the main effects of the loci were significant, estimated ancestry and its interaction with marker loci were significantly associated with the phenotypes, illustrating the importance of including ancestry in the models and the dependence of genotype-phenotype associations on background ancestry. Individual loci contributed approximately 2.0% of variation in weight, height, and BMI, which confirms the utility and potential importance of adjusting for population stratification.  相似文献   

3.
Historical hybridization between Bison bison (bison) and Bos taurus (cattle) has been well documented and resulted in cattle mitochondrial DNA (mtDNA) introgression, previously identified in six different bison populations. In order to examine Y chromosome introgression, a microsatellite marker (BYM-1) with non-overlapping allele size distributions in bison and cattle was isolated from a bacterial artificial chromosome (BAC) clone, and was physically assigned to the Y chromosome by fluorescence in situ hybridization. BYM-1 genotypes for a sample of 143 male bison from 10 populations, including all six populations where cattle mtDNA haplotypes were previously identified, indicated that cattle Y chromosome introgression had not occurred in these bison populations. The differential permeability of uniparentally inherited markers to introgression is consistent with observations of sterility among first generation hybrid males and a sexual asymmetry in the direction of hybridization favouring matings between male bison and female cattle.  相似文献   

4.
Complete mitochondrial DNA (mtDNA) genomes from 43 bison and bison-cattle hybrids were sequenced and compared with other bovids. Selected animals reflect the historical range and current taxonomic structure of bison. This study identified regions of potential nuclear–mitochondrial incompatibilities in hybrids, provided a complete mtDNA phylogenetic tree for this species, and uncovered evidence of bison population substructure. Seventeen bison haplotypes defined by 66 polymorphic sites were discovered, whereas 728 fixed differences and 86 non-synonymous mutations were identified between bison and bison–cattle hybrid sequences. The potential roles of the mtDNA genome in the function of hybrid animals and bison taxonomy are discussed.  相似文献   

5.
In 1924, 14 American bison (Bison bison) were introduced to Santa Catalina Island, California and sporadically supplemented thereafter with additional animals. To reduce the herd and its impact on native vegetation, over 2000 animals have been exported during the past four decades. Today, the herd is estimated to contain around 250 individuals. Genetic analysis was performed on 98 animals removed from the island in 2004. Forty-four samples (45%) had domestic cattle mitochondrial DNA (mtDNA), 12 (12%) had previously reported bison haplotypes and 42 (43%) had a new haplotype differing by one base pair from a previously reported bison haplotype. A complement of five restriction enzymes was found to be useful in identifying bison with domestic cattle mtDNA.  相似文献   

6.
Identification and study of genetic variation in recently admixed populations not only provides insight into historical population events but also is a powerful approach for mapping disease loci. We studied a population (OG-W-IP) that is of African-Indian origin and has resided in the western part of India for 500 years; members of this population are believed to be descendants of the Bantu-speaking population of Africa. We have carried out this study by using a set of 18,534 autosomal markers common between Indian, CEPH-HGDP, and HapMap populations. Principal-components analysis clearly revealed that the African-Indian population derives its ancestry from Bantu-speaking west-African as well as Indo-European-speaking north and northwest Indian population(s). STRUCTURE and ADMIXTURE analyses show that, overall, the OG-W-IPs derive 58.7% of their genomic ancestry from their African past and have very little inter-individual ancestry variation (8.4%). The extent of linkage disequilibrium also reveals that the admixture event has been recent. Functional annotation of genes encompassing the ancestry-informative markers that are closer in allele frequency to the Indian ancestral population revealed significant enrichment of biological processes, such as ion-channel activity, and cadherins. We briefly examine the implications of determining the genetic diversity of this population, which could provide opportunities for studies involving admixture mapping.  相似文献   

7.
M. J. Ford  C. F. Aquadro 《Genetics》1996,144(2):689-703
We present the results of a restriction site survey of variation at five loci in Drosophila athabasca, complimenting a previous study of the period locus. There is considerably greater differentiation between the three semispecies of D. athabasca at the period locus and two other X-linked genes (no-on-transient-A and E74A) than at three autosomal genes (Xdh, Adh and RC98). Using a modification of the HKA test, which uses fixed differences between the semispecies and a test based on differences in Fst among loci, we show that the greater differentiation of the X-linked loci compared with the autosomal loci is inconsistent with a neutral model of molecular evolution. We explore several evolutionary scenarios by computer simulation, including differential migration of X and autosomal genes, very low levels of migration among the semispecies, selective sweeps, and background selection, and conclude that X-linked selective sweeps in at least two of the semispecies are the best explanation for the data. This evidence that natural selection acted on the X-chromosome suggests that another X-linked trait, mating song differences among the semispecies, may have been the target of selection.  相似文献   

8.
Seventy-eight cattle samples from three Creole Caribbean islands and one Brazilian breed were analyzed for sequence variation in the hypervariable segment of the mitochondrial DNA control region. Seventy-three samples displayed Bos taurus haplotypes, and five samples exhibited haplotypes that were of Bos indicus ancestry. Phylogenetic analysis revealed that all sampled B. taurus sequences fell into two distinct clusters with separate African and European origins. European sequences were encountered in each population; however, the distribution of African haplotypes was uneven, with the highest proportion of African influence found in the Guadeloupe Creole. The reduced levels of African haplotypic variation within the Caribbean and Brazilian are consistent with prior founder effects. Additionally, genetic variation at three microsatellite loci illustrated African influence uniquely in the Guadeloupe Creole. Collectively, the data suggest that this African influence is, at least in part, attributable to the historical importation of African cattle to the Americas. Furthermore, alleles of B. indicus ancestry were detected at appreciable frequencies in all Caribbean Creole populations and may reflect zebu introgressions from either West Africa or the Indian subcontinent.  相似文献   

9.
Introgressive hybridization is one of the major threats to species conservation, and is often induced by human influence on the natural habitat of wildlife species. The ability to accurately identify introgression is critical to understanding its importance in evolution and effective conservation management of species. Hybridization between North American bison (Bison bison) and domestic cattle (Bos taurus) as a result of human activities has been recorded for over 100 years, and domestic cattle mitochondrial DNA was previously detected in bison populations. In this study, linked microsatellite markers were used to identify domestic cattle chromosomal segments in 14 genomic regions from 14 bison populations. Cattle nuclear introgression was identified in five populations, with an average frequency per population ranging from 0.56% to 1.80%. This study represents the first use of linked molecular markers to examine introgression between mammalian species and the first demonstration of domestic cattle nuclear introgression in bison. To date, six public bison populations have been identified with no evidence of mitochondrial or nuclear domestic cattle introgression, providing information critical to the future management of bison genetic resources. The ability to identify even low levels of introgression resulting from historic hybridization events suggests that the use of linked molecular markers to identify introgression is a significant development in the study of introgressive hybridization across a broad range of taxa.  相似文献   

10.
Hybridization between yak Poephagus grunniens and taurine Bos taurus or indicine B. indicus cattle has been widely practiced throughout the yak geographical range, and gene flow is expected to have occurred between these species. To assess the impact of cattle admixture on domestic yak, we examined 1076 domestic yak from 29 populations collected in China, Bhutan, Nepal, India, Pakistan, Kyrgyzstan, Mongolia and Russia using mitochondrial DNA and 17 autosomal microsatellite loci. A cattle diagnostic marker‐based analysis reveals cattle‐specific mtDNA and/or autosomal microsatellite allele introgression in 127 yak individuals from 22 populations. The mean level of cattle admixture across the populations, calculated using allelic information at 17 autosomal microsatellite loci, remains relatively low (mYcattle = 2.66 ± 0.53% and Qcattle = 0.69 ± 2.58%), although it varies a lot across populations as well as among individuals within population. Although the level of cattle admixture shows a clear geographical structure, with higher levels of admixture in the Qinghai‐Tibetan Plateau and Mongolian and Russian regions, and lower levels in the Himalayan and Pamir Plateau region, our results indicate that the level of cattle admixture is not significantly correlated with the altitude across geographical regions as well as within geographical region. Although yak‐cattle hybridization is primarily driven to produce F1 hybrids, our results show that the subsequent gene flow between yak and cattle took place and has affected contemporary genetic make‐up of domestic yak. To protect yak genetic integrity, hybridization between yak and cattle should be tightly controlled.  相似文献   

11.
Genomes sampled from hybrid zones between nascent species provide important clues into the speciation process. With advances in genome sequencing and single nucleotide polymorphism (SNP) genotyping, it is now feasible to measure variation in gene flow with high genomic resolution. This progress motivates the development of conceptual and analytical frameworks for hybrid zones that complement well‐established cline approaches. We extend the perspective that genomic distributions of ancestry are sensitive indicators of hybridization history. We use simulations to examine the behavior of the number of ancestry junctions—a simple summary of genomic patterns—in hybrid zones under increasingly realistic scenarios. Neutral simulations revealed that ancestry junction number is shaped by population structure, migration rate, and population size. Modeling multiple genetic architectures of hybrid dysfunction, with an emphasis on epistatic hybrid incompatibilities, showed that selection reduces junction number near loci that confer reproductive barriers. The magnitude of this signature was affected by the form of selection, dominance, and genomic location (autosome vs. sex chromosome) of incompatible loci. Our results suggest that researchers can identify loci involved in reproductive isolation by scanning hybrid genomes for local reductions in junction number. We outline necessary directions for future theory and method development to realize this goal.  相似文献   

12.
Skin pigmentation,biogeographical ancestry and admixture mapping   总被引:23,自引:0,他引:23  
Ancestry informative markers (AIMs) are genetic loci showing alleles with large frequency differences between populations. AIMs can be used to estimate biogeographical ancestry at the level of the population, subgroup (e.g. cases and controls) and individual. Ancestry estimates at both the subgroup and individual level can be directly instructive regarding the genetics of the phenotypes that differ qualitatively or in frequency between populations. These estimates can provide a compelling foundation for the use of admixture mapping (AM) methods to identify the genes underlying these traits. We present details of a panel of 34 AIMs and demonstrate how such studies can proceed, by using skin pigmentation as a model phenotype. We have genotyped these markers in two population samples with primarily African ancestry, viz. African Americans from Washington D.C. and an African Caribbean sample from Britain, and in a sample of European Americans from Pennsylvania. In the two African population samples, we observed significant correlations between estimates of individual ancestry and skin pigmentation as measured by reflectometry (R(2)=0.21, P<0.0001 for the African-American sample and R(2)=0.16, P<0.0001 for the British African-Caribbean sample). These correlations confirm the validity of the ancestry estimates and also indicate the high level of population structure related to admixture, a level that characterizes these populations and that is detectable by using other tests to identify genetic structure. We have also applied two methods of admixture mapping to test for the effects of three candidate genes (TYR, OCA2, MC1R) on pigmentation. We show that TYR and OCA2 have measurable effects on skin pigmentation differences between the west African and west European parental populations. This work indicates that it is possible to estimate the individual ancestry of a person based on DNA analysis with a reasonable number of well-defined genetic markers. The implications and applications of ancestry estimates in biomedical research are discussed.  相似文献   

13.
Here we present the first attempt to use the BovineSNP50 Illumina Genotyping BeadChip for genome-wide screening of European bison Bison bonasus bonasus (EB), two subspecies of American bison: the plains bison Bison bison bison (PB), the wood bison Bison bison athabascae (WB) and seven cattle Bos taurus breeds. Our aims were to (1) reconstruct their evolutionary relationships, (2) detect any genetic signature of past bottlenecks and to quantify the consequences of bottlenecks on the genetic distances amongst bison subspecies and cattle, and (3) detect loci under positive or stabilizing selection. A Bayesian clustering procedure (STRUCTURE) detected ten genetically distinct clusters, with separation among all seven cattle breeds and European and American bison, but no separation between plain and wood bison. A linkage disequilibrium based program (LDNE) was used to estimate the effective population size (N e) for the cattle breeds; N e was generally low, relative to the census size of the breeds (cattle breeds: mean N e = 299.5, min N e = 18.1, max N e = 755.0). BOTTLENECK 1.2 detected signs of population bottlenecks in EB, PB and WB populations (sign test and standardized sign test: p = 0.0001). Evidence for loci under selection was found in cattle but not in bison. All extant wild populations of bison have shown to have survived severe bottlenecks, which has likely had large effects on genetic diversity within and differentiation among groups.  相似文献   

14.
In recently diverged species, ancestral polymorphism and introgression can cause incongruence between gene and species trees. In the face of hybridization, few genomic regions may exhibit reciprocal monophyly, and these regions, usually evolving rapidly under selection, may be important for the maintenance of species boundaries. In animals with internal fertilization, genes encoding seminal protein are candidate barrier genes. Recently diverged hybridizing species such as the field crickets Gryllus firmus and G. pennsylvanicus , offer excellent opportunities to investigate the origins of barriers to gene exchange. These recently diverged species form a well-characterized hybrid zone, and share ancestral polymorphisms across the genome. We analyzed DNA sequence divergence for seminal protein loci, housekeeping loci, and mtDNA, using a combination of analytical approaches and extensive sampling across both species and the hybrid zone. We report discordant genealogical patterns and differential introgression rates across the genome. The most dramatic outliers, showing near-zero introgression and more structured species trees, are also the only two seminal protein loci under selection. These are candidate barrier genes with possible reproductive functions. We also use genealogical data to examine the demographic history of the field crickets and the current structure of the hybrid zone.  相似文献   

15.
Mimicry: developmental genes that contribute to speciation   总被引:2,自引:0,他引:2  
Despite renewed interest in the role of natural selection as a catalyst for the origin of species, the developmental and genetic basis of speciation remains poorly understood. Here we describe the genetics of Müllerian mimicry in Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae), sister species that recently diverged to mimic other Heliconius. This mimetic shift was a key step in their speciation, leading to pre- and postmating isolation. We identify 10 autosomal loci, half of which have major effects. At least eight appear to be homologous with genes known to control pattern differences within each species. Dominance has evolved under the influence of identifiable "modifier" loci rather than being a fixed characteristic of each locus. Epistasis is found at many levels: phenotypic interaction between specific pairs of genes, developmental canalization due to polygenic modifiers so that patterns are less sharply defined in hybrids, and overall fitness through ecological selection against nonmimetic hybrid genotypes. Most of the loci are clustered into two genomic regions or "supergenes," suggesting color pattern evolution is constrained by preexisting linked elements that may have arisen via tandem duplication rather than having been assembled by natural selection. Linkage, modifiers, and epistasis affect the strength of mimicry as a barrier to gene flow between these naturally hybridizing species and may permit introgression in genomic regions unlinked to those under disruptive selection. Müllerian mimics in Heliconius use different genetic architectures to achieve the same mimetic patterns, implying few developmental constraints. Therefore, although developmental and genomic constraints undoubtedly influence the evolutionary process, their effects are probably not strong in comparison with natural selection.  相似文献   

16.
Wild American plains bison (Bison bison) populations virtually disappeared in the late 1800s, with some remnant animals retained in what would become Yellowstone National Park and on private ranches. Some of these private bison were intentionally crossbred with cattle for commercial purposes. This forced hybridization resulted in both mitochondrial and nuclear introgression of cattle genes into some of the extant bison genome. As the private populations grew, excess animals, along with their history of cattle genetics, provided founders for newly established public bison populations. Of the US public bison herds, only those in Yellowstone and Wind Cave National Parks (YNP and WCNP) appear to be free of detectable levels of cattle introgression. However, a small free-ranging population (~350 animals) exists on public land, along with domestic cattle, in the Henry Mountains (HM) of southern Utah. This isolated bison herd originated from a founder group translocated from YNP in the 1940s. Using genetic samples from 129 individuals, we examined the genetic status of the HM population and found no evidence of mitochondrial or nuclear introgression of cattle genes. This new information confirms it is highly unlikely for free-living bison to crossbreed with cattle, and this disease-free HM bison herd is valuable for the long-term conservation of the species. This bison herd is a subpopulation of the YNP/WCNP/HM metapopulation, within which it can contribute significantly to national efforts to restore the American plains bison to more of its native range.  相似文献   

17.
The role of the Y chromosome in speciation is unclear. Hybrid zones provide natural arenas for studying speciation, as differential introgression of markers may reveal selection acting against incompatibilities. Two subspecies of the European rabbit (Oryctolagus cuniculus) form a hybrid zone in the Iberian Peninsula. Previous work on mitochondrial DNA (mtDNA), Y- and X-linked loci revealed the existence of two divergent lineages in the rabbit genome and that these lineages are largely subspecies-specific for mtDNA and two X-linked loci. Here we investigated the geographic distribution of the two Y chromosome lineages by genotyping two diagnostic single nucleotide polymorphisms in a sample of 353 male rabbits representing both subspecies, and found that Y chromosome lineages are also largely subspecies-specific. We then sequenced three autosomal loci and discovered considerable variation in levels of differentiation at these loci. Finally, we compared estimates of population differentiation between rabbit subspecies at 26 markers and found a surprising bimodal distribution of F(ST)values. The vast majority of loci showed little or no differentiation between rabbit subspecies while a few loci, including the SRY gene, showed little or no introgression across the hybrid zone. Estimates of population differentiation for the Y chromosome were surprisingly high given that there is male-biased dispersal in rabbits. Taken together, these data indicate that there is a clear dichotomy in the rabbit genome and that some loci remain highly differentiated despite extensive gene flow following secondary contact.  相似文献   

18.
Borge T  Webster MT  Andersson G  Saetre GP 《Genetics》2005,171(4):1861-1873
In geographic areas where pied and collared flycatchers (Ficedula hypoleuca and F. albicollis) breed in sympatry, hybridization occurs, leading to gene flow (introgression) between the two recently diverged species. Notably, while such introgression is observable at autosomal loci it is apparently absent at the Z chromosome, suggesting an important role for genes on the Z chromosome in creating reproductive isolation during speciation. To further understand the role of Z-linked loci in the formation of new species, we studied genetic variation of the two species from regions where they live in allopatry. We analyzed patterns of polymorphism and divergence in introns from 9 Z-linked and 23 autosomal genes in pied and collared flycatcher males. Average variation on the Z chromosome is greatly reduced compared to neutral expectations based on autosomal diversity in both species. We also observe significant heterogeneity between patterns of polymorphism and divergence at Z-linked loci and a relative absence of polymorphisms that are shared by the two species on the Z chromosome compared to the autosomes. We suggest that these observations may indicate the action of recurrent selective sweeps on the Z chromosome during the evolution of the two species, which may be caused by sexual selection acting on Z-linked genes. Alternatively, reduced variation on the Z chromosome could result from substantially higher levels of introgression at autosomal than at Z-linked loci or from a complex demographic history, such as a population bottleneck.  相似文献   

19.
We present findings based on a study of Y-chromosome diallelic and microsatellite variation in 181 Icelanders, 233 Scandinavians, and 283 Gaels from Ireland and Scotland. All but one of the Icelandic Y chromosomes belong to haplogroup 1 (41.4%), haplogroup 2 (34.2%), or haplogroup 3 (23.8%). We present phylogenetic networks of Icelandic Y-chromosome variation, using haplotypes constructed from seven diallelic markers and eight microsatellite markers, and we propose two new clades. We also report, for the first time, the phylogenetic context of the microsatellite marker DYS385 in Europe. A comparison of haplotypes based on six diallelic loci and five microsatellite loci indicates that some Icelandic haplogroup-1 chromosomes are likely to have a Gaelic origin, whereas for most Icelandic haplogroup-2 and -3 chromosomes, a Scandinavian origin is probable. The data suggest that 20%-25% of Icelandic founding males had Gaelic ancestry, with the remainder having Norse ancestry. The closer relationship with the Scandinavian Y-chromosome pool is supported by the results of analyses of genetic distances and lineage sharing. These findings contrast with results based on mtDNA data, which indicate closer matrilineal links with populations of the British Isles. This supports the model, put forward by some historians, that the majority of females in the Icelandic founding population had Gaelic ancestry, whereas the majority of males had Scandinavian ancestry.  相似文献   

20.
African Pygmy groups show a distinctive pattern of phenotypic variation, including short stature, which is thought to reflect past adaptation to a tropical environment. Here, we analyze Illumina 1M SNP array data in three Western Pygmy populations from Cameroon and three neighboring Bantu-speaking agricultural populations with whom they have admixed. We infer genome-wide ancestry, scan for signals of positive selection, and perform targeted genetic association with measured height variation. We identify multiple regions throughout the genome that may have played a role in adaptive evolution, many of which contain loci with roles in growth hormone, insulin, and insulin-like growth factor signaling pathways, as well as immunity and neuroendocrine signaling involved in reproduction and metabolism. The most striking results are found on chromosome 3, which harbors a cluster of selection and association signals between approximately 45 and 60 Mb. This region also includes the positional candidate genes DOCK3, which is known to be associated with height variation in Europeans, and CISH, a negative regulator of cytokine signaling known to inhibit growth hormone-stimulated STAT5 signaling. Finally, pathway analysis for genes near the strongest signals of association with height indicates enrichment for loci involved in insulin and insulin-like growth factor signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号