首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dormant life stages are important strategies for many aquatic organisms. The formation of resting stages will provide a refuge from unfavourable conditions in the water column, and their successive accumulation in the benthos will constitute a genetic reservoir for future planktonic populations. We have determined the genetic structure of a common bloom‐forming diatom, Skeletonema marinoi, in the sediment and the plankton during spring, summer and autumn two subsequent years (2007–2009) in Gullmar Fjord on the Swedish west coast. Eight polymorphic microsatellite loci were used to assess the level of genetic differentiation and the respective gene diversity of the two different habitats. We also determined the degree of genetic differentiation between the seed banks inside the fjord and the open sea. The results indicate that Gullmar Fjord has one dominant endogenous population of S. marinoi, which is genetically differentiated from the open sea population. The fjord population is encountered in the plankton and in the sediment. Shifts from the dominant population can happen, and in our study, two genetically differentiated plankton populations, displaying reduced genetic diversity, occurred in September 2007 and 2008. Based on our results, we suggest that sill fjords maintain local long‐lived and well‐adapted protist populations, which continuously shift between the planktonic and benthic habitats. Intermittently, short‐lived and mainly asexually reproducing populations can replace the dominant population in the water column, without influencing the genetic structure of the benthic seed bank.  相似文献   

2.
Polyunsaturated aldehydes (PUA) have recently been shown to induce reactive oxygen species (ROS) and possibly reactive nitrogen species (RNS, e.g., peroxynitrite) in the diatom Skeletonema marinoi (S. marinoi), which produces high amounts of PUA. We now are attempting to acquire better understanding of which reactive molecular species are involved in the oxidative response of S. marinoi to PUA. We used flow cytometry, the dye dihydrorhodamine 123 (DHR) as the main indicator of ROS (but which is also known to partially detect RNS), and different scavengers and inhibitors of both nitric oxide (NO) synthesis and superoxide dismutase activity (SOD). Both the scavengers Tempol (for ROS) and uric acid (UA, for peroxynitrite) induced a lower DHR‐derived green fluorescence in S. marinoi cells exposed to the PUA, suggesting that both reactive species were produced. When PUA‐exposed S. marinoi cells were treated with the NO scavenger 2‐4‐carboxyphenyl‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), an opposite response was observed, with an increase in DHR‐derived green fluorescence. A higher DHR‐derived green fluorescence was also observed in the presence of sodium tungstate (ST), an inhibitor of NO production via nitrate reductase. In addition, two different SOD inhibitors, 2‐methoxyestradiol (2ME) and sodium diethyldithiocarbamate trihydrate (DETC), had an effect, with DETC inducing the strongest inhibition after 20 min. These results indicate the involvement of O2? generation and SOD activity in H2O2 formation (with downstream ROS generation dependent from H2O2) in response to PUA exposure. This is relevant as it refines the biological impact of PUA and identifies the specific molecules involved in the response. It is speculated that in PUA‐exposed S. marinoi cells, beyond a certain threshold of PUA, the intracellular antioxidant system is no longer able to cope with the excess of ROS, thus resulting in the observed accumulation of both O2?? and H2O2. This might be particularly relevant for population dynamics at sea, during blooms, when cell lysis increases and PUA are released. It can be envisioned that in the final stages of blooms, higher local PUA concentrations accumulate, which in turn induces intracellular ROS generation that ultimately leads to cell death and bloom decay.  相似文献   

3.
The copepod Temora stylifera was fed with the pennate diatom Pseudo-nitzschia delicatissima for 15 days. This diatom does not produce polyunsaturated aldehydes (PUAs) but only synthesizes other oxylipins such as the hydroxyacid (5Z,8Z,11Z,13E,15S,17Z)-15-hydroxy-5,8,11,13,17-eicosapentaenoic acid (15S-HEPE). Effects of this monoalgal diet were compared to copepods fed with the PUA-producing diatom Skeletonema marinoi and the control dinoflagellate Prorocentrum minimum which does not produce any oxylipins. Both egg production and hatching success were negatively affected by the two diatoms compared to the control diet. Both diatoms also induced malformations in the offspring, with the number of malformed nauplii increasing dramatically with time. Malformed nauplii were apoptotic (TUNEL-positive) indicating imminent death. In terms of recruitment, only 4 healthy nauplii female−1 day−1 with S. marinoi and 9 healthy nauplii female−1 day−1 with P. delicatissima were produced during the 15-day experimental period. The results indicate that P. delicatissima induced negative effects comparable to those of S. marinoi even though it did not produce PUAs. This is the first study that tests the biological activity of oxylipins other than PUAs on copepod reproduction.  相似文献   

4.
Diatom blooms may be initiated by cells that have survived in the plankton or germinated resting stages from the sediments. However, it is not well understood how these different inocula contribute to bloom development. We followed diatom community development in twenty‐liter microcosms given different inocula. Surface sediment and phytoplankton were collected in Gullmar Fjord, Sweden. Replicate microcosms were then dosed with local sediment and/or plankton and incubated in situ in Gullmar Fjord. We also followed the concurrent development of the phytoplankton community in the fjord. Experiments run in both spring and fall 2002 showed that bloom development in the microcosms was significantly faster when seeded by planktonic cells. However, addition of sediment may have stimulated planktonic growth and also provided additional propagules. The type of inoculum used strongly influenced the diatom composition in the microcosms. Sediment additions, through germination of resting stages, resulted in communities dominated by Detonula confervacea and Thalassiosira minima in spring, and Skeletonema costatum in fall. Planktonic inocula resulted in blooms of T. nordenskioeldii and Chaetoceros debilis in spring, and S. costatum and several Chaetoceros spp. in fall. Microcosms dosed with both plankton and sediment showed a mixed species assemblage. Comparisons between the microcosms and fjord phytoplankton suggest an important role for benthic seeding of diatom blooms.  相似文献   

5.
Skeletonema marinoi is one of the most widespread marine planktonic diatoms in temperate coastal regions and sometimes can form massive blooms. Yet, the molecular mechanisms of triacylglycerol (TAG) synthesis in nutrient-deficient conditions for this species are still unknown. This study aimed to investigate how the TAG biosynthetic pathway of S. marinoi reacts to the culture age and nitrogen (N) or phosphorus (P) deficiency at molecular levels. Meanwhile, we also described the physiological and biochemical changes of S. marinoi in response to N or P starvation over time. To obtain reliable qRT-PCR data, six putative reference genes were identified for assessing expression stability using geNorm and BestKeeper software, and Actin exhibited the most stable expression across 45 tested S. marinoi samples. We found that the expression of TAG biosynthesis-related genes and ACCase enzyme activity varied in response to the different nutrient conditions and culture age. Taken together, we speculated that the capacity of TAG biosynthesis in S. marinoi is induced by N or P stress, and increases with culture age. Furthermore, TAG biosynthesis appears to respond more strongly to P deficiency than to N deficiency. Our study provides important insights into how diatoms regulate the TAG biosynthetic pathway when stressed by nutrient limitation. Besides, the data obtained from this study also provide useful clues for further exploring genes that can be used for metabolic engineering to enhance lipid production.  相似文献   

6.
孙世贤  卫智军  吴新宏  姜超  郭利彪 《生态学报》2016,36(23):7570-7579
种群空间格局是种群自身特性、种间相互关系及环境条件综合作用的结果。以短花针茅荒漠草原为研究对象,运用Programita软件,采用Ripley's K函数和Monte Carlo随机模拟方法,对短花针茅、无芒影子草和碱韭种群点格局及空间关联性进行了研究。结果表明:短花针茅在禁牧和过度放牧下集群分布的尺度在增加,禁牧和过度放牧两种草地利用方式下短花针茅种群的格局具有趋同的趋势;并且,随着放牧强度的增大或者是持续放牧的影响,使得随机分布尺度在逐渐的增大,短花针茅在更大的尺度上才可能为集群分布。春季重牧+夏季重牧+秋季轻牧和全年重度放牧利用下无芒隐子草在较大尺度上才表现为集群分布,并且尺度转化的临界点在放牧的影响下有增大的趋势;重度放牧下碱韭为了适应放牧干扰逐渐向集群分布方向发展,集群分布的尺度在减小以提高种群的稳定性从而抵御过度的干扰。在不同的放牧干扰强度下植物种群具有明显的响应策略,大致表现为物种的群居性在增强,物种集群分布的尺度在减小以提高种群的稳定性从而抵御过度的干扰。春季休牧+夏季重牧+秋季轻牧处理下种群斑块化的尺度较大,有利于群落的稳定,因此荒漠草原采用这种利用方法较为合理。  相似文献   

7.
Diatoms of the genus Skeletonema were found in bottle samples of phytoplankton that were collected in Paris Bay (Bosfor-Vostochny Strait, the Sea of Japan) in June–December 2013 at a water temperature of–1.8 to 21.6°C and a salinity of 25.4–33.2‰. Using electron microscopy, we identified the predominant species of the autumn phytoplankton bloom as S. marinoi Sarno et Zingone. This is the first find of the species in the marine waters of Russia. The morphology of S. marinoi is described; further data on its ecology and distribution are provided.  相似文献   

8.
Skeletonema marinoi produces 2,4-heptadienal, 2,4-octadienal, and 2,4,7-octatrienal, the latter only in traces. In nutrient-replete cultures, the production of potentially defensive polyunsaturated aldehydes (PUA) increases from the exponential to the stationary phase of growth from 1.2 fmol cell(-1) (+/-0.4 fmol cell(-1) SD) to 4.2 fmol cell(-1) (+/-1.0 fmol cell(-1) SD), with 2,4-heptadienal as the dominant aldehyde. The plasticity of PUA production with age of the culture supports the hypothesis of a direct link between toxin production and cell physiological state. N- and P-limited cells in stationary phase produced 1.4 and 1.8 fold higher amounts of PUA than control cultures and 10.7 and 4.6 times higher PUAs when compared to their own exponential growth phase, respectively. The increase in PUA production in the nutrient-limited cultures was not paralleled by an increase in the total amount of precursor fatty acids indicating that physiological stress might trigger an enhanced expression or activity of the enzymes responsible for PUA production, i.e. chemical defense increase in aged and nutrient-stressed diatoms. If this holds true during blooms, grazers feeding at the end of a bloom would be more affected than early-bloom grazers.  相似文献   

9.
Menge  B. A.  Allison  G.  Freidenburg  T.  Kavanaugh  M.  Lubchenco  J.  Nielsen  K.  Schock  C.  & Wood  S. 《Journal of phycology》2003,39(S1):42-42
Diatom blooms may be initiated by cells that have survived in the plankton or germinated resting stages from the sediments. However, it is not well understood how these different inocula contribute to bloom development. We followed diatom community development in twenty-liter microcosms given different inocula. Surface sediment and phytoplankton were collected in Gullmar Fjord, Sweden. Replicate microcosms were then dosed with local sediment and/or plankton and incubated in situ in Gullmar Fjord. We also followed the concurrent development of the phytoplankton community in the fjord. Experiments run in both spring and fall 2002 showed that bloom development in the microcosms was significantly faster when seeded by planktonic cells. However, addition of sediment may have stimulated planktonic growth and also provided additional propagules. The type of inoculum used strongly influenced the diatom composition in the microcosms. Sediment additions, through germination of resting stages, resulted in communities dominated by Detonula confervacea and Thalassiosira minima in spring, and Skeletonema costatum in fall. Planktonic inocula resulted in blooms of T. nordenskioeldii and Chaetoceros debilis in spring, and S. costatum and several Chaetoceros spp. in fall. Microcosms dosed with both plankton and sediment showed a mixed species assemblage. Comparisons between the microcosms and fjord phytoplankton suggest an important role for benthic seeding of diatom blooms.  相似文献   

10.

Responses of phytoplankton biomass were monitored in pelagic enclosures subjected to manipulations with nutrients (+N/P), planktivore roach (Rutilus rutilus) and large grazers (Daphnia) in 18 bags during spring, summer and autumn in mesotrophic Lake Gjersjøen. In general, the seasonal effects on phytoplankton biomass were more marked than the effects of biomanipulation. Primary top-down effects of fish on zooplankton were conspicuous in all bags, whereas control of phytoplankton growth by grazing was observed only in the nutrient-limited summer situation. The effect of nutrient additions was pronounced in summer, less in spring and autumn; additions of fish gave the most pronounced effect in spring. The phytoplankton/zooplankton biomass ratio remained high (10–100) in bags with fish, with the highest ratios in combination with fertilization. The ratio decreased in bags without fish to<2 in most bags, but a real grazing control was only observed in bags with addition ofDaphnia. No direct grazing effects could be observed on the absolute or relative biomass of cyanobacteria (mainlyOscillatoria agardhii). The share of cyanobacteria in total phytoplankton biomass was lowest in summer (7–26%), higher in spring (39–63%) and more than 90% in the autumn experiment. The development of the cyanobacterial biomass was rather synchronous in all bags in all the three experiments. A high biomass ofDaphnia gave no increase in the pool of dissolved nutrients in spring, a slight increase in summer and a pronounced increase in autumn. While a strong decrease in the P/C-cell quota of the phytoplankton was observed from spring to autumn, no effect of grazing or nutrient release could be related to this P/C-status. The experiments indicate that such systems, with high and stable densities of inedible cyanobacteria, are rather insensitive to short-term (3–4 weeks) biomanipulation efforts. This is supported by observations on the long-term development of the lake.

  相似文献   

11.
Numerous species of diatoms liberate oxylipins including polyunsaturated aldehydes (PUAs) in response to cellular damage such as may occur during grazing. PUAs are cyto- and genotoxic and negatively disrupt reproductive processes in copepods, their principal grazers, although experimental evidence would suggest that the grazer response may be species specific. The reproduction of the benthic harpacticoid copepod Tisbe holothuriae was compared over two generations. Copepods were reared using four diet treatments: PUA-producing diatom strains Skeletonema marinoi (Adriatic Sea Isolate FE6) and Melosira nummuloides (CCAP 1048/6); and non-PUA-producing diatom strains Phaeodactylum tricornutum (CCAP 1052/A) and S. marinoi (Seasalter (Walney) Ltd). Life tables were generated for each treatment using measured reproductive parameters and the net reproductive rate (R0) calculated. No significant differences were observed between the individual reproductive parameters of T. holothuriae fed PUA-producing diatoms compared to those fed non-PUA-producing diatoms although diets of P. tricornutum resulted in some decreases in individual reproductive parameters in the second generation. There were no significant differences in the R0 values between the four tested diets. These observations indicate that T. holothuriae exhibits a tolerance of known PUA-producing diatom diets that has not been similarly demonstrated in pelagic calanoid copepods. Harpacticoid copepods may have a greater capacity to detoxify diatom oxylipins than their planktonic calanoid counterparts.  相似文献   

12.
Diatoms are unicellular algae of crucial importance as they belong to the main primary producers in aquatic ecosystems. Several diatom species produce polyunsaturated aldehydes (PUAs) that have been made responsible for chemically mediated interactions in the plankton. PUA-effects include chemical defense by reducing the reproductive success of grazing copepods, allelochemical activity by interfering with the growth of competing phytoplankton and cell to cell signaling. We applied a PUA-derived molecular probe, based on the biologically highly active 2,4-decadienal, with the aim to reveal protein targets of PUAs and affected metabolic pathways. By using fluorescence microscopy, we observed a substantial uptake of the PUA probe into cells of the diatom Phaeodactylum tricornutum in comparison to the uptake of a structurally closely related control probe based on a saturated aldehyde. The specific uptake motivated a chemoproteomic approach to generate a qualitative inventory of proteins covalently targeted by the α,β,γ,δ-unsaturated aldehyde structure element. Activity-based protein profiling revealed selective covalent modification of target proteins by the PUA probe. Analysis of the labeled proteins gave insights into putative affected molecular functions and biological processes such as photosynthesis including ATP generation and catalytic activity in the Calvin cycle or the pentose phosphate pathway. The mechanism of action of PUAs involves covalent reactions with proteins that may result in protein dysfunction and interference of involved pathways.  相似文献   

13.
Polyunsaturated aldehydes (PUAs) are released by several diatom species during predation. Besides other attributed activities, these oxylipins can interfere with the reproduction of copepods, important predators of diatoms. While intensive research has been carried out to document the effects of PUAs on copepod reproduction, little is known about the underlying mechanistic aspects of PUA action. Especially PUA uptake and accumulation in copepods has not been addressed to date. To investigate how PUAs are taken up and interfere with the reproduction in copepods we developed a fluorescent probe containing the α,β,γ,δ-unsaturated aldehyde structure element that is essential for the activity of PUAs as well as a set of control probes. We developed incubation and monitoring procedures for adult females of the calanoid copepod Acartia tonsa and show that the PUA derived fluorescent molecular probe selectively accumulates in the gonads of this copepod. In contrast, a saturated aldehyde derived probe of an inactive parent molecule was enriched in the lipid sac. This leads to a model for PUAs'' teratogenic mode of action involving accumulation and covalent interaction with nucleophilic moieties in the copepod reproductive tissue. The teratogenic effect of PUAs can therefore be explained by a selective targeting of the molecules into the reproductive tissue of the herbivores, while more lipophilic but otherwise strongly related structures end up in lipid bodies.  相似文献   

14.
The planktonic marine diatom Skeletonema marinoi forms resting stages, which can survive for decades buried in aphotic, anoxic sediments and resume growth when re-exposed to light, oxygen, and nutrients. The mechanisms by which they maintain cell viability during dormancy are poorly known. Here, we investigated cell-specific nitrogen (N) and carbon (C) assimilation and survival rate in resting stages of three S. marinoi strains. Resting stages were incubated with stable isotopes of dissolved inorganic N (DIN), in the form of 15N-ammonium (NH4+) or -nitrate (NO3) and dissolved inorganic C (DIC) as 13C-bicarbonate (HCO3) under dark and anoxic conditions for 2 months. Particulate C and N concentration remained close to the Redfield ratio (6.6) during the experiment, indicating viable diatoms. However, survival varied between <0.1% and 47.6% among the three different S. marinoi strains, and overall survival was higher when NO3 was available. One strain did not survive in the NH4+ treatment. Using secondary ion mass spectrometry (SIMS), we quantified assimilation of labeled DIC and DIN from the ambient environment within the resting stages. Dark fixation of DIC was insignificant across all strains. Significant assimilation of 15N-NO3 and 15N-NH4+ occurred in all S. marinoi strains at rates that would double the nitrogenous biomass over 77–380 years depending on strain and treatment. Hence, resting stages of S. marinoi assimilate N from the ambient environment at slow rates during darkness and anoxia. This activity may explain their well-documented long survival and swift resumption of vegetative growth after dormancy in dark and anoxic sediments.  相似文献   

15.
We investigated the impact of viruses, nutrient loading, and microzooplankon grazing on phytoplankton communities in two New York estuaries that hosted blooms of the brown tide alga Aureococcus anophagefferens during 2000 and 2002. The absence of a bloom at one location during 2002 allowed for the fortuitous comparison of a bloom and non-bloom year at the same location as well as a comparison of two sites experiencing bloom and non-bloom conditions during the same year. During the study, blooms were found at locations with high levels of dissolved organic nitrogen and lower nitrate concentrations compared to a non-bloom location. Experimental additions of inorganic nitrogen and phosphorus yielded growth rates within the total phytoplankton community which significantly exceeded control treatments in 83% of experiments, while A. anophagefferens experienced significantly increased growth during only 20% of experimental inorganic nutrient additions. Consistent with prior research, these results suggest brown tides are not caused by eutrophication, but instead are more likely to occur when sources of labile DOM are readily available. Microzooplankton grazing rates on the total phytoplankton community during a bloom were lower than grazing rates at a non-bloom site, and grazing rates on A. anophagefferens were lower than grazing rates on the total community on some dates, suggesting that reduced grazing mortality may also promote brown tides. Mean densities of viruses during blooms (3 × 108 ml−1) were elevated compared to most estuarine environments and were twice the levels found at a non-bloom site. Experimental enrichment of the natural viral densities yielded a significant increase in A. anophagefferens growth rates relative to control treatments when background levels of viruses were low (<1.7 × 108 ml−1), suggesting that viruses may promote bloom occurrence by regenerating DOM or altering the composition of microbial communities.  相似文献   

16.
Changes in the population structure of Salpa thompsoni from austral mid-summer to autumn off the Adelie Coast, Antarctica, were examined using cluster analysis based on reproductive states. S. thompsoni was the dominant macrozooplankton species through the research periods although the abundance decreased markedly in autumn. In both summer and autumn we identified three geographically coherent subpopulations, which were considered to be either a mating swarm or physical aggregation. Many aggregate forms with an empty (dead) embryo were observed, and the ratio of newborn solitary forms decreased in autumn, indicating sexual reproduction of the salps was deactivated. The significant reduction in size of mature solitaries suggested that the capacity of asexual reproduction was also reduced in autumn. In addition to water temperature decline, the phytoplankton shortage (which was partly caused by high grazing pressure of S. thompsoni during summer) might be the factor causing decline in their own population size in autumn. Accepted: 25 May 1999  相似文献   

17.
Studies of predator–prey systems in both aquatic and terrestrial environments have shown that grazers structure the intraspecific diversity of prey species, given that the prey populations are phenotypically variable. Populations of phytoplankton have traditionally considered comprising only low intraspecific variation, hence selective grazing as a potentially structuring factor of both genetic and phenotypic diversity has not been comprehensively studied. In this study, we compared strain specific growth rates, production of polyunsaturated aldehydes, and chain length of the marine diatom Skeletonema marinoi in both grazer and non-grazer conditions by conducting monoclonal experiments. Additionally, a mesocosm experiment was performed with multiclonal experimental S. marinoi populations exposed to grazers at different levels of copepod concentration to test effects of grazer presence on diatom diversity in close to natural conditions. Our results show that distinct genotypes of a geographically restricted population exhibit variable phenotypic traits relevant to grazing interactions such as chain length and growth rates. Grazer presence affected clonal richness and evenness of multiclonal Skeletonema populations in the mesocosms, likely in conjunction with intrinsic interactions among the diatom strains. Only the production of polyunsaturated aldehydes was not affected by grazer presence. Our findings suggest that grazing can be an important factor structuring diatom population diversity in the sea and emphasize the importance of considering clonal differences when characterizing species and their role in nature.  相似文献   

18.
The water bloom‐forming cyanobacterium Aphanizomenon flos‐aquae Ralfs ex Bornet et Flahault (Nos‐tocales, Cyanophyceae) appeared in Lake Biwa and Lake Yogo in 1999 for the first time. The morphological characteristics were described using natural samples. In contrast to the other water bloom‐forming cyanobacteria such as Microcystis and Anabaena in Lake Biwa and Lake Yogo, the small summer population of A. flos‐aquae is apt to grow in winter, suggesting the low temperature preference or tolerance of this species. In order to clarify the effect of temperature on the growth, culture experiments were conducted using an axenic strain isolated from Lake Biwa. The strain could grow at above 8°C with an optimum temperature ranging from 23 to 29°C, and survived even at 5°C for at least 25days under low light conditions. Although these results confirmed the ability of the bloom formation during late autumn and winter, it is still unclear why the Aphanizomenon bloom occurred at temperatures of ca 10°C in December and not immediately after the disappearance of Microcystis and/or Anabaena bloom during autumn.  相似文献   

19.
Meijer  M. L.  van Nes  E. H.  Lammens  E. H. R. R.  Gulati  R. D.  Grimm  M. P.  Backx  J.  Hollebeek  P.  Blaauw  E. M.  Breukelaar  A. W. 《Hydrobiologia》1994,(1):31-42
In 1990 an experiment started in the large and shallow lake Wolderwijd (2700 ha, mean depth 1.5 m) to improve the water quality. About 75% of the fish stock was removed (425 000 kg fish). The fish was mainly composed of bream and roach. In May 600000 young pikes (3–4 cm) were introduced.In May 1991 the water became very clear (Secchi depth 1.8 m) during a spring bloom of large Daphnia. Then the grazing by zooplankton was eight times higher than the primary production of algae and the total suspended matter concentration became very low. Compared to the situation before the fish reduction, the grazing had increased only slightly, while the primary production had decreased significantly in early spring. The fish stock reduction might have contributed to the reduction in primary production by a reduced internal nutrient load. The clear water period lasted six weeks. Daphnia disappeared in July due to food limitation, the algal biomass increased and the Secchi depth became 50 cm. Daphnia did not recover during summer, due to predation that was not caused by 0 + fish but by the mysid shrimp Neomysis integer. Neomysis could develop abundantly, because of the reduced biomass of the predator perch. The production of young fish had been low because of the cold spring weather. The cold weather was probably also responsible for the slow increase in density of macrophytes. After 1991, perch probably can control Neomysis. Due to lack of spawning places and shelter for 0 + pike, pike was probably not able to control the production of 0 + fish. In a lake of this scale, it will not be easy to get more than 50% coverage of macrophytes, which seems necessary to keep the algal biomass low by nutrient competition. Therefore, we expect also in the future a decrease in transparency in the summer. Locally, especially near Characeae, the water might stay clear.  相似文献   

20.
Abiotic factors and primary production by phytoplankton and microphytobenthos was studied in the turbid Westeschelde estuary. Because of the high turbidity and high nutrient concentrations primary production by phytoplankton is light-limited. In the inner and central parts of the estuary maximum rates of primary production were therefore measured during the summer, whereas in the more marine part spring and autumn bloom were observed. Organic loading is high, causing near anaerobic conditions upstream in the river Schelde. Because of this there were no important phytoplankton grazers in this part of the estuary and hence the grazing pressure on phytoplankton was minimal. As this reduced losses, biomass is maximal in the river Schelde, despite the very low growth rates.On a number of occasions, primary production by benthic micro-algae on intertidal flats was studied. Comparison of their rates of primary production to phytoplankton production in the same period led to the conclusion that the contribution to total primary production by benthic algae was small. The main reason for this is that the photosynthetic activity declines rapidly after the flats emerged from the water. It is argued that CO2-limitation could only be partially responsible for the noticed decrease in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号