首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Humoral immune functions in IL-4 transgenic mice   总被引:6,自引:0,他引:6  
We have analyzed mice expressing IL-4 as a transgene, and found that expression of this lymphokine has profound effects on B cell function. B cells from transgenic mice exhibit phenotypic changes, including an increase in size and elevated expression of class II MHC. IL-4 increases the quantity of IgE produced by transgenic-derived B cells in response to LPS stimulation. In vivo, IL-4 markedly affects the serum Ig isotype repertoire. Serum levels of IgG1 and IgE are elevated, and levels of IgG2a, IgG2b, and IgG3 are depressed in IL-4 transgenic mice. Ag-specific antibody responses to immunization with hapten-carrier conjugates are also affected by IL-4. Transgenic mice show increased anti-hapten IgE and IgG1 and reduced anti-hapten IgG2a, IgG2b, and IgG3, compared with wild-type mice. Ag-specific IgE is substantially induced by T cell-dependent Ag, but not T cell-independent Ag, suggesting that cognate T-B interactions in addition to IL-4 are required for generating IgE responses in vivo. In vivo treatment with the anti-IL-4 mAb 11B11 reverses many of the isotype alterations in the transgenic mice, indicating that these changes arise as a direct consequence of IL-4 secretion.  相似文献   

2.
We define the initiation of elicited delayed-type hypersensitivity (DTH) as a series of processes leading to local extravascular recruitment of effector T cells. Responses thus have two sequential phases: 1) 2-h peaking initiation required for subsequent recruitment of T cells, and 2) the late classical 24-h component mediated by the recruited T cells. We analyzed DTH initiation to protein Ags induced by intradermal immunization without adjuvants. Ag-spceific initiating cells are present by 1 day in spleen and lymph nodes. Their phenotypes, determined by depletion of cell transfers by mAb and complement, are CD5(+), CD19(+), CD22(+), B220(+), Thy1(+), and Mac1(+), suggesting that they are B-1 B cells. DTH initiation is absent in micro MT B cell and xid B-1 cell deficient mice, is impaired in mice unable to secrete IgM, and is reconstituted with 1 day immune serum, suggesting that early B-1 cell-derived IgM is responsible. Study of complement C5a receptor-deficient mice, anti-C5 mAb neutralization, or mast cell deficiency suggests that DTH initiation depends on complement and mast cells. ELISPOT assay confirmed production of Ag-specific IgM Abs at days 1 and 4 in wild-type mice, but not in B-1 cell-deficient xid mice. We conclude that rapidly activated B-1 cells produce specific IgM Abs which, after local secondary skin challenge, form Ag-Ab complexes that activate complement to generate C5a. This stimulates C5a receptors on mast cells to release vasoactive substances, leading to endothelial activation for the 2-h DTH-initiating response, allowing local recruitment of DTH-effector T cells.  相似文献   

3.
Elicitation of contact sensitivity (CS), a classic example of T cell-mediated immunity, requires Ag-specific IgM Abs to trigger an initiation process. This early process leads to local recruitment of CS-effector T cells after secondary Ag challenge. These Abs are produced by the B-1 subset of B cells within 1 day after primary skin immunization. In this study we report the surprising observation that B-1 cells in the peritoneal cavity are activated as early as 1 h after naive mice are painted with a contact-sensitizing Ag on the skin of the trunk and feet to begin the initiation of CS. B-1 cells in the spleen and draining lymph nodes produce the initiating Abs by 1 day after immunization, when we found increased numbers of Ag-specific IgM Ab-producing cells in these tissues by ELISPOT assay. Importantly, we show that contact-activated peritoneal B-1 cells migrate to these lymphoid tissues and then differentiate into Ag-specific IgM Ab-producing cells, resulting in specific CS-initiating IgM Abs in the serum by 1 day. Furthermore, pertussis toxin, which is known to inhibit signaling via G protein-coupled chemokines, inhibited the migration of contact-activated peritoneal B-1 cells to the lymphoid tissues, probably due to BLR-1 (Burkitt lymphoma receptor-1). These findings indicate that within 1 h after contact skin immunization, B-1 cells in the peritoneal cavity are activated to migrate to the lymphoid tissues by chemokine-dependent mechanisms to produce serum Ag-specific IgM Abs within 1 day after immunization, leading to local recruitment of CS-effector T cells.  相似文献   

4.

Background

Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154TG) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22−/−) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154TGCD22−/− mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.

Methodology/Principal Findings

CD154TGCD22−/− mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154TGCD22−/− mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154TGCD22−/− mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7×106±6 in CD154TGCD22−/− mice; 1.7×106±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66×106±3 in CD154TGCD22−/− mice; 6.1×106±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.

Conclusions/Significance

These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans.  相似文献   

5.
The antibody response to influenza infection is largely dependent on CD4 T cell help for B cells. Cognate signals and secreted factors provided by CD4 T cells drive B cell activation and regulate antibody isotype switching for optimal antiviral activity. Recently, we analyzed HLA-DR1 transgenic (DR1) mice and C57BL/10 (B10) mice after infection with influenza virus A/New Caledonia/20/99 (NC) and defined epitopes recognized by virus-specific CD4 T cells. Using this information in the current study, we demonstrate that the pattern of secretion of IL-2, IFN-γ, and IL-4 by CD4 T cells activated by NC infection is largely independent of epitope specificity and the magnitude of the epitope-specific response. Interestingly, however, the characteristics of the virus-specific CD4 T cell and the B cell response to NC infection differed in DR1 and B10 mice. The response in B10 mice featured predominantly IFN-γ-secreting CD4 T cells and strong IgG2b/IgG2c production. In contrast, in DR1 mice most CD4 T cells secreted IL-2 and IgG production was IgG1-biased. Infection of DR1 mice with influenza PR8 generated a response that was comparable to that in B10 mice, with predominantly IFN-γ-secreting CD4 T cells and greater numbers of IgG2c than IgG1 antibody-secreting cells. The response to intramuscular vaccination with inactivated NC was similar in DR1 and B10 mice; the majority of CD4 T cells secreted IL-2 and most IgG antibody-secreting cells produced IgG2b or IgG2c. Our findings identify inherent host influences on characteristics of the virus-specific CD4 T cell and B cell responses that are restricted to the lung environment. Furthermore, we show that these host influences are substantially modulated by the type of infecting virus via the early induction of innate factors. Our findings emphasize the importance of immunization strategy for demonstrating inherent host differences in CD4 T cell and B cell responses.  相似文献   

6.
Previous studies have shown that the isotype of an antibody response is selected, in part, by the inhibition of isotype-specific suppression. The antisuppressor model predicts that isotype selection is initiated through an interaction between Ag, Ig, and a T cell-derived factor within 6 h of immunization. This report characterizes some of these molecules and their contribution to isotype regulation. Cultures of murine spleen cells stimulated with the T cell-dependent Ag SRBC led to Ag-specific IgG and IgA responses that could be suppressed and then antisuppressed by a molecular complex produced by mixing purified serum Ig with the supernatant of Ag-pulsed macrophages co-cultured with T cells. The supernatants from separate cultures of Ag-pulsed macrophages and rIL-1 alpha stimulated CD4+ T cells, could be pooled and mixed with Ig to produce functional antisuppressive complexes thereby allowing the factors from the different cell types to be studied separately. Adsorption of the co-culture or the rIL-1 alpha stimulated T cell supernatants against monoclonal IgG or IgA, removed IgG and IgA binding factors, respectively, and abrogated the ability to enhance the corresponding isotype. The adherent material could be recovered and used to reconstitute enhancement by the supernatants depleted of the binding factors. When affinity purified IgG or IgA was used as the source of Ig within the antisuppressive complexes, the enhancement of the antibody response was limited to the isotype of the regulatory Ig used to form the complex. Thus, manipulation of the antisuppressive molecules has a predictable effect on isotype selection. Release of isotype-specific binding factors by CD4+ cells by rIL-1 alpha supports the hypothesis that T cell circuits play a role in initiating isotype regulation.  相似文献   

7.
Memory B cells can persist for a lifetime and be reactivated to yield high affinity, isotype switched plasma cells. The generation of memory B cells by Ag immunization requires adjuvants that generally contain TLR agonists. However, requirements for memory B cell activation and the role of TLRs in this activation are not well understood. In this study, we analyzed the response of memory B cells from immunized mice to TLR9 and 4 agonists CpG oligodeoxynucleotides (ODN) and LPS. Mouse memory B cells express both TLR9 and 4, and respond to both CpG ODN and LPS in vitro by differentiating into high affinity IgG secreting plasma cells. In contrast, neither CpG ODN nor LPS alone is sufficient to activate memory B cells in vivo. Ag is required for the clonal expansion of Ag-specific memory B cells, the differentiation of memory B cells to high affinity IgG secreting plasma cells, and the recall of high affinity Ab responses. The Ag-specific B cells that have not yet undergone isotype switching showed a relatively higher expression of TLR4 than memory B cells, which was reflected in a heightened response to LPS, but in both cases yielded mostly low affinity IgM secreting plasma cells. Thus, although memory B cells are sensitive to TLR agonists in vitro, TLR agonists alone appear to have little affect on B cell memory in vivo.  相似文献   

8.
CD4+ T cell proliferation depends on the balance between NO and extra-cellular superoxide (O2-). By reducing NO bio-availability, O2- promotes splenic T cell proliferation and immune response intensity. Here, we show that spleen cells from na?ve mice produced neither NO nor O2- during T cell activation, but Gr-1+ splenocytes from primed mice regulated Ag-specific T cell expansion via production of both molecules. Purified splenic Gr-1+ cells included mostly granulocytes at various stages of maturation, as well as monocytes. Activation or recruitment of regulatory Gr-1+ cells was dependent on immunization with CFA. Importantly, these regulatory cells were not detected in draining lymph nodes. These data suggest that innate Gr-1+ splenic cells regulate adaptive immunity.  相似文献   

9.
NK cells have been shown to play a role in the modulation of B cell differentiation and Ab production. Using a novel murine model of NK cell deficiency, we analyzed the in vivo role of NK cells in the regulation of Ag-specific Ab production. After immunization with OVA or keyhole limpet hemocyanin in CFA, NK cell-deficient (NK-T+) mice developed an efficient Th1 response and produced significant levels of IFN-gamma but displayed markedly reduced or absent Ag-specific IgG2a production. There were no differences in the levels of Ag-specific IgG, IgG1, and IgG2b between NK-T+ and NK+T+ mice. Furthermore, NK cell-reconstituted, NK+T+ (tgepsilon26Y) mice produced significant amounts of Ag-specific IgG2a after immunization with OVA. These results indicate that NK cells are involved in the induction of Ag-specific IgG2a production in vivo. Moreover, they also demonstrate that the lack of Ag-specific IgG2a Ab production in NK-T+ mice is not associated with the impaired Th1 response and IFN-gamma production.  相似文献   

10.
CD20 mAb-mediated B cell depletion is an effective treatment for B cell malignancies and some autoimmune diseases. However, the full effects of B cell depletion on natural, primary, and secondary Ab responses and the maintenance of Ag-specific serum Ig levels are largely unknown. The relationship between memory B cells, long-lived plasma cells, and long-lived humoral immunity also remains controversial. To address the roles of B cell subsets in the longevity of humoral responses, mature B cells were depleted in mice using CD20 mAb. Peritoneal B cell depletion reduced natural and Ag-induced IgM responses. Otherwise, CD20+ B cell depletion prevented humoral immune responses and class switching and depleted existing and adoptively transferred B cell memory. Nonetheless, B cell depletion did not affect serum Ig levels, Ag-specific Ab titers, or bone marrow Ab-secreting plasma cell numbers. Coblockade of LFA-1 and VLA-4 adhesion molecules temporarily depleted long-lived plasma cells from the bone marrow. CD20+ B cell depletion plus LFA-1/VLA-4 mAb treatment significantly prolonged Ag-specific plasma cell depletion from the bone marrow, with a significant decrease in Ag-specific serum IgG. Collectively, these results support previous claims that bone marrow plasma cells are intrinsically long-lived. Furthermore, these studies now demonstrate that mature and memory B cells are not required for maintaining bone marrow plasma cell numbers, but are required for repopulation of plasma cell-deficient bone marrow. Thereby, depleting mature and memory B cells does not have a dramatic negative effect on preexisting Ab levels.  相似文献   

11.
Syngeneic T cells injected into athymic nu/nu mice cause a preferential enhancement in the amount of IgG2a anti-TNP Ab produced by these mice to TNP-Ficoll. This enhancement appears to be caused by T cell effects on the IgG switching pathway. Through the use of F1----parent chimeras, the helper T cells were shown to affect TNP-Ficoll-responsive B cells in an H-2-unrestricted manner. The ability of T cells to mediate this IgG2a enhancement did not appear to be unique to any particular murine genetic background, because it was observed with T cells and nu/nu mice of C57BL/10, BALB/c, CBA/Ca, and B10.D2 strains. Priming of T cell donors with Ficoll or TNP-Ficoll did not increase the ability of splenic T cells, on a per cell basis, to enhance the IgG2a Ab response to TNP-Ficoll. The T cell population responsible for modulating the isotypic response was found to be sensitive to C-mediated cytotoxicity with both anti-Lyt-2 and anti-Lyt-1 hybridoma Ab. Although T cells from both the thymus and the spleen expressed enhancing activity, splenic T cells were more effective, on a per cell basis, than were thymocytes. The observations suggest that T cells that appear to enhance the switch to IgG2a in TNP-Ficoll-responsive B cells are not effectively primed by the antigen and interact with TNP-Ficoll-activated B cells through an H-2-unrestricted mechanism.  相似文献   

12.
Mice expressing the X-linked immunodeficiency (xid) mutation lack functional Bruton's tyrosine kinase and were shown to be specifically deficient in peritoneal B-1 lymphocytes. We have previously shown that IL-9, a cytokine produced by TH2 lymphocytes, promotes B-1 cell expansion in vivo. To determine whether IL-9 overexpression might compensate the xid mutation for B-1 lymphocyte development, we crossed xid mice with IL-9-transgenic mice. In this model, IL-9 restored normal numbers of mature peritoneal B-1 cells that all belonged to the CD5(-) B-1b subset. Despite this normal B-1 lymphocyte number, IL-9 failed to restore classical functions of B-1 cells, namely, the production of natural IgM Abs, the T15 Id Ab response to phosphorylcholine immunization, and the antipolysaccharide humoral response against Streptococcus pneumoniae. By using bromelain-treated RBC, we showed that the antigenic repertoire of these IL-9-induced B-1b lymphocytes was different from the repertoire of classical CD5(+) B-1a cells, indicating that the lack of B-1 function by B-1b cells is associated with distinct Ag specificities. Taken together, our data show that B-1b cell development can restore the peritoneal B-1 population in xid mice but that these B-1b cells are functionally distinct from CD5(+) B-1a lymphocytes.  相似文献   

13.
14.
We describe regulatory effects that a novel neurotrophin-1/B cell-stimulating factor-3 (NNT-1/BSF-3; also reported as cardiotrophin-like cytokine) has on B cell function. NNT-1/BSF-3 stimulates B cell proliferation and Ig production in vitro. NNT-1/BSF-3-transgenic mice, engineered to express NNT-1/BSF-3 in the liver under control of the apolipoprotein E promoter, show B cell hyperplasia with particular expansion of the mature follicular B cell subset in the spleen and the prominent presence of plasma cells. NNT-1/BSF-3-transgenic mice show high serum levels of IgM, IgE, IgG2b, IgG3, anti-dsDNA Abs, and serum amyloid A. NNT-1/BSF-3-transgenic mice also show non-amyloid mesangial deposits that contain IgM, IgG, and C3 and are characterized by a distinctive ultrastructure similar to that of immunotactoid glomerulopathy. NNT-1/BSF-3-transgenic mice produce high amounts of Ag-specific IgM, IgA, and IgE and low amounts of IgG2a and IgG3. Normal mice treated with NNT-1/BSF-3 also produce high amounts of Ag-specific IgE. NNT-1/BSF-3 regulates immunity by stimulating B cell function and Ab production, with preference for Th2 over Th1 Ig types.  相似文献   

15.
The impaired function of CD8(+) T cells is characteristic of hepatitis C virus (HCV) persistent infection. HCV core protein has been reported to inhibit CD8(+) T cell responses. To determine the mechanism of the HCV core in suppressing Ag-specific CD8(+) T cell responses, we generated a transgenic mouse, core(+) mice, where the expression of core protein is directed to the liver using the albumin promoter. Using a recombinant adenovirus to deliver Ag, we demonstrated that core(+) mice failed to clear adenovirus-LacZ (Ad-LacZ) infection in the liver. The effector function of LacZ-specific CD8(+) T cells was particularly impaired in the livers of core(+) mice, with suppression of IFN-gamma, TNF-alpha, and granzyme B production by CD8(+) T cells. In addition, the impaired CD8(+) T cell responses in core(+) mice were accompanied by the enhanced expression of the inhibitory receptor programmed death-1 (PD-1) by LacZ-specific CD8(+) T cells and its ligand B7-H1 on liver dendritic cells following Ad-LacZ infection. Importantly, blockade of the PD-1/B7-H1 inhibitory pathway (using a B7-H1 blocking antibody) in core(+) mice enhanced effector function of CD8(+) T cells and cleared Ad-LacZ-infection as compared with that in mice treated with control Ab. This suggests that the regulation of the PD-1/B7-H1 inhibitory pathway is crucial for HCV core-mediated impaired T cell responses and viral persistence in the liver. This also suggests that manipulation of the PD-1/B7-H1 pathway may be a potential immunotherapy to enhance effector T cell responses during persistent HCV infection.  相似文献   

16.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   

17.
We have produced a transgenic mouse (PV1TgL) that can only generate B lymphocytes with an Ig receptor specific for the synthetic polymer polyvinyl pyrrolidinone. Before immunization, bone marrow B cell numbers are very low, and peripheral lymphoid organs are almost devoid of B cells, confirming the role of positive selection by Ag in the development of mature B cell populations. The predominant population of B cells in the spleens of naive adult PV1TgL mice have most of the characteristics of marginal zone B cells, including anatomical location in the peripheral areas of the splenic white pulp. After immunization, a new population of B cells appears in the spleen with the characteristics of B-1 cells. Similar cells also appear somewhat later in the peritoneal cavity. Our findings suggest that immunization with a thymus-independent Ag can lead to the appearance and expansion of Ag-reactive B-1 cells in an adult mouse.  相似文献   

18.
The CD21/35 proteins are complement receptors implicated in controlling and interpreting activation states of the innate and acquired immune responses. One defect of CD21/35(-/-) animals is depressed production of Ag-specific IgG3 which we show is evident in vivo but not in vitro. Gene expression profiles obtained from naive wild-type and CD21/35(-/-) splenocytes demonstrated enhanced expression of inflammatory mediators from CD11b(+) splenocytes in the CD21/35(-/-) animals. Splenocyte populations between wild-type and CD21/35(-/-) mice were similar except for a moderate increase in GR1(low)CD31(+) immature myeloid cells. Furthermore, depletion of neutrophils and other GR1-expressing cells alleviates elevated inflammatory gene expression in the CD21/35(-/-) spleen. Complement activation also plays a key role in the differential gene expression observed in the CD21/35-deficient mouse as depletion of C3 or inhibition of C3a receptor signaling within the animal returned inflammatory gene expression within the spleen to wild-type levels. Finally, C3 depletion before immunization allowed for the enhanced production of Ag-specific IgG3 production in the CD21/35(-/-) mouse compared with mock-depleted animals. These data suggest that the overall environment of the CD21/35(-/-) spleen is quite different from that of the wild-type animal perhaps due to altered complement convertase activity. This difference may be responsible for a number of the phenotypes ascribed to the deficiency of CD21/35 proteins on B cells and follicular dendritic cells.  相似文献   

19.
The neurotransmitter norepinephrine (NE) binds to the beta 2-adrenergic receptor (beta 2AR) expressed on various immune cells to influence cell homing, proliferation, and function. Previous reports showed that NE stimulation of the B cell beta 2AR is necessary for the maintenance of an optimal primary and secondary Th2 cell-dependent Ab response in vivo. In the present study we investigated the mechanism by which activation of Ag-specific CD4+ Th2 cells and B cells in vivo by a soluble protein Ag increases NE release in the spleen and bone marrow. Our model system used scid mice that were reconstituted with a clone of keyhole limpet hemocyanin-specific Th2 cells and trinitrophenyl-specific B cells. Following immunization, the rate of NE release in the spleen and bone marrow was determined using [3H]NE turnover analysis. Immunization of reconstituted scid mice with a cognate Ag increased the rate of NE release in the spleen and bone marrow 18-25 h, but not 1-8 h, following immunization. In contrast, immunization of mice with a noncognate Ag had no effect on the rate of NE release at any time. The cognate Ag-induced increase in NE release was partially blocked by ganglionic blockade with chlorisondamine, suggesting a role for both pre- and postganglionic signals in regulating NE release. Thus, activation of Ag-specific Th2 cells and B cells in vivo by a soluble protein Ag increases the rate of NE release and turnover in the spleen and bone marrow 18-25 h after immunization.  相似文献   

20.
Increasing the long-term survival of memory T cells after immunization is key to a successful vaccine. In the past, the generation of large numbers of memory T cells in vivo has been difficult because Ag-stimulated T cells are susceptible to activation-induced cell death. Previously, we reported that OX40 engagement resulted in a 60-fold increase in the number of Ag-specific CD4(+) memory T cells that persisted 60 days postimmunization. In this report, we used the D011.10 adoptive transfer model to examine the kinetics of Ag-specific T cell entry into the peripheral blood, the optimal route of administration of Ag and alphaOX40, and the Ag-specific Ab response after immunization with soluble OVA and alphaOX40. Finally, we compared the adjuvant properties of alphaOX40 to those of alphaCTLA-4. Engagement of OX-40 in vivo was most effective when the Ag was administered s.c. Time course studies revealed that it was crucial for alphaOX40 to be delivered within 24-48 h after Ag exposure. Examination of anti-OVA Ab titers revealed a 10-fold increase in mice that received alphaOX40 compared with mice that received OVA alone. Both alphaOX40 and alphaCTLA-4 increased the percentage of OVA-specific CD4(+) T cells early after immunization (day 4), but alphaOX40-treated mice had much higher percentages of OVA-specific memory CD4(+) T cells from days 11 to 29. These studies demonstrate that OX40 engagement early after immunization with soluble Ag enhances long-term T cell and humoral immunity in a manner distinct from that provided by blocking CTLA-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号