首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The hepatic microsomal fraction contains tightly bound calmodulin as demonstrated by affinity chromatography. When this calmodulin was partially removed by EGTA treatment (0.5 mM-EGTA), the uptake of 45Ca2+ by the microsomal vesicles was stimulated by added calmodulin and inhibited by trifluoperazine (TFP). The Ca2+-dependent ATPase was partially purified on a calmodulin column. This partial purification resulted in a 500-fold increase in the specific activity of the enzyme when measured in the presence of added calmodulin. Antibodies prepared against calmodulin prevented this stimulatory effect. The fraction eluted from the calmodulin column contained several protein bands indicating that the specific activity of the Ca2+-dependent ATPase is probably still underestimated. There are likely to be other calmodulin-sensitive processes present in the hepatic microsomal fraction.  相似文献   

3.
The effects of tricyclohexyltin hydroxide (Plictran), an organotin acaricide, on 45Ca2+ uptake and Ca2+ ATPase were studied in vitro and in vivo in rat heart ventricular membrane vesicles, primarily sarcoplasmic reticulum. There was a concentration dependent inhibition of both 45Ca2+ uptake and Ca2+ ATPase in vivo as well as in vitro. Isoproterenol, a beta-adrenergic agonist, stimulated 45Ca2+ uptake and Ca2+ ATPase of sarcoplasmic reticulum and this was also inhibited by Plictran. Since cardiac relaxation is mediated by beta-adrenergic stimulation via Ca+ uptake by sarcoplasmic reticulum, the inhibition of calcium pump activity by Plictran may result in alterations in cardiac Ca2+ fluxes leading to cardiac dysfunction.  相似文献   

4.
Antibodies directed against the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase [(Ca2+ + Mg2+)-dependent ATPase] from pig erythrocytes and from smooth muscle of pig stomach (antral part) were raised in rabbits. Both the IgGs against the erythrocyte (Ca2+ + Mg2+)-ATPase and against the smooth-muscle (Ca2+ + Mg2+)-ATPase inhibited the activity of the purified calmodulin-binding (Ca2+ + Mg2+)-ATPase from smooth muscle. Up to 85% of the total (Ca2+ + Mg2+)-ATPase activity in a preparation of KCl-extracted smooth-muscle membranes was inhibited by these antibodies. The (Ca2+ + Mg2+)-ATPase activity and the Ca2+ uptake in a plasma-membrane-enriched fraction from this smooth muscle were inhibited to the same extent, whereas in an endoplasmic-reticulum-enriched membrane fraction the (Ca2+ + Mg2+)-ATPase activity was inhibited by only 25% and no effect was observed on the oxalate-stimulated Ca2+ uptake. This supports the hypothesis that, in pig stomach smooth muscle, two separate types of Ca2+-transport ATPase exist: a calmodulin-binding ATPase located in the plasma membrane and a calmodulin-independent one present in the endoplasmic reticulum. The antibodies did not affect the stimulation of the (Ca2+ + Mg2+)-ATPase activity by calmodulin.  相似文献   

5.
Calcium uptake and (Ca2+ + Mg2+)-ATPase activity in canine cardiac microsomes were found to be stimulated by heparin and various other polyanions. Prior treatment of the microsomes with the ionophores alamethicin or A23187 produced no change in the extent of stimulation of the ATPase activity by heparin yet eliminated net calcium uptake. This finding and a lack of change in the stoichiometric ratio of mol of calcium transported/mol of ATP hydrolyzed (calcium:ATP) suggest that the effect of heparin is on the calcium pump rather than on a parallel calcium efflux pathway. Certain polycationic compounds including poly-L-arginine and histone inhibited both cardiac and fast skeletal muscle microsomal calcium uptake and also produced no change in the stoichiometric ratio of calcium to ATP. Several lines of evidence indicate that the polyanionic compounds tested stimulate calcium uptake by interacting with phospholamban, the putative phosphorylatable regulator of the cardiac sarcoplasmic reticulum calcium pump, whereas polycationic compounds appear to interact with the pump. (i) Heparin stimulated calcium uptake to the same extent as protein kinase A or trypsin, whereas prior phosphorylation or tryptic cleavage of phospholamban from the membrane abolished the stimulatory effect of heparin. (ii) Calcium uptake and (Ca2+ + Mg2+)-ATPase activity in fast skeletal muscle microsomes, which lack phospholamban, were unaffected by heparin. (iii) Purified cardiac (Ca2+ + Mg2+)-ATPase activity was no longer stimulated by heparin yet was still inhibited by polycationic compounds. The heparin-induced stimulation of calcium uptake was dependent on the pH and ionic strength of the heparin-containing preincubation medium, hence electrostatic interactions appear to play a significant role in heparin's stimulatory action. The data are consistent with an inhibitory role of the positively charged cytoplasmic domain of phospholamban with respect to calcium pump activity and the relief of the inhibition upon reduction in phospholamban's positive charge by phosphorylation or binding of polyanions.  相似文献   

6.
The effects of the condensation product of N-methyl-p-methoxyphenethylamine with formaldehyde (compound 48/80) and ruthenium red on the partial reactions of the catalytic cycle of the sarcoplasmic reticulum Ca2+-ATPase of skeletal muscle were studied. The ATPase activity and both Ca2+ and Sr2+ uptake were inhibited by compound 48/80 when oxalate was used as a precipitating agent. The degree of inhibition decreased when oxalate was replaced by orthophosphate as the precipitating anion. Both the fast Ca2+ efflux and the synthesis of ATP observed during reversal of the Ca2+ pump were inhibited by compound 48/80. Inhibition of the reversal of the Ca2+ pump was caused by a competition between compound 48/80 and orthophosphate for the phosphorylation site of the enzyme. The fast Ca2+ release promoted by arsenate was impaired by compound 48/80. Ruthenium red competes with Ca2+ for the high affinity binding site of the Ca2+-ATPase, but did not interfere with the binding of Ca2+ to the low affinity binding site of the enzyme. In presence of Ca2+ concentrations higher than 5 microM, ruthenium red in concentrations up to 200 microM had no effect on both ATPase activity and Ca2+ uptake. However, the fast Ca2+ efflux promoted by arsenate and the fast Ca2+ efflux coupled with the synthesis of ATP observed during the reversal of the Ca2+ pump were inhibited by ruthenium red, half-maximal inhibition being attained in presence of 10-20 microM ruthenium red. In contrast to the effect of compound 48/80, ruthenium red did not inhibit the phosphorylation of the enzyme by orthophosphate. The ATP in equilibrium with Pi exchange catalyzed by the Ca2+-ATPase in the absence of transmembrane Ca2+ gradient was also inhibited by ruthenium red.  相似文献   

7.
Phospholipase A2 activity was studied in the renal cortex and medulla of stroke-prone spontaneously hypertensive rat (SHRSP) and normotensive rat (WKY), and the subcellular localization of its activity was determined. Enhanced activity was found in both the cortical and medullary microsomes in SHRSP kidneys. In SHRSP, but not in WKY, phospholipase A2 activity progressively increased with age. This phospholipase A2 had substrate specificity toward phosphatidylethanolamine. There were no differences in optimal pH, substrate specificity, heat lability, and responses to Triton X-100 and deoxycholate between SHRSP and WKY. Ca2+ stimulated phospholipase A2 activity in both animals. The maximal activation was achieved at 5 mM Ca2+, and EDTA strongly inhibited the activity. But the response to Ca2+ was different in each. Ca2+ enhanced this activity in SHRSP markedly compared with WKY. It seems that Ca2+ is specifically required for phospholipase A2 activity in SHRSP. Though the influx of Ca2+ into microsomal membranes was not enhanced, the Ca2+ efflux of microsomal membranes decreased in SHRSP. This results in increases of intramicrosomal Ca2+, which may cause the subsequent activation of phospholipase A2. The Ca2+ permeability may be one of the factors in the increased phospholipase A2 activity in SHRSP.  相似文献   

8.
The Ca2+-ATPase accounts for the majority of Ca2+ removed from the cytoplasm during cardiac muscle relaxation. The Ca2+-ATPase is regulated by phospholamban, a 52 amino acid phosphoprotein, which inhibits Ca2+-ATPase activity by decreasing the apparent affinity of the ATPase for Ca2+. To study the physical mechanism of Ca2+-ATPase regulation by phospholamban using spectroscopic and kinetic experiments, large amounts of both proteins are required. Therefore, we developed a Ca2+-ATPase and phospholamban preparation based on the baculovirus-insect cell expression system using High-Five insect cells to produce large amounts of microsomal vesicles that contain either Ca2+-ATPase expressed alone or Ca2+-ATPase co-expressed with phospholamban. The expressed proteins were characterized using immunofluorescence spectroscopy, Ca2+ -ATPase activity assays, Ca2+ uptake and efflux assays, and Western blotting. Our purification method yields 140 mg of microsomal protein per liter of infection (1.7 x 10(9)cells), and the Ca2+-ATPase and phospholamban account for 16 and 1.4%, respectively, of the total microsomal protein by weight, yielding a phospholamban:Ca2+-ATPase ratio of 1.6:1, similar to that observed in native cardiac SR vesicles. The enzymatic properties of the expressed Ca2+-ATPase are also similar to those observed in native cardiac SR vesicles, and when co-expressed with phospholamban, the Ca2+-ATPase is functionally coupled to phospholamban similar to that observed in cardiac SR vesicles.  相似文献   

9.
The effects of ether, chloroform, and halothane on calcium accumulation and ATPase activity of rat heart microsomes and mitochondria as well as on myofibrillar ATPase activity were investigated. Chloroform and halothane depressed microsomal and mitochondrial calcium uptake and binding in a parallel fashion. Ether decreased microsomal calcium binding and mitochondrial calcium uptake to varying degrees, while mitochondrial calcium binding was slightly enhanced. Whereas ether had no effect, chloroform depressed microsomal and mitochondrial total APTase activities and halothane decreased microsomsl ATPase and slightly stimulated mitochondrial total ATPase activities. Halothane was found to depress myofibrillar Mg2+-ATPase and ether was capable of decreasing myofibrillar Ca2+-ATPase. Chloroform was seen to inhibit both myofibrillar enzymes. These results suggest that the cardiodepressant actions of volatile anesthetic agents may be due to alterations in the calcium accumulating abilities of microsomal and mitochondrial membranes while direct myofibrillar effects may contribute to the depression seen with relatively higher concentrations of anesthetics.  相似文献   

10.
A calmodulin inhibitor, trifluoperazine, suppresses ATP-dependent Ca2+ uptake into microsomes prepared from bovine aortic smooth muscle. From this microsomal preparation which we expected to contain calmodulin-dependent Ca2+-transport ATPase [EC 3.6.1.3], we purified (Ca2+-Mg2+)ATPase by calmodulin affinity chromatography. The protein peak eluted by EDTA had calmodulin-dependent (Ca2+-Mg2+)ATPase activity. The major band (135,000 daltons) obtained after sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) accounted for about 80% of the total protein eluted. This major band was phosphorylated by [gamma-32P]ATP in a Ca2+-dependent manner. All the 32P incorporated into the major band was released by hydroxylaminolysis. The ATPase reconstituted in soybean phospholipid liposomes showed ATP, calmodulin-dependent Ca2+ uptake. The affinity of the ATPase for Ca2+, Km, was 7 microM and the maximum ATPase activity was 1.4 mumol/mg/min. These values were changed to 0.17 microM and 3.5 mumol/mg/min, respectively by the addition of calmodulin. The activity of the purified (Ca2+-Mg2+)ATPase was inhibited by orthovanadate, and the concentration required for half-maximal inhibition was about 1.8 microM which is close to that of plasma membrane ATPases. Judging from the effect of orthovanadate and the molecular weight, the purified (Ca2+-Mg2+)ATPase was considered to have originated from the plasma membrane not from the sarcoplasmic reticulum.  相似文献   

11.
Plasma-membrane vesicles from rat corpus luteum showed an ATP-dependent uptake of Ca2+. Ca2+ was accumulated with a K1/2 (concn. giving half-maximal activity) of 0.2 microM and was released by the bivalent-cation ionophore A23187. A Ca2+-dependent phosphorylated intermediate (Mr 100,000) was detected which showed a low decomposition rate, consistent with it being the phosphorylated intermediate of the transport ATPase responsible for Ca2+ uptake. The Ca2+ uptake and the phosphorylated intermediate (E approximately P) displayed several properties that were different from those of the high-affinity Ca2+-ATPase previously observed in these membranes. Both Ca2+ uptake and E approximately P discriminated against ribonucleoside triphosphates other than ATP, whereas the ATPase split all the ribonucleoside triphosphates equally. Both Ca2+ uptake and E approximately P were sensitive to three different Hg-containing inhibitors, whereas the ATPase was inhibited much less. Ca2+ uptake required added Mg2+ (Km = 2.2 mM), whereas the ATPase required no added Mg2+. The maximum rate of Ca2+ uptake was about 400-fold less than that of ATP splitting; under different conditions, the decomposition rate of E approximately P was 1,000 times too slow to account for the ATPase activity observed. All of these features suggested that Ca2+ uptake was due to an enzyme of low activity, whose ATPase activity was not detected in the presence of the higher-specific-activity Ca2+-dependent ATPase.  相似文献   

12.
In sarcoplasmic reticulum vesicles or in the (Ca2+ + Mg2+)-ATPase purified from sarcoplasmic reticulum, quercetin inhibited ATP hydrolysis, Ca2+ uptake, ATP-Pi exchange, ATP synthesis coupled to Ca2+ efflux, ATP-ADP exchange, and steady state phosphorylation of the ATPase by inorganic phosphate. Steady state phosphorylation of the ATPase by ATP was not inhibited. Quercetin also inhibited ATP and ADP binding but not the binding of Ca2+. The inhibition of ATP-dependent Ca2+ transport by quercetin was reversible, and ATP, Ca2+, and dithiothreitol did not affect the inhibitory action of quercetin.  相似文献   

13.
The (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase (Ca2+-transporting), EC 3.6.1.38) protein of rabbit skeletal sarcoplasmic reticulum (SR) rapidly incorporated 2 mol of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) per 10(5) g of protein with little change in the Ca2+-dependent ATPase activity. When 2 additional mol of the reagent were bound the Ca2+-ATPase, activity was inhibited. The same pattern was found for modified intact SR and the Ca2+ uptake ability was inhibited. MgATP, CaATP and MgADP protected the Ca2+-ATPase activity concurrent with a decrease of about 1 mol of the NBD group per 10(5) g protein, but the Ca2+ uptake ability was not protected. Calcium alone had no effect on the modification. The modified ATPase protein or SR formed non-serial oligomers or aggregates, but the ATPase protein remained the predominant species present. In the presence of MgATP, oligomer formation was reduced partially but the major changes in the Ca2+-ATPase activity were due to the modification of the ATPase monomer. Thiolysis of the NBD-ATPase protein with dithiothreitol did not restore the Ca2+-ATPase activity, although more than 1 mol of the NBD group was removed from cysteine residues. Cysteine residues were modified in the NBD-ATPase protein or SR when the enzyme activity was inhibited. Trypsin digestion of NBD-SR or its ATPase protein released the A, B, A1, and A2 fragments. The A fragment and its subfragment A2 contained most of the label. Substrate MgATP protection studies showed that the A1 and A2 fragments were involved in maintaining the Ca2+-ATPase activity. Reagent-induced conformational changes of these fragments rather than direct active site group labeling accounted for the loss of ATPase activity.  相似文献   

14.
Curcumin is a compound derived from the spice, tumeric. It is a potent inhibitor of the SERCA Ca2+ pumps (all isoforms), inhibiting Ca2+-dependent ATPase activity with IC50 values of between 7 and 15 microm. It also inhibits ATP-dependent Ca2+-uptake in a variety of microsomal membranes, although for cerebellar and platelet microsomes, a stimulation in Ca2+ uptake is observed at low curcumin concentrations (<10 microm). For the skeletal muscle isoform of the Ca2+ pump (SERCA1), the inhibition of curcumin is noncompetitive with respect to Ca2+, and competitive with respect to ATP at high curcumin concentrations ( approximately 10-25 microm). This was confirmed by ATP binding studies that showed inhibition in the presence of curcumin: ATP-dependent phosphorylation was also reduced. Experiments with fluorescein 5'-isothiocyanate (FITC)-labelled ATPase also suggest that curcumin stabilizes the E1 conformational state. The fact that FITC labels the nucleotide binding site of the ATPase (precluding ATP from binding), and the fact that curcumin affects FITC fluorescence indicate that curcumin must be binding to another site within the ATPase that induces a conformational change to prevent ATP from binding. This observation is interpreted, with the aid of recent structural information, as curcumin stabilizing the interaction between the nucleotide-binding and phosphorylation domains, precluding ATP binding.  相似文献   

15.
A severalfold activation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity by micromolar concentrations of calmodulin was observed in sarcoplasmic reticulum vesicles obtained from canine ventricles. This activation was seen in the presence of 120 mM KCl. The ratio of moles of calcium transported per mol of ATP hydrolyzed remained at about 0.75 when calcium transport and (Ca2+ + Mg2+)-activated ATPase activity were measured in the presence and absence of calmodulin. Thus, the efficiency of the calcium transport process did not change. Stimulation of calcium transport by calmodulin involves the phosphorylation of one or more proteins. The major 32P-labeled protein, as determined by sodium dodecyl sulfate slab gel electrophoresis, was the 22,000-dalton protein called phospholamban. The Ca2+ concentration dependency of calmodulin-stimulated microsomal phosphorylation corresponded to that of calmodulin-stimulated (Ca2+ + Mg2+)-activated ATPase activity. Proteins of 11,000 and 6,000 daltons and other proteins were labeled to a lesser extent. A similar phosphorylation pattern was obtained when microsomes were incubated with cAMP-dependent protein kinase and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Phosphorylation produced by added cAMP-dependent protein kinase and calmodulin was additive. These studies provided further evidence for Ca2+-dependent regulation of calcium transport by calmodulin in sarcoplasmic reticulum that could play a role in the beat-to-beat regulation of cardiac relaxation in the intact heart.  相似文献   

16.
T3 administration to rats exerts quite different effects on enzyme activities associated to liver microsomal membranes such as G-6-Pase, Mg ATPase and Ca2(+)-dependent ATPase: in fact G-6-Pase activity is significantly enhanced, Mg ATPase is not affected whereas Ca2(+)-dependent ATPase is drastically inhibited. The T3 induced decrease in Ca2(+)-dependent ATPase activity is associated with a net reduction (to about 50% with respect to controls) of the Ca2+ sequestration in liver microsomal vesicles. The enhanced level of inorganic phosphate in the endoplasmic reticulum due to the stimulation of G-6-Pase activity does not significantly affect the uptake of calcium in microsomal vesicles. The decreased Ca2(+)-dependent ATPase activity is associated to an enhanced level of the enzyme in the phosphorylated form (E-P). This suggests that in liver preparations from T3 treated rats the turnover of ATP and cleavage of E-P is reduced, thus resulting in the accumulation of the phosphorylated intermediate. The accumulation of E-P is in agreement with the inhibition of the calcium sequestration since the active transport of this cation in microsomal membranes requires the hydrolysis of the E-P complex.  相似文献   

17.
The effects of the three hydrophobic molecules triphenylphosphine, trifluoperazine and 3-nitrophenol on Ca2+ uptake and ATPase activity in sarcoplasmic reticulum vesicles was investigated. When ATP was the substrate, triphenylphosphine (3 microM) increased the amount of Ca2+ accumulated by the vesicles. At high concentrations triphenylphosphine inhibited Ca2+ uptake. This effect varied depending on the ATP concentration and the type of nucleotide used. With ITP there was only inhibition and no activation of Ca2+ uptake by triphenylphosphine. On the other hand, trifluoperazine inhibited Ca2+ accumulation regardless of whether ATP or ITP was used as substrate. When 5 mM oxalate was included in the medium in order to avoid binding of Ca2+ to the low-affinity Ca2(+)-binding sites of the enzyme, both stimulation by triphenylphosphine and inhibition by trifluoperazine were reduced. In leaky vesicles at low Ca2+ concentrations, triphenylphosphine and 3-nitrophenol were competitive inhibitors of ATPase activity at the regulatory site of the enzyme (0.1-1 mM ATP). A striking difference was observed when both the high- and low-affinity Ca2(+)-binding sites were saturated. In this condition, triphenylphosphine and 3-nitrophenol promoted a 3-4-fold increase in the apparent affinity for ATP at its regulatory site.  相似文献   

18.
1. Hybrid or reconstituted troponins were prepared from troponin components of rabbit skeletal muscle and porcine cardiac muscle and their effect on the actomyosin ATPase activity was measured at various concentrations of Ca2+ or Sr2+. The Ca2+ concentration required for half-maximum activation of actomyosin ATPase with troponin containing cardiac troponin I was slightly higher than that with troponin containing skeletal troponin I. The Sr2+ concentration required for half-maximum activation of actomyosin ATPase with troponin containing skeletal troponin C was higher than that with troponin containing cardiac troponin C. 2. Reconstituted cardiac troponin was phosphorylated by cyclic AMP-dependent protein kinase. The Ca2+ sensitivity of actomyosin ATPase with cardiac troponin decreased upon phosphorylation of troponin I; maximum ATPase activity was depressed and the Ca2+ concentration at half-maximum activation increased. On the other hand, phosphorylation of troponin I did not change Sr2+ sensitivity. 3. The inhibitory effect of cardiac troponin I on the actomyosin ATPase activity was neutralized by increasing the amount of brain calmodulin at high Ca2+ and Sr2+ concentrations but not at low concentrations. 4. ATPase activity of actomyosin with a mixture of troponin I and calmodulin was assayed at various concentrations of Ca2+ or Sr2+. The Ca2+ or Sr2+ sensitivity of actomyosin ATPase containing skeletal troponin I was approximately the same as that of actomyosin ATPase containing cardiac troponin I. Phosphorylation of cardiac troponin I did not change the Ca2+ sensitivity of the ATPase. 5. The Ca2+ or Sr2+ concentration required for half-maximum activation of actomyosin ATPase with troponin I-T-calmodulin was higher than that of actomyosin ATPase with the mixture of troponin I and calmodulin. Maximum ATPase activity was lower than that with the mixture of troponin I and calmodulin.  相似文献   

19.
Changes in microsomal Na+, K+-, Mg2+- and Ca2+-ATPase activities during cell proliferation were examined in Chinese hamster V-79 (V-79) cells (normal cells) and human HeLaS-3 (HeLaS-3) cells (malignant cells). For V-79 cells, the Mg2+-ATPase activity per cell (pmol Pi/h/cell) in the confluent phase was higher than that in the logarithmically growing (log) phase. The amount of microsomal protein per cell was also high in the confluent phase. Specific activities (mumol Pi/h/mg protein) of Na+, K+-, Mg2+- and Ca2+-ATPase were significantly lower in the confluent phase than in the log phase. For HeLaS-3 cells, an increase in Ca2+-ATPase activity per cell was observed. The amount of microsomal protein per cell did not change between the log and confluent phase. The specific activity of Ca2+-ATPase in the confluent phase was also markedly higher than in the log phase. The relation between changes in ATPase activities and cell proliferation is discussed.  相似文献   

20.
Treatment of rat liver microsomes with 2,5-di(tert-butyl)-1,4-benzohydroquinone caused a dose-related inhibition (Ki congruent to 1 microM) of ATP-dependent Ca2+ sequestration. This was paralleled by a similar impairment of the microsomal Ca2+-stimulated ATPase activity. In contrast, the hydroquinose failed to induce Ca2+ release from Ca2+-loaded liver mitochondria (supplied with ATP), and inhibited neither the mitochondrial F1F0-ATPase nor the Ca2+-stimulated ATPase activity of the hepatic plasma membrane fraction. The inhibition of microsomal Ca2+ sequestration was not associated with any apparent alteration of membrane permeability or loss of other microsomal enzyme activities or modification of microsomal protein thiols. These findings suggest that 2,5-di(tert-butyl)-1,4-benzohydroquinone is a potent and selective inhibitor of liver microsomal Ca2+ sequestration which may be a useful tool in studies of Ca2+ fluxes in intact cells and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号