首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial endosymbionts are common in insects and can have dramatic effects on their host's evolution. So far, the only heritable symbionts found in Drosophila have been Wolbachia and Spiroplasma . While the incidence and effects of Wolbachia have been studied extensively, the prevalence and significance of Spiroplasma infections in Drosophila are less clear. These small, gram-positive, helical bacteria infect a diverse array of plant and arthropod hosts, conferring a variety of fitness effects. Male-killing Spiroplasma are known from certain Drosophila species; however, in others, Spiroplasma appear not to affect sex ratio. Previous studies have identified different Spiroplasma haplotypes in Drosophila populations, although no extensive surveys have yet been reported. We used a multilocus sequence analysis to reconstruct a robust Spiroplasma endosymbiont phylogeny, assess genetic diversity, and look for evidence of recombination. Six loci were sequenced from over 65 Spiroplasma -infected individuals from nine different Drosophila species. Analysis of these sequences reveals at least five separate introductions of four phylogenetically distinct Spiroplasma haplotypes, indicating that more extensive sampling will likely reveal an even greater Spiroplasma endosymbiont diversity. Patterns of variation in Drosophila mitochondrial haplotypes in Spiroplasma -infected and uninfected flies imply imperfect vertical transmission in host populations and possible horizontal transmission.  相似文献   

2.
3.
Spiroplasma endosymbionts are maternally transmitted bacteria that may kill infected sons resulting in the production of female-biased broods. The prevalence of male killers varies considerably both between and within species. Here, we evaluate the spatial and temporal status of male-killing and non-male-killing Spiroplasma infection in three Brazilian populations of Drosophila melanogaster, nearly a decade after the first occurrence report for this species. The incidence of the male-killing Spiroplasma ranged from close to 0 to 17.7?% (so far the highest estimate for a Drosophila species) with a suggestion of temporal decline in a population. We also found non-male-killing Spiroplasma coexisting in one population at lower prevalence (3-5?%), and we did not detect it in the other two. This may be taken as a suggestion of a spreading advantage conferred by the male-killing strategy. Sequencing two loci, we identified the phylogenetic position of Spiroplasma strains from the three localities, showing that all strains group closely in the poulsonii clade. Due to intensive sampling effort, we were able to test the association between Spiroplasma infections and another widespread endosymbiont, Wolbachia, whose prevalence ranged from 81.8 to 100?%. The prevalence of Wolbachia did not differ between Spiroplasma-infected and uninfected strains in our largest sample nor were the prevalences of the two endosymbionts associated across localities.  相似文献   

4.
On the capacity of macroparasites to control insect populations   总被引:1,自引:0,他引:1  
A graphical model of the population dynamics of macroparasites and their hosts is developed. Three principal means by which the parasites can be regulated are considered: reduction in host density as a result of parasite-induced host mortality, reduction in host density as a result of parasite-induced host sterility, and competition among parasites within multiply-infected hosts. The means by which parasites are regulated has a major effect on the degree to which they can depress host population densities. In particular, a parasite that sterilizes its host is expected to reduce host density more than one that causes an equivalent decline in host fitness through increased mortality. A special case of the model is developed for herbivorous insects that, in the absence of parasites, are limited by larval food resources. Parasites that are regulated via parasite-induced host sterility will control the insect populations below the level set by larval resources if the threshold host density for the parasites (N(T)) is less than the ratio of carrying capacity to net reproductive rate of the insects (K/R). Data are presented showing that all three means of parasite regulation, but especially parasite-induced host sterility, can operate in Howardula aoronymphium, a nematode parasite of mycophagous Drosophila flies. Data from a field cage experiment show that, if these nematodes are regulated primarily via reductions in host density due to this sterility, the parameters N(T), K, and R are such that Howardula is likely to play an important role in controlling Drosophila populations. However, this conclusion must be tempered by the fact that these nematodes also cause increased host mortality and experience within-host competition, making the conditions for parasite control of the flies more stringent.  相似文献   

5.
The nematodes Parasitylenchus diplogenus and Howardula aoronymphium (Allantonematidae) are parasites of drosophilids (Diptera). Nematodes were found in 3/14 drosophilid species sampled in Danish woodlands: Drosophila phalerata Meigen (3.5% parasitism) was parasitized by H. aoronymphium and D. obscura Fallén (0.5%) and D. subobscura Collin (2.1%) by P. diplogenus. Parasitism was generally rare, and few drosophilid species parasitized, compared to elsewhere in Europe. Parasitism was positively correlated with relative host abundance both within Denmark and across communities, suggesting that species diversity is promoted by a disproportionately high parasitism of more common host species. The prevalence of H. aoronymphium, but not P. diplogenus, parasitism is positively related to temperature across communities.  相似文献   

6.
【目的】Wolbachia 是广泛存在于节肢动物和丝状线虫体内的一类共生菌, 能够以多种方式对宿主产生影响。精卵细胞质不亲和(CI)是其引起的最普遍的表型, 即感染Wolbachia的雄性宿主与未感染或感染不同品系的雌性宿主交配后, 不能产生后代或后代极少, 而感染同品系Wolbachia的雌雄宿主交配后则能正常产生后代。我们前期研究发现, 湖北武汉、 云南六库和天津3个地区黑腹果蝇Drosophila melanogaster被Wolbachia感染。本研究旨在明确这3个地区黑腹果蝇中Wolbachia的系统发育关系及其对宿主生殖的影响。【方法】利用Clustal X软件对Wolbachia的wsp基因序列进行比对, 利用MEGA软件构建系统发育树。采用多位点序列分型(MLST)的方法对Wolbachia进行分型。通过区内交配和区之间杂交的方式研究不同地区黑腹果蝇体内Wolbachia 的关系及其对果蝇生殖的影响。【结果】湖北武汉、 云南六库和天津3个地区黑腹果蝇中感染的Wolbachia都是属于A大组的Mel亚群。这3个地区果蝇感染的Wolbachia的序列类型(ST)不同, Wolbachia之间存在一定的差异。湖北武汉和天津果蝇中的Wolbachia能引起强烈的CI表型, 而云南六库果蝇中的Wolbachia引起的CI强度相对较弱。武汉果蝇中Wolbachia不能完全挽救天津果蝇中Wolbachia引起的CI表型, 而天津果蝇中Wolbachia也不能完全挽救武汉果蝇中Wolbachia引起的CI表型。【结论】武汉和天津地区黑腹果蝇中的Wolbachia可能距离较远。Wolbachia的长期共生可能对黑腹果蝇的进化产生了一定的影响, 湖北武汉与云南六库的黑腹果蝇中感染的Wolbachia属于不同的序列类型, 这2个地区的黑腹果蝇已发生了一定的分歧, 产生了一定的生殖隔离。  相似文献   

7.
Fergusobia nematodes (Tylenchida: Fergusobiinae) and Fergusonina flies (Diptera: Fergusoninidae) are putative mutualists that develop together in galls formed in meristematic tissues of many species of the plant family Myrtaceae in Australasia. Fergusobia nematodes were sampled from a variety of myrtaceous hosts and gall types from Australia and one location in New Zealand between 1999 and 2006. Evolutionary relationships of these isolates were inferred from phylogenetic analyses of the DNA sequences of the nuclear ribosomal DNA near-full length small subunit (up to 1689bp for 21 isolates), partial large subunit D2/D3 domain (up to 889bp for 87 isolates), partial mitochondrial cytochrome oxidase subunit I (618 bp for 82 isolates), and combined D2/D3 and mtCOI (up to 1497bp for 66 isolates). The SSU data supported a monophyletic Fergusobia genus within a paraphyletic Howardula. A clade of Drosophila-associated Howardula, including Howardula aoronymphium, was the closest sequenced sister group. Phylogenetic analysis of sequences from D2/D3 and mtCOI, separately and combined, revealed many monophyletic clades within Fergusobia. The relationships inferred by D2/D3 and mtCOI were congruent with some exceptions. Well-supported clades were generally consistent with host plant species and gall type. However, phylogenetic analysis suggested host switching or putative hybridization events in many groups, except the lineage of shoot bud gallers on the broad-leaved Melaleuca species complex.  相似文献   

8.
The γ‐proteobacterium Arsenophonus and its close relatives (Arsenophonus and like organisms, ALOs) are emerging as a novel clade of endosymbionts, which are exceptionally widespread in insects. The biology of ALOs is, however, in most cases entirely unknown, and it is unclear how these endosymbionts spread across insect populations. Here, we investigate this aspect through the examination of the presence, the diversity and the evolutionary history of ALOs in 25 related species of blood‐feeding flies: tsetse flies (Glossinidae), louse flies (Hippoboscidae) and bat flies (Nycteribiidae and Streblidae). While these endosymbionts were not found in tsetse flies, we identify louse flies and bat flies as harbouring the highest diversity of ALO strains reported to date, including a novel ALO clade, as well as Arsenophonus and the recently described Candidatus Aschnera chinzeii. We further show that the origin of ALO endosymbioses extends deep into the evolutionary past of louse flies and bat flies, and that it probably played a major role in the ecological specialization of their hosts. The evolutionary history of ALOs is notably complex and was shaped by both vertical transmission and horizontal transfers with frequent host turnover and apparent symbiont replacement in host lineages. In particular, ALOs have evolved repeatedly and independently close relationships with diverse groups of louse flies and bat flies, as well as phylogenetically more distant insect families, suggesting that ALO endosymbioses are exceptionally dynamic systems.  相似文献   

9.
An overwintering population of the mushroom phorid fly Megaselia halterata parasitized by Howardula husseyi was studied in an attempt to explain the winter decline in incidence of parasitism that has been observed in flies from mushroom farms. Fly larvae from eggs hatching in November developed into pupae in December and flies emerged in May. No selective mortality of parasitized specimens of larvae, pupae, or flies was observed. Dead parasites were found in only 10% of parasitized flies. The incidence of parasitism in the emerging flies (50%) was five times that of their parental generation and although parasitism significantly delayed fly emergence the delay was only 2–3 days. There was no evidence of winter decline in parasitism; instead there was strong evidence that parasitism enhanced phorid survival through the winter.  相似文献   

10.
Drosophila falleni belongs to the quinaria species group, whose species vary considerably in patterns of wing and abdominal pigmentation. Drosophila falleni itself exhibits substantial variation among wild flies in abdominal spotting patterns. A selection experiment revealed that natural populations of D. falleni harbor high levels of genetic variation for spot number: in 10 generations of selection modal spot number within populations declined from 18 (the modal number in wild-caught females) to as low as zero. Rearing flies at different temperatures shows that some of the variation among wild flies is likely to reflect variation in the environmental conditions under which they developed. Fitness assays did not reveal any cost of reduced spot number with respect to development time, adult survival, or female fecundity. However, spotless flies were almost twice as susceptible to infection by the nematode parasite Howardula aoronymphium. Thus, selection exerted by nematode parasites may influence pigmentation patterns and other, genetically correlated traits in natural populations D. falleni.  相似文献   

11.
Little is known about what determines patterns of host association of horizontally transmitted parasites over evolutionary timescales. We examine the evolution of associations between mushroom-feeding Drosophila flies (Diptera: Drosophilidae), particularly in the quinaria and testacea species groups, and their horizontally transmitted Howardula nematode parasites (Tylenchida: Allantonematidae). Howardula species were identified by molecular characterization of nematodes collected from wild-caught flies. In addition, DNA sequence data is used to infer the phylogenetic relationships of both host Drosophila (mtDNA: COI, II, III) and their Howardula parasites (rDNA: 18S, ITS1; mtDNA: COI). Host and parasite phylogenies are not congruent, with patterns of host association resulting from frequent and sometimes rapid host colonizations. Drosophila-parasitic Howardula are not monophyletic, and host switches have occurred between Drosophila and distantly related mycophagous sphaerocerid flies. There is evidence for some phylogenetic association between parasites and hosts, with some nematode clades associated with certain host lineages. Overall, these host associations are highly dynamic, and appear to be driven by a combination of repeated opportunities for host colonization due to shared breeding sites and large potential host ranges of the nematodes.  相似文献   

12.
John Jaenike 《Oikos》2009,118(3):353-362
Many insect species are infected with maternally transmitted endosymbionts, the most widely documented being Wolbachia . The rate of spread and equilibrium of prevalence of these infections depend on two parameters – maternal transmission fidelity and relative fitness of infected cytoplasmic lineages. Both transmission fidelity and the phenotypic effect of endosymbionts often increase with endosymbiont density within hosts. Thus, the dynamics of infection prevalence in host populations depends on processes affecting within-host density of endosymbionts. In theory, the equilibrium prevalence of infection by male-killing endosymbionts is much more sensitive to changes in transmission fidelity and relative fitness than is that of endosymbionts that cause cytoplasmic incompatibility. In natural populations, male-killers exhibit much greater temporal and spatial variation in the prevalence of infection than do endosymbionts that cause cytoplasmic incompatibility. Thus, the population dynamics of endosymbiont infections, especially those that cause male-killing, is likely to be governed by environmental and genetic variables that affect within-host density of these infections.  相似文献   

13.
Some members of the genus Spiroplasma are vertically transmitted endosymbionts of insects. Among them, Spiroplasma sp. Dhd, a member of the Spiroplasma poulsonii clade, is highly prevalent among worldwide populations of Drosophila hydei. Here we found that 53 out of 3,763 wild-caught D. hydei (1.4 %) were ectoparasitized by the mite that belong to the genus Macrocheles. Many of the ectoparasitized flies (79 %) had a single mite, but some flies had up to five mites. Among 59 mites subjected to Spiroplasma-specific PCR, 15 individuals were found to be positive. Infection status of Spiroplasma in flies and the associated mites were incongruent. Partial nucleotide sequences of the Spiroplasma P58 gene suggest that some of the mites are infected with a Spiroplasma, which is identical or closely related to Spiroplasma sp. Dhd. This finding provides a potential route of horizontal Spiroplasma transmission between D. hydei individuals in natural populations. In addition, a Spiroplasma strain that does not form a monophyletic group with S. poulsonii was also found from a mite individual.  相似文献   

14.
The phylogenetic incongruence between insects and their facultative maternally transmitted endosymbionts indicates that these infections are generally short‐lived evolutionarily. Therefore, long‐term persistence of many endosymbionts must depend on their ability to colonize and spread within new host species. At least 17 species of Drosophila are infected with endosymbiotic Spiroplasma that have various phenotypic effects. We transinfected five strains of Spiroplasma from three divergent clades into Drosophila neotestacea to test their capacity to spread in a novel host. A strain that causes male killing in Drosophila melanogaster (its native host) also does so in D. neotestacea, even though these host species diverged 40–60 mya. A strain native to D. neotestacea (designated sNeo) and the two other strains of the poulsonii clade of Spiroplasma confer resistance to wasp parasitism, suggesting that this trait may be ancestral within this clade of Spiroplasma. Conversely, no strain other than sNeo conferred resistance to the sterilizing effects of nematode parasitism, suggesting that nematode resistance is a recently derived condition. The apparent addition of nematode resistance to a Spiroplasma lineage that already confers resistance to wasp parasitism suggests endosymbionts can increase the repertoire of traits conducive to their spread. The capacity of an endosymbiont to undergo maternal transmission and express adaptive phenotypes in novel hosts, without requiring a period of host–symbiont co‐evolution, enables the spread of such symbionts immediately after the colonization of a new host. This could be critical for the macroevolutionary persistence of facultative endosymbionts whose sojourn times within individual host species are relatively brief.  相似文献   

15.
Associations between mycophagous Drosophila and nematode parasites occur throughout the temperate and boreal regions of North America, Europe, and Asia. The nematode Howardula aoronymphium has substantial adverse effects on host survival and fertility on North American Drosophila. Long-term data show that rainy summers lead to a high prevalence of parasitism in the fall and the following spring, resulting in up to a 1-yr time lag between present rainfall and increased prevalence of H. aoronymphium parasitism. A biogeographic analysis of the relative abundance of different Drosophila species has shown that H. aoronymphium may facilitate the coexistence of different species of Drosophila that compete for larval food resources. The actual host range of parasites in nature is determined by the intrinsic suitability of potential hosts for parasite infection and reproduction and various ecological factors. For H. aoronymphium in eastern North America, intrinsically suitable hosts fall within a restricted clade within the genus Drosophila. However, the temperature sensitivity of H. aoronymphium prevents it from using several host species that occur outside the geographical range of the nematodes. Finally, the host range, virulence, and geographical range of Drosophila-parasitic nematodes appear to be highly dynamic over evolutionary timescales.  相似文献   

16.
The longevity of male and female Megaselia haltherata, 75% of parasitised by the nematode Howardula husseyi, was studied for 16 days at 20- 21.5 OC. A statistical model fitted to the data indicated that parasitism reduced fly longevity significantly; predicted times to 50% mortality were about 6 days shorter for parasitised males, but only 2 days shorter for parasitised females. An investigation of the number of nematode larvae liberated by female flies at intervals throughout the experiment showed that many had been liberated in the first 4 days, and that the rate of release then gradually declined. A statistical model for nematode dissemination rate was used to estimate the mean number of nematodes released at 4-day intervals by surviving flies containing 1–5 adult H. husseyi. Mass release of laboratory-reared parasitised flies on mushroom farms has been suggested as a possible method of boosting the incidence of parasitism in farm fly populations. The results of the present study indicate that if such a measure were taken in spawn-running rooms then the best effect might be attained by releasing the flies in two batches with one release occurring in the middle of each week of the spawn-run.  相似文献   

17.
刘媛  王浩  王志鹏  陈利民  王亚如  侯有明 《昆虫学报》2021,64(12):1465-1477
内共生菌(endosymbionts)与其昆虫宿主的共生关系是普遍存在的,它们彼此相互依赖、相互影响、协同进化。近年来,关于昆虫内共生菌的研究多以半翅目(Hemiptera)和双翅目(Diptera)昆虫为主,但数量不断增加的研究表明鳞翅目(Lepidoptera)昆虫与其体内共生菌的互作模式和机制也正在受到越来越多的关注。鳞翅目昆虫种类多,分布广,主要作为植食者、传粉者在生态系统中发挥作用,而其绝大部分幼虫会对农林业生产造成巨大经济损失。鳞翅目昆虫体内共生菌群落多样性相对较低,主要以次生共生菌Wolbachia为主,少数也感染有Spiroplasma,Arsenophonus及Rickettsia。它们常呈严格的母系垂直传播,也会发生一定比例的水平传播,在宿主的生长发育、生殖调控、环境适应、遗传进化方面发挥重要作用。目前一般采用诊断性聚合酶链反应、高通量扩增子测序、宏基因组测序等方法检测内共生菌。但鳞翅目昆虫内共生菌研究领域存在一些难点,包括:大多数内共生菌无法离体培养;丰度较低的内共生菌的生物学功能难以确定。基于鳞翅目昆虫内共生菌的分布及该领域的难点,建议未来的研究重点应放在次生共生菌及其生物学功能上。  相似文献   

18.
African trypanosomiasis (AT) is a neglected disease of both humans and animals caused by Trypanosoma parasites, which are transmitted by obligate hematophagous tsetse flies (Glossina spp.). Knowledge on tsetse fly vertebrate hosts and the influence of tsetse endosymbionts on trypanosome presence, especially in wildlife-human-livestock interfaces, is limited. We identified tsetse species, their blood-meal sources, and correlations between endosymbionts and trypanosome presence in tsetse flies from the trypanosome-endemic Maasai Mara National Reserve (MMNR) in Kenya. Among 1167 tsetse flies (1136 Glossina pallidipes, 31 Glossina swynnertoni) collected from 10 sampling sites, 28 (2.4%) were positive by PCR for trypanosome DNA, most (17/28) being of Trypanosoma vivax species. Blood-meal analyses based on high-resolution melting analysis of vertebrate cytochrome c oxidase 1 and cytochrome b gene PCR products (n = 354) identified humans as the most common vertebrate host (37%), followed by hippopotamus (29.1%), African buffalo (26.3%), elephant (3.39%), and giraffe (0.84%). Flies positive for trypanosome DNA had fed on hippopotamus and buffalo. Tsetse flies were more likely to be positive for trypanosomes if they had the Sodalis glossinidius endosymbiont (P = 0.0002). These findings point to complex interactions of tsetse flies with trypanosomes, endosymbionts, and diverse vertebrate hosts in wildlife ecosystems such as in the MMNR, which should be considered in control programs. These interactions may contribute to the maintenance of tsetse populations and/or persistent circulation of African trypanosomes. Although the African buffalo is a key reservoir of AT, the higher proportion of hippopotamus blood-meals in flies with trypanosome DNA indicates that other wildlife species may be important in AT transmission. No trypanosomes associated with human disease were identified, but the high proportion of human blood-meals identified are indicative of human African trypanosomiasis risk. Our results add to existing data suggesting that Sodalis endosymbionts are associated with increased trypanosome presence in tsetse flies.  相似文献   

19.
Many factors may influence the structure of invertebrate communities. Among these is the presence of parasites which attack some or all members of a guild and potentially promote coexistence of competitor species. We assessed the prevalence of nematode (Allantonematidae) parasitism in Dutch woodland drosophilids (Diptera). Nematodes were found in 6 of the 18 drosophilid species sampled (percentage parasitism in parentheses): Drosophila phalerata (16%), D. kuntzei (5.1%), D. immigrans (0.5%), D. testacea (1.2%) and D. transversa (2.8%) were all parasitized by Howardula aoronymphium and D. subobscura (3%) was parasitized by Parazitylenchus diplogenus. This is the first report of nematode parasitism of D. immigrans and D. transversa. There were no important seasonal trends in percentage parasitism. We explored the consequences of nematode parasitism for individual drosophilids. Nematodes did not exert an important influence on the wing length (adult body size) of the drosophilids we sampled, but egg loads (fecundities) of female D. phalerata, D. subobscura and D. kuntzei were reduced by nematode parasitism. Parasitism rates were positively correlated with relative host abundance, in Dutch and other communities, suggesting that species diversity is promoted by a disproportionately high parasitism of more common host species.  相似文献   

20.
The energy and nutrient demands of parasites on their hosts are frequently invoked as an explanation for negative impacts of parasitism on host survival and reproductive success. Although cuterebrid bot flies are among the physically largest and most-studied insect parasites of mammals, the only study conducted on metabolic consequences of bot fly parasitism revealed a surprisingly small effect of bot flies on host metabolism. Here we test the prediction that bot fly parasitism increases the resting metabolic rate (RMR) of free-ranging eastern chipmunks (Tamias striatus), particularly in juveniles who have not previously encountered parasites and have to allocate energy to growth. We found no effect of bot fly parasitism on adults. In juveniles, however, we found that RMR strongly increased with the number of bot fly larvae hosted. For a subset of 12 juveniles during a year where parasite prevalence was particularly high, we also compared the RMR before versus during the peak of bot fly prevalence, allowing each individual to act as its own control. Each bot fly larva resulted in a ~7.6% increase in the RMR of its host while reducing juvenile growth rates. Finally, bot fly parasitism at the juvenile stage was positively correlated with adult stage RMR, suggesting persistent effects of bot flies on RMR. This study is the first to show an important effect of bot fly parasitism on the metabolism and growth of a wild mammal. Our work highlights the importance of studying cost of parasitism over multiple years in natural settings, as negative effects on hosts are more likely to emerge in periods of high energetic demand (e.g. growing juveniles) and/or in harsh environmental conditions (e.g. low food availability).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号