首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By combined gas chromatography-mass spectrometry the gibberellin present in suspensors of heart-shaped embryos of Phaseolus coccineus has been identified as Gibberellin A1 (GA1). The amount of GA1 in 2000 suspensors (452 mg), as estimated by gas chromatography. was 4g. The presence of GA1 in suspensors of P. coccineus is discussed in relation to our present knowledge of the occurrence of many gibberellins in developing seeds and immature fruits of the same species.Abbreviations FID flame ionization detector - GA gibberellin - GC gas chromatography - MS mass spectrometry - PGC preparative gas chromatography - Stage A heart-shaped embryo - Stage B cotytedonary embryo - TMS trimethylsilyl  相似文献   

2.
The Arabidopsis GA1 gene encodes copalyl diphosphate synthase, which catalyzes the first committed step in the gibberellin biosynthetic pathway. Previous studies indicated that the expression pattern of the GA1 gene is tissue-specific and cell-type-specific during development. Here we showed that expression of GA1 cDNA driven by the 2.4 kb 5-upstream sequence plus the GA1 genomic coding region into the third exon was able to rescue the ga1-3 mutant phenotype. To understand the mechanism controlling GA1 gene expression, cis-regulatory regions in the GA1 promoter were identified by promoter deletion analysis with the GA1--glucuronidase (GUS) gene fusion system. The second intron and the region from –1391 to –997, with respect to the translation initiation site, positively regulate overall GA1-GUS expression level in all tissues examined. Several additional regulatory regions are involved in GA1-GUS expression in all the stages except in seeds: two positive regulatory regions in the first intron and the sequence between –425 and –207, and a negative regulatory region between –1848 and –1391. We also found that the region between –997 and –796 is essential for a high level of GA1 expression in developing seeds.  相似文献   

3.
The major endogenous gibberellin (GA) in shoots, roots and ears of the rice plant, Oryza sativa L. japonica cv. Nihonbare, was identified as GA19 by combined gas liquid chromatography-mass spectrometry (GC-MS) and GC-selected ion current monitoring (GC-SICM). Another GA present in these tissues in small quantity was tentatively identified as GA1 by GC-SICM, and GA4 may be present in the seeds (kernels) of 3rd-leaf-stage seedlings. Using GC-SICM, the GA19 content was quantified throughout the life cycle of rice plants. It was found to reach high levels (ca. 10–15 g/kg fresh weight) in 3rd-leaf seedlings, at panicle initiation (shoots), and during heading and anthesis (ears). The levels of GA19 in Oryza sativa indica cv. T-136 underwent changes closely similar to those found in Nihonbare. The growth-promoting activity in rice of exogenous GA19 is generally considerably less than that of GA1. It therefore seems possible that GA19 functions as a pool GA. The level of active GAs such as GA1 may be regulated by the rate of biosynthesis of GA19 or its metabolic conversions.Abbreviations GA(s) gibberellin(s) - GAn gibberellin An - GAn-MeTMS trimethylsilyl ether of GAn methyl ester - GC-MS combined gas liquid chromatography-mass spectrometry - GC-SICM combined gas liquid chromatography-selected ion current monitoring - TLC thin-layer chromatography  相似文献   

4.
M. George Jones 《Planta》1987,172(2):280-284
The procera mutant of tomato (Lycopersicon esculentum L.) has a phenotype which is remarkably similar to that of normal tomatoes treated with exogenous gibberellin (GA), indicating that it might be a GA over-producer. However, analysis of endogenous GAs by gas chromatography-mass spectrometry showed that Procera actually has lower levels of GA20 and GA1 than normal. The reason for these anomalously low GA levels is not clear, as there was no difference between procera and normal plants in their ability to metabolize [3H]GA20. The procera mutant responded to exogenous gibberellic acid with increased extension growth, but the proportional response for a given dose of GA was the same in procera and normal plants. It therefore appears that the procera mutation does not directly affect either the GA status of the plant, or its ability to respond to GA.Abbreviations GA gibberellin - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - MeTMSi methyl trimethylsilyl - SIM selected ion monitoring  相似文献   

5.
Slender barley: A constitutive gibberellin-response mutant   总被引:13,自引:0,他引:13  
In barley (Hordeum vulgare L. cv. Herta), slender (sln1) is a single-locus recessive mutation which causes a plant to appear as if it had been grown in sturating concentrations of gibberellin (GA). We have investigated two of the GA-mediated processes in slender barley, shoot elongation and the induction of hydrolytic enzymes in aleurone layers. Shoot elongation is severely retarded in normal (wild-type) barley if the biosynthesis of GA is blocked by an inhibitor, ancymidol (-cyclopropyl--(p-methoxyphenyl)-5-pyrimidinemethanol). However, the slender mutant continues to elongate in the presence of ancymidol. In isolated normal aleurone layers, the synthesis and secretion of -amylase (EC 3.2.1.1), protease (EC 3.4) and nuclease (EC 3.1.30.2) are induced by exogenously applied GA3. However, in the aleurone layers of the slender mutant these enzymes are produced even in the absence of GA but their synthesis is still susceptible to inhibition by abscisic acid. Bioassays of half-seeds of the slender mutant and their normal siblings show no detectable differences in endogenous levels of GA-like substances. We suggest that the slender mutation allows competent tissues to express fully, or over-express, appropriate GA-induced processes independent of GA. We also conclude that shoot elongation, and hydrolytic-enzyme secretion in aleurone layers, share a common regulatory element.Abbreviations ABA abscisic acid - GA gibberellin - GA3 gibberellic acid  相似文献   

6.
Summary Complementation and sequencing analyses revealed that the hopD mutants, which could not support stable maintenance of mini-F plasmids (Niki et al. 1988), had mutations in the hupB gene, and that the hopD410 mutation was an ochre mutation at the 5th Gln position of HU-1. Maintenance and stability of various plasmids, mini-P1 plasmids, mini-F plasmids, and oriC plasmids, were studied in the hupA and hupB mutants (HU mutants), and himA and hip mutants (IHF mutants). Mini-P1 plasmids and mini-F plasmids could not be introduced into the hupA-hupB double deletion mutant. Replication of mini-F plasmids was partially inhibited in the hupB mutants, including the hupB and hopD(hupB) mutants, whereas replication of oriC plasmids was not significantly affected even in the hupA-hupB double deletion mutant. The mini-P1 plasmid was slightly unstable in the himA-hip mutant, whereas the mini-F plasmid was stable.  相似文献   

7.
Gibberellin (GA) 20-oxidase (GA20ox) is a key enzyme that normally catalyzes the penultimate steps in GA biosynthesis. One of the GA20ox genes in rice (Oryza sativaL.), OsGA20ox2 (SD1), is well known as the Green Revolution gene, and loss-of function mutation in this locus causes semi-dwarfism. Another GA20ox gene, OsGA20ox1, has also been identified, but its contribution to plant stature has remained unclear because no suitable mutants have been available. We isolated a mutant, B142, tagged with a T-DNA containing three CaMV 35S promoters, which showed a tall, GA-overproduction phenotype. The final stature of the B142 mutant reflects internode overgrowth and is approximately twice that of its wild-type parent. This mutant responds to application of both GA3 and a GA biosynthesis inhibitor, indicating that it is a novel tall mutant of rice distinct from GA signaling mutants such as slr1. The integrated T-DNAs, which contain three CaMV 35S promoters, are located upstream of the OsGA20ox1 open reading frame (ORF) in the B142 mutant genome. Analysis of mRNA and the endogenous GAs reveal that biologically active GA level is increased by up-regulation of the OsGA20ox1 gene in B142. Introduction of OsGA20ox1 cDNA driven by 35S promoter into the wild type phenocopies the morphological characteristics of B142. These results indicate that the elongated phenotype of the B142 mutant is caused by up-regulation of the OsGA20ox1 gene. Moreover, the final stature of rice was reduced by specific suppression of the OsGA20ox1 gene expression. This result indicates that not only OsGA20ox2 but also OsGA20ox1 affects plant stature.  相似文献   

8.
Mutants of Arabidopsis thaliana deficient in gibberellin synthesis (ga1-3 and ga1-6), and a gibberellin-insensitive mutant (gai) were compared to the wild-type (WT) Landsberg erecta line for flowering time and leaf number when grown in either short days (SD) or continuous light (CL). The ga1-3 mutant, which is severely defective in ent-kaurene synthesis because it lacks most of the GA1 gene, never flowered in SD unless treated with exogenous gibberellin. After a prolonged period of vegetative growth, this mutant eventually underwent senescence without having produced flower buds. The gai mutant and the “leaky” ga1-6 mutant did flower in SD, but took somewhat longer than WT. All the mutants flowered readily in CL, although the ga1-3 mutant showed some delay. Unlike WT and ga1-3, the gai mutant failed to respond to gibberellin treatment by accelerating flowering in SD. A cold treatment promoted flowering in the WT and gai, but failed to induce flowering in ga1-3. From these results, it appears that gibberellin normally plays a role in initiating flowering of Arabidopsis.  相似文献   

9.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

10.
J. A. D. Zeevaart 《Planta》1985,166(2):276-279
The effects of the new growth retardant tetcyclacis (TCY) on stem growth and endogenous gibberellin (GA) levels were investigated in the long-day rosette plant Agrostemma githago. Application of TCY (10 ml of a 5·10-5M solution daily) to the soil suppressed stem elongation in Agrostemma grown under long-day conditions. A total of 10 g GA1 (1 g applied on alternate days) per plant overcame the growth retardation caused by TCY.Control plants and plants treated with TCY were analyzed for endogenous GAs after exposure to nine long days. The acidic extracts were fractionated by high-performance liquid chromatography. Part of each fraction was tested in the d-5 maize bioassay, while the remainder was analyzed by combined gas chromatography-selected ion monitoring. The bioassay results indicated that the GA content of plants treated with TCY was much lower than that of untreated plants. The data obtained by gas chromatography-selected ion monitoring confirmed that the levels of seven GAs present in Agrostemma were much reduced in TCY-treated plants when compared with the levels in control plants: GA53 (13%), GA44 (0%), GA19 (1%), GA17 (33%), GA20 (15%), GA1 (4%), and epi-GA1 (13%). These results provide evidence that TCY inhibits stem growth in Agrostemma by blocking GA biosynthesis and thus lowering the levels of endogenous GAs.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - HPLC high-performance liquid chromatography - TCY Tetcyclacis (5-[4-chlorophenyl]-3,4,5,9,10-pentaaza-tetracyclo-5,4,1,02,6,08,11-dodeca-3,9-diene)  相似文献   

11.
Saccharomyces cerevisiae mutants which exhibit phenotypes (calcium resistance and vanadate sensitivity) similar to those of calcineurin-deficient mutants were isolated. The mutants were classified into four complementation groups (crv1,2,3 and4).crv1 was allelic tocnb1, a mutation in the regulatory subunit of calcineurin. The nucleotide sequences ofCRV2 andCRV3 genes which complemented thecrv2 andcrv3 mutations, respectively, are identical to those ofBCK1/SLK1/SKC1/SSP31 andMPK1/SLT2, respectively, which are both involved in the MAP kinase cascade. A calcineurin-deletion mutation (cnb1), which by itself has no detectable effect on growth and morphology, enhanced some phenotypes (slow growth and morphological abnormality) ofcrv2 andcrv3 mutants. These phenotypes ofcrv2 andcrv3 mutants were partially suppressed by Ca2+ or by overproduction of the calcineurin subunits (Cmp2 and Cnb1). Like the calcineurin-deficient mutant,crv2 andcrv3 mutants were defective in recovery from -factor-induced growth arrest. The defect in recovery of the cnb1 mutant was suppressed by overexpression ofMPK1. These results indicated that the calcineurin-mediated and the Mpk1- (Bck1-) mediated signaling pathways act in parallel to regulate functionally redundant cellular events important for growth.  相似文献   

12.
The GAS1 -related genes of fungi encode GPI-anchored proteins with -1,3-glucanosyltransferase activity. Loss of this activity results in defects in the assembly of the cell wall. We isolated mutants that show a synthetic defect when combined with a gas1 allele in Saccharomyces cerevisiae, and identified nine wild-type genes that rescue this defect. The indispensability of BIG1 and KRE6 for the viability of gas1 cells confirmed the important role of -1,6-glucan in cells that are defective in the processing of -1,3-glucan. The identification of the Wsc1p hypo-osmotic stress sensor and components of the PKC signal transduction pathway in our screen also confirmed that the cell wall integrity response attenuates the otherwise lethal gas1 defect. Unexpectedly, we found that the KEX2 gene is also required for the viability of the gas1 mutant. Kex2p is a Golgi/endosome-membrane-anchored protease that processes secretory preproteins. A cell wall defect was also found in the kex2 mutant, which was suppressible by multiple copies of the MKC7 or YAP3 gene, both of which encode other GPI-anchored proteases. Therefore, normal cell wall assembly requires proteolytic processing of secretory preproteins. Furthermore, the genes CSG2 and IPT1 were found to be required for normal growth of gas1 cells in the presence of 1 M sorbitol. This finding suggests that complex sphingolipids play a role in the hyper-osmotic response.Communicated by C. P. Hollenberg  相似文献   

13.
Peng J  Harberd NP 《The Plant cell》1993,5(3):351-360
The gai mutation of Arabidopsis confers a dwarf phenotype resembling that of mutants defective in gibberellin (GA) biosynthesis. However, gai mutant plants differ from GA biosynthesis mutants because they fail to respond to exogenous GAs and accumulate endogenous GA species to higher (rather than lower) levels than found in wild-type controls. The gai mutation, therefore, identifies a gene that modulates the response of plant cells to GA. We have mapped gai with respect to visible and restriction fragment length polymorphism (RFLP) markers from chromosome 1. To observe the phenotype exhibited by individuals potentially lacking wild-type (GAI) function, we have also isolated novel irradiation-induced derivative alleles of gai. When homozygous, these alleles confer a revertant phenotype that is indistinguishable from the wild type. gai is a semidominant mutation that exerts its effects either because it is a gain-of-function mutation or because it is a loss-of-function or reduced-function mutation. The genetic and physiological properties of the derivative alleles are considered with reference to these alternative modes of dominance of gai. Because these alleles are potential deletion or rearrangement mutations, together with the closely linked RFLP markers identified in the linkage mapping experiments, they provide useful resources for the isolation of the gai locus via a map-based cloning approach.  相似文献   

14.
The metabolism and growth-promoting activity of gibberellin A20 (GA20) were compared in the internode-length genotypes of pea, na le and na Le. Gibberellin A29 and GA29-catabolite were the major metabolites of GA20 in the genotype na le. However, low levels of GA1, GA8 and GA8-catabolite were also identified as metabolites in this genotype, confirming that the le allele is a leaky mutation. Gibberellin A20 was approximately 20 to 30 times as active in promoting internode growth of genotype na Le as of genotype na le. However, the levels of the 3-hydroxylated metabolite of GA20, GA8 (2-hydroxy GA1), were similar for a given growth response in both genotypes. In each case a close linear relationship was observed between internode growth and the logarithm of GA8 levels. A similar relationship was found on comparing GA20 metabolism in the three genotypes le d, le and Le. The former mutation results in a more severe dwarf phenotype than the le allele (which has previously been shown to reduce the 3-hydroxylation of GA20 to GA1). These results indicate that GA20 has negligible intrinsic activity and support the contention that GA1 is the only GA active per se in promoting stem growth in pea.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

15.
Callus was induced from juice vesicles of satsuma mandarin on Murashige & Skoog medium supplemented with -naphthaleneacetic acid (NAA), kinetin (K) and gibberellin (GA). Adventitious embryoids arose from the callus tissue on the medium containing 1 mgl–1 NAA alone. The embryoids grew into embryos which resulted in a plantlet on medium containing 1 mgl–1 GA.Abbreviations GA gibberellin - K kinetin - NAA -naphthaleneacetic acid  相似文献   

16.
 The roles of gibberellins, abscisic acid and phytochrome B in the vernalization response were investigated by combining mutations causing defects in their biosynthesis and response with the Arabidopsis thaliana (L.) Heynh. fca-1 mutation. The fca-1 mutation confers a very late-flowering phenotype which can be reversed to wild-type flowering if the seedlings are vernalized. Vernalization was unaffected in ga1-3, gai, abi1-1, abi2-1, abi3-1 and phyB-1 backgrounds, suggesting that gibberellin action mediated via GA1 and GAI, abscisic acid action mediated through ABI1 and ABI2, and phytochrome B, function independently of vernalization. However, the mutations did interact with fca-1 to change flowering time in the absence of vernalization. The abi1 fca-1 and abi2 fca-1 double mutants flowered earlier than fca-1 implying a role for abscisic acid in floral repression. Combination of ga1-3 or gai with fca-1 unexpectedly resulted in opposite interactions, with gai partially suppressing the late flowering of fca-1. Received: 17 July 1999 / Accepted: 11 October 1999  相似文献   

17.
Gibberellins in the embryo-suspensor system have been considered so far only in Phaseolus coccineus. We present in this report the localization of gibberellin-like substances in the suspensors of Tropaeolum majus L. and Cytisus laburnum L. The total gibberellin activity (expressed as gibberellic-acid equivalent in the -amylase bioassay) in 2000 suspensors (106 mg fresh weight; FW) of C. laburnum and in 600 suspensors (236 mg FW) of T. majus were 50.9 g g-1 FW and 8.9 g g-1 FW respectively.Abbreviation GA gibberellin  相似文献   

18.
In a carrot (Daucus carota L.) cell line lacking the ability to undergo somatic embryogenasis, and in carrot and anise (Pimpinella anisum L.) cell lines in which embryogenesis could be regulated by presence or absence of 2,4-dichlorophen-oxyacetic acid (2,4-D), in the medium (+2,4-D=no embryogenesis,-2,4-D=embryo differentiation and development), the levels of endogenous gibberellin(s) (GA) were determined by the dwarfrice bioassay, and the metabolism of [3H]GA1 was followed. Embryos harvested after 14 d of subculture in-2,4-D had low levels (0.2–0.3 g g-1 dry weight) of polar GA (e.g. GA1-like), but much (3–22 times) higher levels of less-polar GA (GA4/7-like); GA1, GA4 and GA7 are native to these cultures. Conversely, the undifferentiated cells in a non-embryogenic strain, and proembryos of an embryogenic strain (+2,4-D) showed very high levels of polar GA (2.9–4.4 g g-1), and somewhat reduced levels of less-polar GA. Cultures of anise undergoing somatic embryo development (-2,4-D) metabolized [3H]GA1 very quickly, whereas proembryo cultures of anise (+2,4-D) metabolized [3H]GA1 slowly. The major metabolites of [3H]GA1 in anise were tentatively identified as GA8-glucoside (24%), GA8 (15%), GA1-glucoside (8%) and the 1(10)GA1-counterpart (2%). Thus, high levels of a GA1-like substance and a reduced ability to metabolize GA1 are correlated with the absence of embryo development, while lowered levels of GA1-like substance and a rapid metabolism of GA1 into GA8 and GA-conjugates are correlated with continued embryo development. Exogenous application of GA3 is known to reduce somatic embryogenesis in carrot cultures; GA4 was found to have the same effect in anise cultures. Thus, a role (albeit negative) in somatic embryogenesis for a polar, biologically active GA is implied.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GA gibberellin(s) or gibberellin-like substances - GC-RC gas chromatography-radiochromatogram counting - HPLC high-presare liquid chromatography - Rt retention time - TLC thinlaver chromatography  相似文献   

19.
Summary We have used the special properties of the spo13-1 mutation in order to study the regulation of yeast meiosis by the mating type loci. We have found that both the rme1-1 mutation and the sca mutation allow haploid meiosis in spo13-1 strains. Therefore, haploid meiosis is regulated in the same manner as diploid meiosis. Unlike rme1-1, the sca mutation allows meiosis through derepression of the silent mating type cassettes; sca strains can sporulate only because they express both MAT a and MAT information. We have found further that sca is an allele of SIR2, one of the genes involved in repression of the silent cassettes. Therefore, the RME1 gene is the only known candidate for a master negative regulator through which the MAT locus controls meiosis.  相似文献   

20.
The germination of Amaranthus paniculatus seeds was inhibited by applying paclobutrazol, a specific inhibitor of gibberellin biosynthesis. This inhibition was markedly counteracted by gibberellin A3 (GA3), suggesting that endogenous gibberellins are required for germination in this species. The inhibitory effect of paclobutrazol was also overcome by ethephon (2-chloroethylphosphonic acid) or the precursor of ethylene biosynthesis, ACC (1-aminocyclopropane-l-carboxylic acid). Thus the physiological effect of gibberellin can be mimicked by ethylene released from ethephon or synthesised from exogenous ACC. It is suggested, that endogenous gibberellins are involved in germination of Amaranthus paniculatus seeds and that action of GA3 can be substituted by ethylene.Abbreviations ACC 1-aminocyclopropane-l-carboxylic acid - AMO-1618 (2-isopropyl-5methyl-4-trimethylammoniumchloride)-phenyl-l-piperidinium-carboxylate - ancymidol -cyclopropyl--(4-methoxyphenyl)-5-pyrimidine methanol - chloromequat chloride (2-chloroethyl)trimethylammoniumchloride - ethephon 2-chloroethylphosphonic acid - GA gibberellin A3 - paclobutrazol (2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)pentan-3-ol - Phosphon D 2,4,dichlorobenzyl-tributhylphosphoniumchloride - tetcyclacis 5,(4-chlorophenyl)-3,4,5,9,10-pentaaza-tetracyclo)5,4,1,0,Z,6,08,11 dodeca-3,9-diene  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号