首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sulfated regions in heparan sulfate and heparin are known to affect fibroblast growth factor (FGF) function. We have studied the mechanism whereby heparin directs FGF-2-induced FGF receptor-1 (FGFR-1) signal transduction. FGF-2 alone stimulated maximal phosphorylation of Src homology domain 2 tyrosine phosphatase (SHP-2) and the adaptor molecule Crk, in heparan sulfate-deficient Chinese hamster ovary (CHO) 677 cells expressing FGFR-1. In contrast, for phospholipase Cgamma(1) (PLCgamma(1)) and the adaptor molecule Shb to be maximally tyrosine-phosphorylated, cells had to be stimulated with both FGF-2 and heparin (100 ng/ml). Tyrosine residues 463 in the juxtamembrane domain and 766 in the C-terminal tail in FGFR-1 are known to bind Crk and PLCgamma(1), respectively. Analysis of tryptic phosphopeptide maps of FGFR-1 from cells stimulated with FGF-2 alone and FGF-2 together with heparin showed that FGF-2 alone stimulated a several-fold increase in tyrosine 463 in the juxtamembrane domain. In contrast, heparin had to be included in order for tyrosine 766 to be phosphorylated to the same fold level. Our data imply that tyrosine 463 is phosphorylated and able to transduce signals in response to FGF-2 treatment alone; furthermore, we suggest that FGFR-1 dimerization/kinase activation is stabilized by heparin.  相似文献   

2.
The role of the vascular endothelial growth factor receptor-1 (VEGFR-1) in endothelial cell function is unclear. We have previously identified four tyrosine phosphorylation sites in the C-terminal tail of this receptor. We now show that the wild type VEGFR-1 expressed in porcine aortic endothelial (PAE/VEGFR-1) cells was able to transduce signals for increased DNA synthesis and proliferation. Tyrosine phosphorylation of phospholipase Cgamma (PLCgamma), tyrosine phosphatase SHP-2, Crk, and extracellular regulated kinases 1 and 2 (Erk1/2) was registered in response to VEGF-A treatment of the PAE/VEGFR-1 cells. VEGFR-1 mutated at Y1213, Y1242, and Y1333 were constructed and expressed in PAE cells, to the same level as that of PAE/VEGFR-1 cells. The affinities of the wild type and mutated receptors for VEGF-A(165) binding were similar. The mutated VEGFR-1 Y1213F expressed in PAE cells was kinase inactive. PAE cells expressing the mutated VEGFR-1 Y1242F and Y1333F receptors mediated increased tyrosine phosphorylation of PLCgamma in response to VEGF-A stimulation. However, these two mutant VEGFR-1 failed to mediate increased mitogenesis and were unable to stimulate increased tyrosine phosphorylation of SHP-2, Crk, and Erk1/2, indicating that the mutations lead to a perturbation in VEGF-A-induced signal transduction.  相似文献   

3.
The Crk family of adaptor proteins participate in diverse signaling pathways that regulate growth factor-induced proliferation, anchorage-dependent DNA synthesis, and cytoskeletal reorganization, important for cell adhesion and motility. Using kidney epithelial 293T cells for transient co-transfection studies and the nerve growth factor (NGF)-responsive PC12 cell line as a model system for neuronal morphogenesis, we demonstrate that the non-receptor tyrosine kinase c-Abl is an intermediary for NGF-inducible c-Crk II phosphorylation on the negative regulatory Tyr(222). Transient expression of a c-Crk II Tyr(222) point mutant (c-Crk Y222F) in 293T cells induces hyperphosphorylation of paxillin on Tyr(31) and enhances complex formation between c-Crk Y222F and paxillin as well as c-Crk Y222F and c-Abl, suggesting that c-Crk II Tyr(222) phosphorylation induces both the dissociation of the Crk SH2 domain from paxillin and the Crk SH3 domain from c-Abl. Interestingly, examination of the early kinetics of NGF stimulation in PC12 cells showed that c-Crk II Tyr(222) phosphorylation preceded paxillin Tyr(31) phosphorylation, followed by a transient initial dissociation of the c-Crk II paxillin complex. PC12 cells overexpressing c-Crk Y222F manifested a defect in cellular adhesion and neuritogenesis that led to detachment of cells from the extracellular matrix, thus demonstrating the biological significance of c-Crk II tyrosine phosphorylation in NGF-dependent morphogenesis. Whereas previous studies have shown that Crk SH2 binding to paxillin is critical for cell adhesion and migration, our data show that the phosphorylation cycle of c-Crk II determines its dynamic interaction with paxillin, thereby regulating turnover of multiprotein complexes, a critical aspect of cytoskeletal plasticity and actin dynamics.  相似文献   

4.
S E Girardin  M Yaniv 《The EMBO journal》2001,20(13):3437-3446
CrkII, a cellular homolog of v-crk, belongs to a family of adaptor proteins that play a central role in signal transduction cascades. We demonstrate that CrkII interacts directly with c-Jun N-terminal kinase 1 (JNK1). A proline-rich sequence of JNK1 is critical for the interaction of the kinase with the N-terminal Src homology 3 (SH3) domain of CrkII. JNK1 is localized with CrkII in membrane ruffles of Crk-overexpressing cells in a Rac1-dependent manner. A JNK1 mutant (K340A) that fails to interact with CrkII is defective in Rac/epidermal growth factor-induced activation, but remains responsive to UVC irradiation. Furthermore, CrkII recruits JNK1 to a p130Cas multiprotein complex where it may be activated through a hematopoietic progenitor kinase 1- and mitogen-activated protein kinase kinase 4-dependent pathway. Together, the results presented here argue for a new mechanism of regulation of the JNK pathway through the CrkII-p130Cas adaptor complex.  相似文献   

5.
The members of the p130Cas (Cas) family are important scaffolding proteins that orchestrate cell adhesion, migration and invasiveness downstream of integrin adhesion receptors and receptor tyrosine kinases by recruiting enzymes and structural molecules. Shep1, BCAR3/AND-34 and NSP1 define a recently identified family of SH2 domain-containing proteins that constitutively bind Cas proteins through a Cdc25-type nucleotide exchange factor-like domain. To gain insight into the functional interplay between Shep1 and Cas in vivo, we have inactivated the Shep1 gene in the mouse through Cre-mediated deletion of the exon encoding the SH2 domain. Analysis of Cas tyrosine phosphorylation in the brains of newborn mice, where Shep1 is highly expressed, revealed a strong decrease in Cas substrate domain phosphorylation in knockout compared to wild-type brains. Src family kinases bind to Cas via their SH3 and SH2 domains, which contributes to their activation, and phosphorylate multiple tyrosines in the Cas substrate domain. These tyrosine-phosphorylated motifs represent docking sites for the Crk adaptor, linking Cas to the downstream Rac1 and Rap1 GTPases to regulate cell adhesion and actin cytoskeleton organization. Accordingly, we detected lower Cas–Crk association and lower phosphorylation of the Src activation loop in Shep1 knockout brains compared to wild-type. Conversely, Shep1 transfection in COS cells increases Cas tyrosine phosphorylation. The SH2 domain is likely critical for the effects of Shep1 on Cas and Src signaling because the knockout mice express Shep1 fragments that lack the amino-terminal region including the SH2 domain, presumably due to aberrant translation from internal ATG codons. These fragments retain the ability to increase Cas levels in transfected cells, similar to full-length Shep1. However, they do not affect Cas phosphorylation on their own or in the presence of co-transfected full-length Shep1. They also do not show dominant negative effects on the activity of full-length Shep1 in vivo because the heterozygous mice, which express the fragments, have a normal life span. This is in contrast to the homozygous knockout mice, most of which die soon after birth. These data demonstrate that Shep1 plays a critical role in the in vivo regulation of Src activity and Cas downstream signaling through Crk, and suggest that the SH2 domain of Shep1 is critical for these effects.  相似文献   

6.
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.  相似文献   

7.
Stimulation of fibroblast growth factor receptor-1 (FGFR-1) is known to result in phosphorylation of tyrosine 766 and the recruitment and subsequent activation of phospholipase C-gamma (PLC-gamma). To assess the role of tyrosine 766 in endothelial cell function, we generated endothelial cells expressing a chimeric receptor, composed of the extracellular domain of the PDGF receptor-alpha and the intracellular domain of FGFR-1. Mutation of tyrosine 766 to phenylalanine prevented PLC-gamma activation and resulted in a reduced phosphorylation of FRS2 and reduced activation of the Ras/MEK/MAPK pathway relative to the wild-type chimeric receptor. However, FGFR-1-mediated MAPK activation was not dependent on PKC activation or intracellular calcium, both downstream mediators of PLC-gamma activation. We report that the adaptor protein Shb is also able to bind tyrosine 766 in the FGFR-1, via its SH2 domain, resulting in its subsequent phosphorylation. Overexpression of an SH2 domain mutant Shb caused a dramatic reduction in FGFR-1-mediated FRS2 phosphorylation with concomitant perturbment of the Ras/MEK/MAPK pathway. Expression of the chimeric receptor mutant and the Shb SH2 domain mutant resulted in a similar reduction in FGFR-1-mediated mitogenicity. We conclude, that Shb binds to tyrosine 766 in the FGFR-1 and regulates FGF-mediated mitogenicity via FRS2 phosphorylation and the subsequent activation of the Ras/MEK/MAPK pathway.  相似文献   

8.
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.  相似文献   

9.
The erythropoietin (Epo) receptor transduces its signals by activating physically associated tyrosine kinases, mainly Jak2 and Lyn, and thereby inducing tyrosine phosphorylation of various substrates including the Epo receptor (EpoR) itself. We previously demonstrated that, in Epo-stimulated cells, an adapter protein, CrkL, becomes tyrosine-phosphorylated, physically associates with Shc, SHP-2, and Cbl, and plays a role in activation of the Ras/Erk signaling pathway. Here, we demonstrate that Epo induces binding of CrkL to the tyrosine-phosphorylated EpoR and SHIP1 in 32D/EpoR-Wt cells overexpressing CrkL. In vitro binding studies showed that the CrkL SH2 domain directly mediates the EpoR binding, which was specifically inhibited by a synthetic phosphopeptide corresponding to the amino acid sequences at Tyr(460) in the cytoplasmic domain of EpoR. The CrkL SH2 domain was also required for tyrosine phosphorylation of CrkL in Epo-stimulated cells. Overexpression of Lyn induced constitutive phosphorylation of CrkL and activation of Erk, whereas that of a Lyn mutant lacking the tyrosine kinase domain attenuated the Epo-induced phosphorylation of CrkL and activation of Erk. Furthermore, Lyn, but not Jak2, phosphorylated CrkL on tyrosine in in vitro kinase assays. Together, the present study suggests that, upon Epo stimulation, CrkL is recruited to the EpoR through interaction between the CrkL SH2 domain and phosphorylated Tyr(460) in the EpoR cytoplasmic domain and undergoes tyrosine phosphorylation by receptor-associated Lyn to activate the downstream signaling pathway leading to the activation of Erk and Elk-1.  相似文献   

10.
The docking protein p130Cas (Cas) becomes tyrosine-phosphorylated in its central substrate domain in response to extracellular stimuli such as integrin-mediated cell adhesion, and transmits signals through interactions with various intracellular signaling molecules such as the adaptor protein Crk. Src-family kinases (SFKs) bind a specific site in the carboxyl-terminal region of Cas and subsequently SFKs phosphorylate progressively the substrate domain in Cas. In this study crystallography, mutagenesis and binding assays were used to understand the molecular basis for Cas interactions with SFKs. Tyrosine phosphorylation regulates binding of Cas to SFKs, and the primary site for this phosphorylation, Y762, has been proposed. A phosphorylated peptide corresponding to Cas residues 759MEDpYDYVHL767 containing the key phosphotyrosine was crystallized in complex with the SH3-SH2 domain of the SFK Lck. The results provide the first structural data for this protein-protein interaction. The motif in Cas 762pYDYV binds to the SH2 domain in a mode that mimics high-affinity ligands, involving dual contacts of Y762 and V765 with conserved residues in SFK SH2 domains. In addition, Y764 is in position to make an electrostatic contact after phosphorylation with a conserved SFK arginine that mediates interactions with other high-affinity SH2 binders. These new molecular data suggest that Cas may regulate activity of Src as a competing ligand to displace intramolecular interactions that occur in SFKs (between the C-terminal tail and the SH2 domain) and restrain and down-regulate the kinase in an inactive form.  相似文献   

11.
The protein tyrosine kinase Pyk2 acts as an upstream regulator of mitogen-activated protein (MAP) kinase cascades in response to numerous extracellular signals. The precise molecular mechanisms by which Pyk2 activates distinct MAP kinase pathways are not yet fully understood. In this report, we provide evidence that the protein tyrosine kinase Src and adaptor proteins Grb2, Crk, and p130Cas act as downstream mediators of Pyk2 leading to the activation of extracellular signal-regulated kinase (ERK) and c-Jun amino-terminal kinase (JNK). Pyk2-induced activation of Src is necessary for phosphorylation of Shc and p130Cas and their association with Grb2 and Crk, respectively, and for the activation of ERK and JNK cascades. Expression of a Grb2 mutant with a deletion of the amino-terminal Src homology 3 domain or the carboxyl-terminal tail of Sos strongly reduced Pyk2-induced ERK activation, with no apparent effect on JNK activity. Grb2 with a deleted carboxyl-terminal Src homology 3 domain partially blocked Pyk2-induced ERK and JNK pathways, whereas expression of dominant interfering mutants of p130Cas or Crk specifically inhibited JNK but not ERK activation by Pyk2. Taken together, our data reveal specific pathways that couple Pyk2 with MAP kinases: the Grb2/Sos complex connects Pyk2 to the activation of ERK, whereas adaptor proteins p130Cas and Crk link Pyk2 with the JNK pathway.  相似文献   

12.
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.  相似文献   

13.
The adapter protein Crk contains an SH2 domain and two SH3 domains. Through binding of particular ligands to the SH2 domain and the N-terminal SH3 domain, Crk has been implicated in a number of signaling processes, including regulation of cell growth, cell motility, and apoptosis. We report here that the C-terminal SH3 domain, never shown to bind any specific signaling molecules, contains a binding site for the nuclear export factor Crm1. We find that a mutant Crk protein, deficient in Crm1 binding, promotes apoptosis. Moreover, this nuclear export sequence mutant [NES(-) Crk] interacts strongly, through its SH2 domain, with the nuclear tyrosine kinase, Wee1. Collectively, these data suggest that a nuclear population of Crk bound to Wee1 promotes apoptotic death of mammalian cells.  相似文献   

14.
Rin1 regulates insulin receptor signal transduction pathways   总被引:1,自引:0,他引:1  
Rin1 is a multifunctional protein containing several domains, including Ras binding and Rab5 GEF domains. The role of Rin1 in insulin receptor internalization and signaling was examined by expressing Rin1 and deletion mutants in cells utilizing a retrovirus system. Here, we show that insulin-receptor-mediated endocystosis and fluid phase insulin-stimulated endocytosis are enhanced in cells expressing the Rin1:wild type and the Rin1:C deletion mutant, which contain both the Rab5-GEF and GTP-bound Ras binding domains. However, the Rin1:N deletion mutant, which contains both the SH2 and proline-rich domains, blocked insulin-stimulated receptor-mediated and insulin-stimulated fluid phase endocytosis. In addition, the expression of Rin1:delta (429-490), a natural occurring splice variant, also blocked both receptor-mediated and fluid phase endocystosis. Furthermore, association of the Rin1 SH2 domain with the insulin receptor was dependent on tyrosine phosphorylation of the insulin receptor. Morphological analysis indicates that Rin1 co-localizes with insulin receptor both at the cell surface and in endosomes upon insulin stimulation. Interestingly, the expression of Rin1:wild type and both deletion mutants blocks the activation of Erk1/2 and Akt1 kinase activities without affecting either JN or p38 kinase activities. DNA synthesis and Elk-1 activation are also altered by the expression of Rin1:wild type and the Rin1:C deletion mutant. In contrast, the expression of Rin1:delta stimulates both Erk1/2 and Akt1 activation, DNA synthesis and Elk-1 activation. These results demonstrate that Rin1 plays an important role in both insulin receptor membrane trafficking and signaling.  相似文献   

15.
STAT5A is a molecular regulator of proliferation, differentiation, and apoptosis in lymphohematopoietic cells. Here we show that STAT5A can serve as a functional substrate of Bruton's tyrosine kinase (BTK). Purified recombinant BTK was capable of directly binding purified recombinant STAT5A with high affinity (K(d) = 44 nm), as determined by surface plasmon resonance using a BIAcore biosensor system. BTK was also capable of tyrosine-phosphorylating ectopically expressed recombinant STAT5A on Tyr(694) both in vitro and in vivo in a Janus kinase 3-independent fashion. BTK phosphorylated the Y665F, Y668F, and Y682F,Y683F mutants but not the Y694F mutant of STAT5A. STAT5A mutations in the Src homology 2 (SH2) and SH3 domains did not alter the BTK-mediated tyrosine phosphorylation. Recombinant BTK proteins with mutant pleckstrin homology, SH2, or SH3 domains were capable of phosphorylating STAT5A, whereas recombinant BTK proteins with SH1/kinase domain mutations were not. In pull-down experiments, only full-length BTK and its SH1/kinase domain (but not the pleckstrin homology, SH2, or SH3 domains) were capable of binding STAT5A. Ectopically expressed BTK kinase domain was capable of tyrosine-phosphorylating STAT5A both in vitro and in vivo. BTK-mediated tyrosine phosphorylation of ectopically expressed wild type (but not Tyr(694) mutant) STAT5A enhanced its DNA binding activity. In BTK-competent chicken B cells, anti-IgM-stimulated tyrosine phosphorylation of STAT5 protein was prevented by pretreatment with the BTK inhibitor LFM-A13 but not by pretreatment with the JAK3 inhibitor HI-P131. B cell antigen receptor ligation resulted in enhanced tyrosine phosphorylation of STAT5 in BTK-deficient chicken B cells reconstituted with wild type human BTK but not in BTK-deficient chicken B cells reconstituted with kinase-inactive mutant BTK. Similarly, anti-IgM stimulation resulted in enhanced tyrosine phosphorylation of STAT5A in BTK-competent B cells from wild type mice but not in BTK-deficient B cells from XID mice. In contrast to B cells from XID mice, B cells from JAK3 knockout mice showed a normal STAT5A phosphorylation response to anti-IgM stimulation. These findings provide unprecedented experimental evidence that BTK plays a nonredundant and pivotal role in B cell antigen receptor-mediated STAT5A activation in B cells.  相似文献   

16.
As part of a program to further understand the mechanism by which extracellular signals are coordinated and cell-specific outcomes are generated, we have cloned a novel class of related adaptor molecules (NSP1, NSP2, and NSP3) and have characterized in more detail one of the members, NSP1. NSP1 has an Shc-related SH2 domain and a putative proline/serine-rich SH3 interaction domain. Treatment of cells with epidermal growth factor or insulin leads to NSP1 phosphorylation and increased association with a hypophosphorylated adaptor protein, p130(Cas). In contrast, cell contact with fibronectin results in Cas phosphorylation and a transient dissociation of NSP1 from p130(Cas). Increased expression of NSP1 in 293 cells induces activation of JNK1, but not of ERK2. Consistent with this observation, NSP1 increases the activity of an AP-1-containing promoter. Thus, we have described a novel family of adaptor proteins, one of which may be involved in the process by which receptor tyrosine kinase and integrin receptors control the c-Jun N-terminal kinase/stress-activated protein kinase pathway.  相似文献   

17.
N Gotoh  A Tojo    M Shibuya 《The EMBO journal》1996,15(22):6197-6204
Interleukin 3 (IL-3) not only induces DNA synthesis of haematopoietic cells but also maintains their viability by suppressing apoptosis. IL-3 stimulates tyrosine phosphorylation of the Shc adaptor protein and thereby formation of a complex of Shc with Grb2 at phosphorylated tyrosine (Y) residue 317-Shc. This pathway is implicated in Ras/mitogen-activated protein kinase (MAPK) activation towards c-fos gene expression. We examined the possible involvement of Shc in the antiapoptotic activity of IL-3. Conditional overexpression of the Shc SH2 domain, a dominant-negative mutant of Shc, was found to induce apoptosis of IL-3-dependent Ba/F3 cells along with a reduction of c-myc gene expression. Apoptosis was rescued by the exogenously introduced c-myc gene. Since we identify novel tyrosine phosphorylation sites of Shc: Y239 and Y240, their role on cell survival was tested by mutational analysis. Ba/F3 cells expressing mutant Shc Y317F, which is unable to stimulate efficiently the Ras pathway, still showed resistance to apoptosis. However, cells expressing Shc Y239/240F, which is able to stimulate the Ras pathway, were sensitive to apoptosis. In these cells, induction of the c-myc gene was reduced. These findings suggest that a new signalling pathway for cell survival is generated from Y239/240 of Shc to the nuclei involving c-myc gene expression.  相似文献   

18.
CD150 (SLAM/IPO-3) is a cell surface receptor that, like the B cell receptor, CD40, and CD95, can transmit positive or negative signals. CD150 can associate with the SH2-containing inositol phosphatase (SHIP), the SH2-containing protein tyrosine phosphatase (SHP-2), and the adaptor protein SH2 domain protein 1A (SH2D1A/DSHP/SAP, also called Duncan's disease SH2-protein (DSHP) or SLAM-associated protein (SAP)). Mutations in SH2D1A are found in X-linked lymphoproliferative syndrome and non-Hodgkin's lymphomas. Here we report that SH2D1A is expressed in tonsillar B cells and in some B lymphoblastoid cell lines, where CD150 coprecipitates with SH2D1A and SHIP. However, in SH2D1A-negative B cell lines, including B cell lines from X-linked lymphoproliferative syndrome patients, CD150 associates only with SHP-2. SH2D1A protein levels are up-regulated by CD40 cross-linking and down-regulated by B cell receptor ligation. Using GST-fusion proteins with single replacements of tyrosine at Y269F, Y281F, Y307F, or Y327F in the CD150 cytoplasmic tail, we found that the same phosphorylated Y281 and Y327 are essential for both SHP-2 and SHIP binding. The presence of SH2D1A facilitates binding of SHIP to CD150. Apparently, SH2D1A may function as a regulator of alternative interactions of CD150 with SHP-2 or SHIP via a novel TxYxxV/I motif (immunoreceptor tyrosine-based switch motif (ITSM)). Multiple sequence alignments revealed the presence of this TxYxxV/I motif not only in CD2 subfamily members but also in the cytoplasmic domains of the members of the SHP-2 substrate 1, sialic acid-binding Ig-like lectin, carcinoembryonic Ag, and leukocyte-inhibitory receptor families.  相似文献   

19.
Using a yeast two-hybrid screen, we identified Dok1 as a docking protein for RET tyrosine kinase. Dok1 bound more strongly to RET with a multiple endocrine neoplasia (MEN) 2B mutation than RET with a MEN2A mutation and was highly phosphorylated in the cells expressing the former mutant protein. Analysis by site-directed mutagenesis revealed that tyrosine 361 in mouse Dok1 represents a binding site for the Nck adaptor protein and tyrosines 295, 314, 361, 376, 397, and 408 for the Ras-GTPase-activating protein. We replaced tyrosine 361 or these six tyrosines with phenylalanine (designated Y361F or 6F) in Dok1 and introduced the mutant Dok1 genes into the cells expressing the wild-type RET or RET-MEN2B protein. Overexpression of Dok1 or Dok1-Y361F, but not Dok1-6F, suppressed the Ras/Erk activation induced by glial cell line-derived neurotrophic factor or RET-MEN2B, implying that this inhibitory effect requires the Ras-GTPase-activating protein binding to Dok1. In contrast, overexpression of Dok1, but not Dok1-Y361F or Dok1-6F, enhanced the c-Jun amino-terminal kinase (JNK) and c-Jun activation. This suggested that the association of Nck to tyrosine 361 in Dok1 is necessary for the JNK and c-Jun activation by glial cell line-derived neurotrophic factor or RET-MEN2B. Because a high level of the JNK phosphorylation was observed in the cells expressing RET-MEN2B, its strong activation via Nck binding to Dok1 may be responsible for aggressive properties of medullary thyroid carcinoma developed in MEN 2B.  相似文献   

20.
Among the seven tyrosine autophosphorylation sites identified in the intracellular domain of tyrosine kinase fibroblast growth factor receptor-1 (FGFR1), five of them are dispensable for FGFR1-mediated mitogenic signaling. The possibility of dissociating the mitogenic activity of basic FGF (FGF2) from its urokinase-type plasminogen activator (uPA)-inducing capacity both at pharmacological and structural levels prompted us to evaluate the role of these autophosphorylation sites in transducing FGF2-mediated uPA upregulation. To this purpose, L6 myoblasts transfected with either wild-type (wt) or various FGFR1 mutants were evaluated for the capacity to upregulate uPA production by FGF2. uPA was induced in cells transfected with wt-FGFR1, FGFR1-Y463F, -Y585F, -Y730F, -Y766F, or -Y583/585F mutants. In contrast, uPA upregulation was prevented in L6 cells transfected with FGFR1-Y463/583/585/730F mutant (FGFR1–4F) or with FGFR1-Y463/583/585/730/766F mutant (FGFR1–5F) that retained instead a full mitogenic response to FGF2; however, preservation of residue Y730 in FGFR1-Y463/583/585F mutant (FGFR1–3F) and FGFR1-Y463/583/585/766F mutant (FGFR1–4Fbis) allows the receptor to transduce uPA upregulation. Wild-type FGFR1, FGFR1–3F, and FGFR1–4F similarly bind to a 90-kDa tyrosine-phosphorylated protein and activate Shc, extracellular signal-regulated kinase (ERK)2, and JunD after stimulation with FGF2. These data, together with the capacity of the ERK kinase inhibitor PD 098059 to prevent ERK2 activation and uPA upregulation in wt-FGFR1 cells, suggest that signaling through the Ras/Raf-1/ERK kinase/ERK/JunD pathway is necessary but not sufficient for uPA induction in L6 transfectants. Accordingly, FGF2 was able to stimulate ERK1/2 phosphorylation and cell proliferation, but not uPA upregulation, in L6 cells transfected with the FGFR1-Y463/730F mutant, whereas the FGFR1-Y583/585/730F mutant was fully active. We conclude that different tyrosine autophosphorylation requirements in FGFR1 mediate cell proliferation and uPA upregulation induced by FGF2 in L6 cells. In particular, phosphorylation of either Y463 or Y730, dispensable for mitogenic signaling, represents an absolute requirement for FGF2-mediated uPA induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号