首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histone proteins, which were assembled into chromatin using the Xenopus oocyte S-150 extract, were analyzed on acid-urea gels and Triton-acid-urea gels to determine their state of modification. We find that histone H4, which is present in a diacetylated form in the oocyte S-150, gradually loses its acetate groups as the DNA is packaged into chromatin. Thus, this process parallels the one observed in vivo during chromatin formation in growing eucaryotic cells. Histone H4 deacetylation in the oocyte S-150 is a DNA-dependent reaction. This reaction is blocked when butyrate (an inhibitor of histone deacetylase) is added at the onset of the chromatin assembly process. When butyrate is added at the end of the assembly process, no de novo acetylation of the nucleosomal histone H4 is observed. Chromatin with regularly spaced nucleosomes, displaying periodicities ranging from 160 to 220 base pairs, can be assembled in vitro with the oocyte S-150 (Rodríguez-Campos, A., Shimamura, A., and Worcel, A. (1989) J. Mol. Biol., in press). This chromatin may contain either deacetylated histone H4 when assembled under standard conditions or diacetylated H4 when assembled in the presence of butyrate. Both types of chromatin display identical structures upon digestion with nucleases. The potential applications of this system toward the study of the naturally occurring diacetylated histone H4 are discussed.  相似文献   

2.
3.
M Ryoji  A Worcel 《Cell》1985,40(4):923-932
DNA injected into germinal vesicles of Xenopus oocytes is assembled into two distinct types of minichromosomes. One type is soluble and behaves like conventional nucleosomal chromatin. The other type is insoluble, is sensitive to DNAase I and to micrococcal nuclease, lacks a canonical nucleosome repeat, and generates a half-nucleosome size limit digest with micrococcal nuclease. We suggest that these peculiar minichromosomes may be the ones that display the unconstrained, "dynamic" DNA supercoils in the living oocyte.  相似文献   

4.
Assembly of transcriptionally inactive chromatin in vitro   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
G Gargiulo  F Razvi  A Worcel 《Cell》1984,38(2):511-521
Active minichromosomes assembled on injected 5S RNA gene clones are stable in Xenopus oocytes; endogenous 5S DNA specific factor(s) are required for their assembly. When somatic-type and oocyte-type 5S RNA gene clones are coinjected, the somatic genes are assembled into active minichromosomes, while most of the oocyte genes are assembled into inactive ones. The differential 5S RNA gene expression, which mimics that in somatic cells, appears to result from titration of 5S DNA specific factor(s) by the competing somatic 5S DNA, followed by histone mediated assembly of inactive chromatin on the oocyte 5S DNA. Stable minichromosomes are also assembled on a cloned histone H4 gene; again, intragenic DNA rearrangements affect the efficiency of assembly of active chromatin and differential gene expression occurs after coinjection of two or more H4 DNA constructs. We suggest that the H4 DNA molecules also compete for limiting quantities of specific DNA binding factor(s) required for the assembly of active H4 gene chromatin.  相似文献   

7.
Mechanism of chromatin assembly in Xenopus oocytes   总被引:17,自引:0,他引:17  
We have analyzed the chromatin assembly reaction catalyzed by the Xenopus oocyte extract (S-150). A 50 S complex is formed upon mixing the 17 S pUC DNA and the S-150. Mature histones are not detected in this complex, which contains relaxed DNA and protein, and generates subnucleosomal 7 S particles upon digestion with micrococcal nuclease. The relaxed nucleoprotein is gradually supercoiled into nucleosomal chromatin in the S-150, via a pathway that requires ATP and is blocked by novobiocin, and this process is accompanied by the appearance of mature histones H3 and H4. Isolated complexes also supercoil in vitro, which implies the complex is a kit that contains histone precursors, as well as topoisomerases and other enzymes required for assembly. We discuss the biological implications of these findings.  相似文献   

8.
A model chromatin assembly system. Factors affecting nucleosome spacing   总被引:14,自引:0,他引:14  
Poly[d(A-T)].poly[d(A-T)], when reconstituted with chicken erythrocyte core histones and subsequently incubated with sufficient histone H5 in a solution containing polyglutamic acid, forms structures resembling chromatin. H5 induces nucleosome alignment in about two hours at physiological ionic strength and 37 degrees C. The nucleosome spacing and apparent linker heterogeneity in the assembled nucleoprotein are very similar to those in chicken erythrocyte chromatin. Also, condensed chromatin-like fibers on the polynucleotide can be visualized. The binding of one mole of H5 per mole of core octamer is necessary to generate the physiological nucleosome spacing, which remains constant with the addition of more H5. The nucleosome repeat length is not a function of the core histone to poly[d(A-T)] ratio for values lower than the physiological ratio. With increasing ratios, in excess of the physiological value, nucleosome spacing first becomes non-uniform, and then takes on the close packing limit of approximately 165 base-pairs. In addition to eliminating possible base sequence effects on nucleosome positioning, poly[d(A-T)] allows nucleosomes to slide more readily than does DNA, thereby facilitating alignment. Evidence is presented that polyglutamic acid facilitates the nucleosome spacing activity of histone H5, primarily by keeping the nucleoprotein soluble. This model system should be useful for understanding how different repeat lengths arise in chromatin.  相似文献   

9.
Disruption of the nucleosomes at the replication fork.   总被引:16,自引:5,他引:11       下载免费PDF全文
C Gruss  J Wu  T Koller    J M Sogo 《The EMBO journal》1993,12(12):4533-4545
The fate of parental nucleosomes during chromatin replication was studied in vitro using in vitro assembled chromatin containing the whole SV40 genome as well as salt-treated and native SV40 minichromosomes. In vitro assembled minichromosomes were able to replicate efficiently in vitro, when the DNA was preincubated with T-antigen, a cytosolic S100 extract and three deoxynucleoside triphosphates prior to chromatin assembly, indicating that the origin has to be free of nucleosomes for replication initiation. The chromatin structure of the newly synthesized daughter strands in replicating molecules was analysed by psoralen cross-linking of the DNA and by micrococcal nuclease digestion. A 5- and 10-fold excess of protein-free competitor DNA present during minichromosome replication traps the segregating histones. In opposition to published data this suggests that the parental histones remain only loosely or not attached to the DNA in the region of the replication fork. Replication in the putative absence of free histones shows that a subnucleosomal particle is randomly assembled on the daughter strands. The data are compatible with the formation of a H3/H4 tetramer complex under these conditions, supporting the notion that under physiological conditions nucleosome core assembly on the newly synthesized daughter strands occurs by the binding of H2A/H2B dimers to a H3/H4 tetramer complex.  相似文献   

10.
11.
Analysis of the chromatin assembled in germinal vesicles of Xenopus oocytes   总被引:19,自引:0,他引:19  
We have injected circular DNA, labeled with 32P at a single restriction site, into germinal vesicles of Xenopus laevis oocytes in order to study the nucleosome arrangement on the assembled minichromosomes. Two types of genes were used in these studies, the somatic 5 S RNA gene unit of Xenopus borealis and the histone gene unit of Drosophila melanogaster. We find that injections of labeled DNA alone, at 1 ng DNA per oocyte, results in irregularly spaced nucleosomes and partially supercoiled DNA molecules. However, perfectly spaced nucleosomes are assembled and fully supercoiled DNA is recovered if 5 to 20 nanograms of cold vector DNA is coinjected with the labeled DNA. At the optimum chromatin assembly conditions, the nucleosomes are perfectly spaced with a 180 base-pair periodicity, but they are randomly positioned on the DNA. The assembly of a periodic chromatin structure is accompanied by a dramatic enhancement in the expression of the injected 5 S RNA gene.  相似文献   

12.
13.
Recently, we have found that the assembly of nucleosomes reconstituted on negatively supercoiled DNA is cooperative. In the present paper the role of DNA topology and of histone tails in nucleosome assembly was explored. Reconstituted minichromosomes on relaxed DNA at different histone/DNA ratios (R) were assayed by topological analysis and electron microscopy visualization. Both methods show a linear relationship between average nucleosome number (N) and R. This suggests that in the case of relaxed DNA, cooperative internucleosomal interactions are small or absent. The influence of histone tails in nucleosome assembly was studied on minichromosomes reconstituted with trypsinized histone octamer on negatively supercoiled DNA by topological analysis. The topoisomers distribution, after trypsinization, dramatically changes, indicating that nucleosome-nucleosome interactions are remarkably decreased. These results show that, in chromatin folding, in addition to the well known role of histone H1, the interactions between histone octamer tails and DNA are also of importance.  相似文献   

14.
We have found that histone H5 (or H1) induces physiological nucleosome spacings and extensive ordering on some plasmid constructions, but not on others, in a fully defined in vitro system. Plasmid pBR327 containing DNA insertions with lengths close to 300 base-pairs permitted histone H5 to induce a remarkable degree of nucleosome alignment. Seventeen multiples of a unit 210(+/- 4) base-pair repeat, covering the entire plasmid, were detected. Plasmid pBR327, not containing a DNA insert, permitted continuous alignment of only a few nucleosomes. These observations suggest that a necessary requirement in this system for histone H5 (or H1)-induced nucleosome alignment on small (less than 4 kb; 1 kb = 10(3) bases or base-pairs) circular plasmids may be that the total DNA length must be close to an integer multiple of the nucleosome repeat length generated, a type of boundary effect. Consistent with this hypothesis, five deletion constructs of pBR327 (not containing inserts), that spanned 64% of the plasmid, and possessed DNA lengths close to integer multiples of 210 base-pairs, permitted nucleosome alignment by histone H5. We have also found that plasmid length adjustment is not a sufficient condition for nucleosome alignment. For example, plasmids pBR322 and pUC18 did not permit nucleosome alignment when adjusted to near-integer multiples of 210 base-pairs. Also, for pBR327 that contained a length-adjusted deletion in one particular region, appreciable nucleosome alignment no longer occurred. These data suggest that a contiguous approximately 800 base-pair region of pBR327, interrupted in pBR322 and not present in pUC18, can nucleate histone H5-induced nucleosome alignment, which can then spread to adjacent chromatin. Supporting this idea, a positioned five-nucleosome array appears to originate in the required region. Additionally, on a larger (6.9 kb) plasmid construction, the "chromatin organizing region" of pBR327 and adjacent DNA on one side of it exhibited preferred H5-induced nucleosome alignment.  相似文献   

15.
16.
Using in vitro replication assays, we compared native with salt-treated simian virus 40 minichromosomes isolated from infected cell nuclei. Minichromosomes from both preparations contain the full complement of nucleosomes, but salt treatment removes histone H1 and a fraction of nonhistone chromatin proteins. Both types of minichromosomes served well as templates for in vitro replication, but the structures of the replication products were strikingly different. Replicated salt-treated minichromosomes contained, on average, about half the normal number of nucleosomes as previously shown (T. Krude and R. Knippers, Mol. Cell. Biol. 11:6257-6267, 1991). In contrast, the replicated untreated minichromosomes were found to be densely packed with nucleosomes, indicating that an assembly of new nucleosomes occurred during in vitro replication. Biochemical and immunological data showed that the fraction of nonhistone chromatin proteins associated with native minichromosomes includes a nucleosome assembly activity that appears to be closely related to chromatin assembly factor I (S. Smith and B. W. Stillman, Cell 58:15-25, 1989). Furthermore, this minichromosome-bound nucleosome assembly factor is able to exert its activity in trans to replicating protein-free competitor DNA. Thus, native chromatin itself contains the activities required for an ordered assembly of nucleosomes during the replication process.  相似文献   

17.
Cell-free extracts employed as chromatin assembly systems contain a myriad of proteins, polyanions and nucleic acids. The roles of ATP, MgCl2 and other cofactors in the catalysis of nucleosome formation by the Xenopus laevis oocyte S-150 have yet to be established unequivocally. In this study we examine the influence of RNA in the assembly process. Under reaction conditions that inhibit nucleosome formation (+ EDTA), pretreatment of the extract with RNase A revives the chromatin assembly machinery while the rate of DNA supercoiling is stimulated significantly. Addition of purified RNA blocks DNA supercoiling. Taken together, these data suggest that the parameters surrounding in vitro chromatin assembly are variable and subject to modulation by endogenous factors.  相似文献   

18.
Physiologically spaced nucleosome formation in HeLa cell extracts is ATP dependent. ATP hydrolysis is required for chromatin assembly on both linear and covalently closed circular DNA. The link between the phosphorylation state of histones and nucleosome formation has been examined and we demonstrate that in the absence of histone phosphorylation no stable and regularly spaced nucleosomes are formed. Phosphorylated H3 stabilizes the nucleosome core; while phosphorylation of histone H2a is necessary to increase the linker length between nucleosomes from 0 to approximately 45 bp. Histone H1 alone, whether phosphorylated or unphosphorylated, does not increase the nucleosome repeat length in the absence of core histone phosphorylation. Phosphorylations of H1 and H3 correlate with condensation of chromatin. Maximum ATP hydrolysis which is necessary to increase the periodicity of nucleosomes from approximately 150 to approximately 185 bp, not only inhibits H1 and H3 phosphorylation but facilitates their dephosphorylation.  相似文献   

19.
20.
Phosphorylation of a yeast histone H2A at C-terminal serine 129 has a central role in double-strand break repair. Mimicking H2A phosphorylation by replacement of serine 129 with glutamic acid (hta1-S129E) suggested that phosphorylation destabilizes chromatin structures and thereby facilitates the access of repair proteins. Here we have tested chromatin structures in hta1-S129 mutants and in a C-terminal tail deletion strain. We show that hta1-S129E affects neither nucleosome positioning in minichromosomes and genomic loci nor supercoiling of minichromosomes. Moreover, hta1-S129E has no effect on chromatin stability measured by conventional nuclease digestion, nor does it affect DNA accessibility and repair of UV-induced DNA lesions by nucleotide excision repair and photolyase in vivo. Similarly, deletion of the C-terminal tail has no effect on nucleosome positioning and stability. These data argue against a general role for the C-terminal tail in chromatin organization and suggest that phosphorylated H2A, gamma-H2AX in higher eukaryotes, acts by recruitment of repair components rather than by destabilizing chromatin structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号