首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
Underivatized codeine and dihydrocodeine in human plasma and urine have been determined with a high degree of accuracy by capillary gas chromatography (GC) with surface ionization detection (SID). The drugs were extracted with the aid of Sep-Pak C18 cartridges. Recovery of both drugs was 90%. The calibration curves obtained with dimemorfan as an internal standard showed linearity in the range 4.5–72.3 and 3.0–75.5 ng/ml of plasma for codeine and dihydrocodeine, respectively. The detection limit was about 100 pg on column (2.5 ng/ml sample). Codeine was determined quantitatively in plasma and urine obtained from a volunteer who had received 10 mg codeine phosphate orally 3 h before the sampling: the levels were found to be 14.1 and 142 ng/ml, respectively. The present GC-SID method has been compared carefully with GC-NPD (nitrogen-phosphorus detection) using the same extracts; the sensitivity of GC-SID was more than ten times greater than that of GC-NPD, with background noise correspondingly lower.  相似文献   

2.
A sensitive and specific method for the determination of lofepramine and its metabolites, desipramine and 2-hydroxydesipramine, in human plasma and urine is described. Lofepramine, desipramine and 2-hydroxydesipramine were derivatized to ethyl p-chlorobenzoate, the bis(heptafluorobutyryl) derivative and the N,O-bis(trifluoroacetyl) derivative, respectively, and then analysed by gas chromatography—mass fragmentography. Corresponding deuterated compounds were used as internal standards. Determination was possible at levels as low as 2 ng/ml for lofepramine and desipramine and 20 ng/ml for 2-hydroxydesipramine.  相似文献   

3.
We describe a liquid chromatography-electrospray ionisation tandem mass spectrometry method for the qualitative and quantitative determination of the secoiridoid oleuropein and its bioactive metabolite hydroxytyrosol in rat plasma and urine. Samples were prepared by liquid-liquid extraction using ethyl acetate with a recovery for both compounds of about 100% in plasma and about 60% in urine. The chromatographic separation was performed with a RP-ODS column using a water-acetonitrile linear gradient. The calibration curve was linear for both biophenols over the range 2.5-1000 ng/ml (LOD 1.25 ng/ml) for plasma and 5-1000 ng/ml (LOD 2.5 ng/ml) for urine. Plasma concentrations of oleuropein and hydroxytyrosol were measured after oral administration of a single dose (100 mg/kg) of oleuropein. Analysis of treated rat plasma showed the presence of unmodified oleuropein, reaching a peak value of 200 ng/ml within 2 h, with a small amount of hydroxytyrosol, whereas in urine, both compounds were mainly found as glucuronides.  相似文献   

4.
The dioxopiperazine metabolites of quinapril in plasma and urine were extracted with hexane—dichloroethane (1:1) under acidic conditions. Following derivatization with pentafluorobenzyl bromide and purification of the desired reaction products using a column packed with silica gel, the metabolites were analysed separately by capillary column gas chromatography—electron-impact mass spectrometry with selected-ion monitoring. The limits of quantitation for the metabolites were 0.2 ng/ml in plasma and 1 ng/ml in urine. The limits of detection were 0.1 ng/ml in plasma and 0.5 ng/ml in urine, at a signal-to-noise ratio of > 3 and > 5, respectively. The proposed method is applicable to pharmacokinetic studies.  相似文献   

5.
An analytical method to identify and determine benzphetamine (BMA) and its five metabolites in urine was developed by liquid chromatography–electrospray ionization mass spectrometry (LC–ESI–MS) using the solid-phase extraction column Bond Elut SCX. Deuterium-labeled compounds, used as internal standards, were separated chromatographically from each corresponding unlabeled compound in the alkaline mobile phase with an alkaline-resistant ODS column. This method was applied to the identification and determination of BMA and its metabolites in rat urine collected after oral administration of BMA. Under the selected ion monitoring mode, the limit of quantitation (signal-to-noise ratio 10) for BMA, N-benzylamphetamine (BAM), p-hydroxybenzphetamine (p-HBMA), p-hydroxy-N-benzylamphetamine (p-HBAM), methamphetamine (MA) and amphetamine (AM) was 700 pg, 300 pg, 500 pg, 1.4 ng, 6 ng and 10 ng in 1 ml of urine, respectively. This analytical method for p-HBMA, structurally closer to the unchanged drug of all the metabolites, was very sensitive, making this a viable metabolite for discriminating the ingestion of BMA longer than the parent drug or other metabolites in rat.  相似文献   

6.
A simple and sensitive high-performance liquid chromatographic assay of methotrexate (MTX) and its two active metabolites, 7-hydroxymethotrexate (7-OH-MTX) and 2,4-di-amino-N10-methylpteroic acid (APA) in plasma, saliva and urine was developed. The method involved deproteinization with acetonitrile followed by addition of isoamyl alcohol and ethyl acetate. After extraction the sample was chromatographed on a cation-exchange column and monitored at 313 nm. The retention times were 5, 7 and 9 min and detection limits 20, 10 and 5 ng/ml for 7-OH-MTX, MTX and APA, respectively. For concentrations greater than 100 ng/ml one-step deproteinization of 0.1 ml sample with 0.25 ml acetonitrile was satisfactory for sample preparation. The method has been evaluated in samples from patients and rabbits receiving MTX.  相似文献   

7.
A method for the determination of unconjugated phentolamine at concentrations down to 6 ng/ml in human plasma, and of free and total (free plus conjugated) phentolamine down to 25 ng/ml in urine is described. After addition of 2-[N-(p-chlorophenyl)-N-(m-hydroxyphenyl)-aminomethyl]-2-imidazoline as internal standard, both compounds are extracted into benzene—ethyl acetate (1:1, v/v) at pH 10, transferred into an acidic aqueous solution and back-extracted at pH 10 into benzene—ethyl acetate. They are then derivatized with N-heptafluorobutyrylimidazole. The derivatives are determined by gas chromatography using a 63Ni electron-capture detector. In urine, total (free plus conjugated) phentolamine is determined after enzymatic hydrolysis. The technique was applied for the study of the plasma concentrations and urinary elimination after oral administration to man.  相似文献   

8.
Sensitive and specific high-performance liquid chromatographic methods with fluorescence detection are described for the determination of the metabolites of mox sylyte (4-(2-dimethylaminoethoxy)-5-isopropyl-2-methylphenyl acetate) in human plasma and urine. Deacetylmoxisylyte glucuroconjugate (DAM-G) was hydrolysed enzymatically using β-glucuronidase and quantified as the difference between the DAM concentrations determined after and before hydrolysis. The two sulphate derivatives (deacetylmoxisy;yte sulphoconjugate, DAM-S and monomethyldeacetylmoxisylyte sulphoconjugate, MDAM-S), were analysed without prior hydrolysis. Their extraction from plasma and urine, as well as that of DAM from plasma, involved the use of C18 cartridges adapted on a Benchmate workstation. DAM in urine was quantified after liquid-liquid extraction. The two methods were validated for specificity, linearity, intra- and inter-day precision and accuracy. Precision was generally ≤15% and accuracy ≤12%. In plasma, the limits of quantification were 2.5 ng/ml for DAM and 2.8 ng/ml for the two sulphates; in urine, they were 40 ng/ml for DAM and 200 ng/ml for the sulphates. These methods were used for pharmacokinetic studies in healthy subjects.  相似文献   

9.
A HPLC method was developed for determination of cimetidine in human plasma and urine. Plasma samples were alkalinized followed by liquid extraction with water-saturated ethyl acetate then evaporated under nitrogen. The extracts were reconstituted in mobile phase and injected onto a C(18) reversed-phase column; UV detection was set at 228 nm. Urine samples were diluted with an internal standard/mobile phase mixture (1:9) prior to injection. The lower limit of quantification in plasma and urine were 100 ng/ml and 10 microg/ml, respectively; intra- and inter-day coefficients of variation were 相似文献   

10.
A sensitive and specific method was developed and validated for the quantitation of quercetin in human plasma and urine. The application of liquid chromatography-tandem mass spectrometry (LC/MS/MS) with a TurboIonspray (TIS) interface in negative mode under multiple reactions monitoring was investigated. Chromatographic separation was achieved on a C12 column using a mobile phase of acetonitrile/water with 0.2% formic acid (pH 2.4) (40/60, v/v). The detection limit was 100 pg/ml and the lower limit of quantification was 500 pg/ml for plasma samples; the detection limit was 500 pg/ml and the lower limit of quantification was 1 ng/ml for urine samples. The calibration curve was linear from 1 to 800 ng/ml for plasma samples and was linear from 1 to 200 and 50 to 2000 ng/ml for urine samples. All the intra- and inter-day coefficients of variation were less than 11% and intra- and inter-day accuracies were within +/-15% of the known concentrations. This represents a LC/MS/MS assay with the sensitivity and specificity necessary to determine quercetin in human plasma and urine. This assay was used to determine both parent quercetin and the quercetin after enzymatic hydrolysis with beta-glucuronidase/sulfatase in human plasma and urine samples following the ingestion of quercetin 500 mg capsules.  相似文献   

11.
A gas chromatographic method for the simultaneous determination of methamphetamine and its metabolite amphetamine in human plasma and urine is described. The method utilizes reductive alkylation with propionaldehyde and sodium borohydride to produce N-propyl derivatives, which have excellent chromatographic properties. Structural analogs of the analytes, p-methylmethamphetamine and p-methylamphetamine, are used as internal standards. The method has good precision and accuracy for concentrations ranging from less than 10 ng/ml to 5000 ng/ml and has been used to measure plasma concentrations as part of a pharmacokinetic/pharmacodynamic study of methamphetamine in humans.  相似文献   

12.
A new method for simultaneous determination of glucocorticoids (GCs) in plasma or urine by high-performance liquid chromatography (HPLC) with fluorimetric detection has been developed. Following extraction with ethyl acetate using a reversed-phase disposable cartridge, the six GCs [cortisol (F), cortisone (E), prednisolone (PL), prednisone (PN), 6β-hydroxycortisol (6β-OHF) and 6β-hydroxyprednisolone (6β-OHP)] and an internal standard (6β-hydroxycotortisone) were derivatized by treatment with 9-anthroyl nitrile (9-AN) in a mixture of basic catalysts (triethylamine and quinuclidine) to give the fluorescent esters through the 21-hydroxyl group. The GC derivatives so obtained were then cleaned by a straight-phase disposable cartridge and chromatographed on a straight-phase column with an isocratic HPLC technique. The fluorescence derivatives of the GCs, including the internal standard, were separated as clear single peaks and no interfering peaks were observed on the chromatograms. The lower limits of detection for F, E, PL and PN in plasma or urine were 0.1 ng/ml and those for 6β-OHF and 6β-OHP in plasma or urine were 0.5 ng/ml, at a signal-to-noise ratio of 3. The analytical recovery of known amounts of the GCs added to plasma or urine were almost 100%. This method can be applied to the determination of plasma or urinary F in renal transplant patients who received PL and can be applied for other metabolic investigations in relation to the change in blood pressure via 11β-hydroxysteroid dehydrogenase or in hepatic metabolizing via CYP3A4.  相似文献   

13.
A chromatographic method for the quantitation of promethazine (PMZ) and its three metabolites in urine employing on-line solid-phase extraction and column-switching has been developed. The column-switching system described here uses an extraction column for the purification of PMZ and its metabolites from a urine matrix. The extraneous matrix interference was removed by flushing the extraction column with a gradient elution. The analytes of interest were then eluted onto an analytical column for further chromatographic separation using a mobile phase of greater solvent strength. This method is specific and sensitive with a range of 3.75–1400 ng/ml for PMZ and 2.5–1400 ng/ml for the metabolites promethazine sulfoxide, monodesmethyl promethazine sulfoxide and monodesmethyl promethazine. The lower limits of quantitation (LLOQ) were 3.75 ng/ml with less than 6.2% C.V. for PMZ and 2.50 ng/ml with less than 11.5% C.V. for metabolites based on a signal-to-noise ratio of 10:1 or greater. The accuracy and precision were within ±11.8% in bias and not greater than 5.5% C.V. in intra- and inter-assay precision for PMZ and metabolites. Method robustness was investigated using a Plackett–Burman experimental design. The applicability of the analytical method for pharmacokinetic studies in humans is illustrated.  相似文献   

14.
A sensitive and selective high-performance liquid chromatographic (HPLC) method was developed for the determination of pramipexole in human plasma and urine. Plasma/urine is made alkaline before pramipexole and BHT-920 (internal standard) are extracted by ethyl ether and back-extracted with a solution that contains heptanesulfonic acid. Separation is achieved by ion-pair chromatography on a Zorbax Rx C8 column with electrochemical detection at 0.6 V for plasma and ultraviolet detection at 286 nm for urine. The retention times of pramipexole and internal standard are approximately 14.4 and 10.7 min, respectively. The assay is linear in concentration ranges of 50 to 15 000 pg/ml (plasma) and 10 to 10 000 ng/ml (urine). The correlation coefficients are greater than 0.9992 for all curves. For the plasma method, the analysis of pooled quality controls (300, 3000, and 10 000 pg/ml) demonstrates excellent precision with relative standard deviations (R.S.D.) (n=18) of 1.1%, 2.3%, and 6.8%, respectively. For the urine method, quality control pools prepared at 30, 300, and 3000 ng/ml had R.S.D. values (n=18) of 2.9%, 1.7%, and 3.0%, respectively. The plasma and urine controls were stable for more than nine and three months, respectively. The mean recoveries for pramipexole and internal standard from plasma were 97.7% and 98.2%, respectively. The mean recoveries for pramipexole and internal standard from urine were 89.8% and 95.1%, respectively. The method is accurate with all intra-day (n=6) and overall (n=18) mean values for the quality control samples being less than 6.4 and 5.8% from theoretical for plasma and urine, respectively.  相似文献   

15.
A column-switching high-performance liquid chromatographic (HPLC) method is described for the determination of dapoxetine, and its mono- and di-desmethyl metabolites in human plasma. The analytes, including an internal standard, were extracted from plasma at basic pH with hexane—ethyl acetate. The organic extract was evaporated to dryness and the residue reconstituted with acetonitrile. The analytes were separated from late-eluting endogenous substances on a Zorbax RX-C8 pre-column. The front-cut fraction containing the analytes was further separated on a second RX-C8 column. The analytes were detected by their native fluorescence, using excitation and emission wavelengths of 230 and 330 nm, respectively. The limit of quantitation was determined to be 20 ng/ml, and the response was linear from 20 to 200 ng/ml. The method has been successfully applied to human plasma samples in a Phase I study.  相似文献   

16.
To prove the intake of recently controlled designer drugs, N-benzylpiperazine (BZP) and 1-(3-trifluoromethylphenyl)piperazine (TFMPP), a simple, sensitive and reliable method which allows us to simultaneously detect BZP, TFMPP and their major metabolite in human urine has been established by coupling gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS). GC-MS accompanied by trifluoroacetyl (TFA) derivatization and LC-MS analyses were performed after the enzymatic hydrolysis and the solid phase extraction with OASIS HLB, and BZP, TFMPP and their major metabolites, 4'-hydroxy-BZP (p-OH-BZP), 3'-hydroxy-BZP (m-OH-BZP) and 4'-hydroxy-TFMPP (p-OH-TFMPP), have found to be satisfactorily separated on a semi-micro SCX column with acetonitrile-40 mM ammonium acetate buffer (pH 4) (75:25, v/v) as the eluent. The detection limits produced by GC-MS were estimated to be from 50 ng/ml to 1 microg/ml in the scan mode, and from 200 to 500 ng/ml in the selected ion monitoring (SIM) mode. Upon applying the LC-ESI-MS technique, the linear calibration curves were obtained by using the SIM mode for all analytes in the concentration range from 10 ng/ml to 10 microg/ml. The detection limits ranged from 5 to 40 ng/ml in the scan mode, and from 0.2 to 1 ng/ml in the SIM mode. These results indicate the high reliability and sensitivity of the present procedure, and this procedure will be applicable for proof of intake of BZP and TFMPP in forensic toxicology.  相似文献   

17.
An improved, rapid and specific high-performance liquid chromatographic assay was developed for the determination of famotidine in human plasma and urine. Plasma samples were alkalinized and the analyte and internal standard (cimetidine) extracted with water-saturated ethyl acetate. The extracts were reconstituted in mobile phase, and injected onto a C18 reversed-phase column; UV detection was set at 267 nm. Urine samples were diluted with nine volumes of a mobile phase-internal standard mixture prior to injection. The lower limits of quantification in plasma and urine were 75 ng/ml and 1.0 μg/ml, respectively; intra- and inter-day coefficients of variation were ≤10.5%. This method is currently being used to support renal function studies assessing the use of intravenously administered famotidine to characterize cationic tubular secretion in man.  相似文献   

18.
Caffeic acid phenethyl ester (CAPE) is one of the most bioactive compounds of propolis, a resinous substance collected and elaborated by honeybees. A new liquid chromatography-electrospray ionisation tandem mass spectrometric method was developed and validated for its determination in rat plasma and urine, using taxifolin as internal standard. After sample preparation by liquid/liquid extraction with ethyl acetate, chromatographic separations were carried out with an ODS-RP column using a binary mobile phase gradient of acetonitrile in water. Detection was performed using a turboionspray source operated in negative ion mode and by multiple reaction monitoring. The method was validated, showing good selectivity, sensitivity (LOD = 1 ng/ml), linearity (5-1000 ng/ml; r > or = 0.9968), intra- and inter-batch precision and accuracy (< or =14.5%), and recoveries (94-106%) in both plasma and urine. Stability assays have shown that CAPE is rapidly hydrolysed by plasmatic esterases, which are however inhibited by sodium fluoride. The method was applied to the determination of CAPE levels in rat plasma and urine after oral administration, showing that CAPE is rapidly absorbed and excreted in urine both as unmodified molecule and as glucuronide conjugate.  相似文献   

19.
The enantiomers of the cytostatic drug ifosfamide and the two metabolites 2- and 3-dechloroethylifosfamide were isolated from plasma and urine by liquid-liquid extraction with ethyl acetate, resolved on a Chirasil- -val gas chromatographic column and detected by a nitrogen-phosphorus-selective flame ionisation detector. Resolution of the racemic compounds for identification purposes was also accomplished with high-performance liquid chromatography on a chiral column. The validated gas chromatographic method was suitable to determine the total concentrations and the enantiomeric composition of ifosfamide and its dechloroethylated metabolites in plasma and urine samples from treated patients. Some metabolic preferences in the metabolism of ifosfamide were found.  相似文献   

20.
The aim of this work was to develop and validate a method for analysing amphetamine-type stimulants (ATSs) and their metabolites in plasma, urine and bile by liquid chromatography with a strong cation-exchange column-tandem mass spectrometry, and to apply it to the pharmacokinetic study of ATSs. 3,4-Methylenedioxymethamphetamine, methamphetamine, ketamine and their main metabolites, 4-hydroxy-3-methoxymethamphetamine, 3,4-methylenedioxyamphetamine, p-hydroxymethamphetamine, amphetamine and norketamine, were simultaneously quantified by the new method (50-5000 ng/ml). The coefficients of variation and the percent deviations for the eight compounds were in the range of 0.2 to 5.3% and -9.4 to +12.8%, respectively. The recoveries were over 90% in all biological samples tested. This method was effective for the separation and the identification of ATSs and their main metabolites having amine moieties in plasma, urine and bile, and was applicable to pharmacokinetic analysis of methamphetamine, ketamine and their main metabolites in biological samples. This analytical method should be useful for the pharmacokinetic analysis of ATSs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号