首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular cloning of new neuroactive growth factors and their receptors has greatly enhanced our understanding of important interactions among receptors and singnaling molecules. These studies have begun to illuminate some of the mechanisms that allow for specificity in neuronal signaling. Model cell systems, such as the PC-12 pheochromocytoma cell line, express receptors for these different neurotirophic factors, leading to comparisons of signaling pathways for these factors. Upon binding their ligands, these receptors undergo phosphorylation on tyrosine residues, which directs their interaction with signaling proteins containing src homology (SH2) domains, sequences that mediate associations with tyrosine-phosphorylated proteins. These SH2 proteins translate the tyrosine kinase activity of receptors into downstream events that result in the specific cellular response. Investigations such as these have revealed that molecular specificity in signaling pathways may arise from combinatorial diversity in interactions between receptors and key regulatory proteins.  相似文献   

2.
The P450 enzymes maintain a conserved P450 fold despite a considerable variation in sequence. The P450 family even includes proteins that lack the single conserved cysteine and are therefore no longer haem-thiolate proteins. The mechanisms of successive gene duplications leading to large families in plants and animals are well established. Comparisons of P450 CYP gene clusters in related species illustrate the rapid changes in CYPome sizes. Examples of CYP copy number variation with effects on fitness are emerging, and these provide an opportunity to study the proximal causes of duplication or pseudogenization. Birth and death models can explain the proliferation of CYP genes that is amply illustrated by the sequence of every new genome. Thus, the distribution of P450 diversity within the CYPome of plants and animals, a few families with many genes (P450 blooms) and many families with few genes, follows similar power laws in both groups. A closer look at some families with few genes shows that these, often single member families, are not stable during evolution. The enzymatic prowess of P450 may predispose them to switch back and forth between metabolism of critical structural or signal molecules and metabolism dedicated to environmental response.  相似文献   

3.
Jasmonates (JAs) are a class of signaling compounds that mediate complex developmental and adaptative responses in plants. JAs derive from jasmonic acid (JA) through various enzymatic modifications, including conjugation to amino acids or oxidation, yielding an array of derivatives. The main hormonal signal, jasmonoyl-l-isoleucine (JA-Ile), has been found recently to undergo catabolic inactivation by cytochrome P450-mediated oxidation. We characterize here two amidohydrolases, IAR3 and ILL6, that define a second pathway for JA-Ile turnover during the wound response in Arabidopsis leaves. Biochemical and genetic evidence indicates that these two enzymes cleave the JA-Ile signal, but act also on the 12OH-JA-Ile conjugate. We also show that unexpectedly, the abundant accumulation of tuberonic acid (12OH-JA) after wounding originates partly through a sequential pathway involving (i) conjugation of JA to Ile, (ii) oxidation of the JA-Ile conjugate, and (iii) cleavage under the action of the amidohydrolases. The coordinated actions of oxidative and hydrolytic branches in the jasmonate pathway highlight novel mechanisms of JA-Ile hormone turnover and redefine the dynamic metabolic grid of jasmonate conversion in the wound response.  相似文献   

4.
5.
This study explores the role of G-protein-coupled receptor-intracellular signaling in the development of P450-mediated insecticide resistance in mosquitoes, Culex quinquefasciatus, focusing on the essential function of the GPCRs and their downstream effectors of Gs alpha subunit protein (Gαs) and adenylyl cyclase (ACs) in P450-mediated insecticide resistance of Culex mosquitoes. Our RNAi-mediated functional study showed that knockdown of Gαs caused the decreased expression of the downstream effectors of ACs and PKAs in the GPCR signaling pathway and resistance P450 genes, whereas knockdown of ACs decreased the expression of PKAs and resistance P450 genes. Knockdown of either Gαs or ACs resulted in an increased susceptibility of mosquitoes to permethrin. These results add significantly to our understanding of the molecular basis of resistance P450 gene regulation through GPCR/Gαs/AC/cAMP-PKA signaling pathways in the insecticide resistance of mosquitoes. The temporal and spatial dynamic analyses of GPCRs, Gαs, ACs, PKAs, and P450s in two insecticide resistant mosquito strains revealed that all the GPCR signaling pathway components tested, namely GPCRs, Gαs, ACs and PKAs, were most highly expressed in the brain for both resistant strains, suggesting the role played by these genes in signaling transduction and regulation. The resistance P450 genes were mainly expressed in the brain, midgut and malpighian tubules (MTs), suggesting their critical function in the central nervous system and importance for detoxification. The temporal dynamics analysis for the gene expression showed a diverse expression profile during mosquito development, indicating their initially functional importance in response to exposure to insecticides during their life stages.  相似文献   

6.
7.
Plants depend on cytochrome P450 (CYP) enzymes for nearly every aspect of their biology. In several sequenced angiosperms, CYP genes constitute up to 1% of the protein coding genes. The angiosperm sequence diversity is encapsulated by 59 CYP families, of which 52 families form a widely distributed core set. In the 20 years since the first plant P450 was sequenced, 3,387 P450 sequences have been identified and annotated in plant databases. As no new angiosperm CYP families have been discovered since 2004, it is now apparent that the sampling of CYP diversity is beginning to plateau. This review presents a comparison of 1,415 cytochrome P450 sequences from the six sequenced genomes of Vitis vinifera (grape), Carica papaya (papaya), Populus trichocarpa (poplar), Oryza sativa (rice), Arabidopsis thaliana (Arabidopsis or mouse ear’s cress) and Physcomitrella patens (moss). An evolutionary analysis is presented that tracks land plant P450 innovation over time from the most ancient and conserved sequences to the newest dicot-specific families. The earliest or oldest P450 families are devoted to the essential biochemistries of sterol and carotenoid synthesis. The next evolutionary radiation of P450 families appears to mediate crucial adaptations to a land environment. And, the newest CYP families appear to have driven the diversity of angiosperms in mediating the synthesis of pigments, odorants, flavors and order-/genus-specific secondary metabolites. Family-by-family comparisons allow the visualization of plant genome plasticity by whole genome duplications and massive gene family expansions via tandem duplications. Molecular evidence of human domestication is quite apparent in the repeated P450 gene duplications occurring in the grape genome.  相似文献   

8.
Cytochromes P450 are involved in the metabolism of various endogenous and exogenous compounds, and their role in the detoxification of xenobiotics has been extensively studied. CYP9e, one of the subfamilies of cytochromes P450, whose functions have been poorly studied, is amplified in the black garden ant Lasius niger. We have performed molecular modeling of 23 proteins of this family belonging to L. niger and other ant species, as well as molecular docking and virtual screening of suspected ligands. The substances used as ligands have been annotated with ChEBI ontologies to predict the chemical and biological properties of molecules forming complexes with CYP9e of ants. It has been shown that, among the ligands forming energetically favorable complexes, ChEBI ontologies of mycotoxins, phytotoxins, steroids, glycosides and terpenoids are overrepresented. Nevertheless, it has been demonstrated that in carrying out a large number of inaccurate simulations, the results of function predictions can be correlated with molecular docking and the evolutionary history of a protein family.  相似文献   

9.
10.
Sphingolipid long-chain bases and their phosphorylated derivatives, for example, sphingosine-1-phosphate in mammals, have been implicated as signaling molecules. The possibility that Saccharomyces cerevisiae cells also use long-chain-base phosphates to regulate cellular processes has only recently begun to be examined. Here we present a simple and sensitive procedure for analyzing and quantifying long-chain-base phosphates in S. cerevisiae cells. Our data show for the first time that phytosphingosine-1-phosphate (PHS-1-P) is present at a low but detectable level in cells grown on a fermentable carbon source at 25°C, while dihydrosphingosine-1-phosphate (DHS-1-P) is only barely detectable. Shifting cells to 37°C causes transient eight- and fivefold increases in levels of PHS-1-P and DHS-1-P, respectively, which peak after about 10 min. The amounts of both compounds return to the unstressed levels by 20 min after the temperature shift. These data are consistent with PHS-1-P and DHS-1-P being signaling molecules. Cells unable to break down long-chain-base phosphates, due to deletion of DPL1 and LCB3, show a 500-fold increase in PHS-1-P and DHS-1-P levels, grow slowly, and survive a 44°C heat stress 10-fold better than parental cells. These and other data for dpl1 or lcb3 single-mutant strains suggest that DHS-1-P and/or PHS-1-P act as signals for resistance to heat stress. Our procedure should expedite experiments to determine how the synthesis and breakdown of these compounds is regulated and how the compounds mediate resistance to elevated temperature.  相似文献   

11.
Human cytochrome P450(CYP 450) enzymes mediate over 60% of the phase I-dependent metabolism of clinical drugs. They are also known for the polymorphism functions that have significant impacts on the enzyme activities. In this study, a web-server called SCYPPred was developed for predicting human cytochrome P450 SNPs (Single Nucleotide Polymorphisms) based on the SVM flanking sequence method; SCYPPred can rapidly yield the desired results by using the amino acid sequences information alone. The web-server is accessible to the public at http://snppred.sjtu.edu.cn. Hopefully SCYPPred could be a useful bioinformatics tool for elucidating the mutation probability of a specific CYP450 enzyme.  相似文献   

12.
13.
14.
15.
16.

Background  

Plant cytochrome P450 monooxygenases (CYP) mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf) infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines.  相似文献   

17.
A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant’s stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation.  相似文献   

18.
19.
Pollinosis from Parietaria judaica is one of the main causes of allergy in the Mediterranean area. The present study is designed to assess if P. judaica pollens contain bioactive compounds able to elicit a functional response in endothelial cells.We have demonstrated that addition of pollen extract to human lung microvascular endothelial cells (HMVEC-L) induces a modification of cell morphology, actin cytoskeletal rearrangements and an increase in endothelial cell permeability. We further showed that the treatment of endothelial cells with pollen extract causes an increase of E-selectin and VCAM-1 protein levels as well as an increase of IL-8 production. The stimulation of cell-cell adhesion molecules was paralleled by a dose-dependent increase of adhesion of polymorphonuclear cells (PMNs) to HMVEC-L monolayer. Our results suggest for the first time that pollen affect directly endothelial cells (EC) modulating critical functions related to the inflammatory response.  相似文献   

20.
The design of an efficient human immunodeficiency virus (HIV) immunogen able to generate broad neutralizing antibodies (NAbs) remains an elusive goal. As more data emerge, it is becoming apparent that one important aspect of such an immunogen will be the proper representation of the envelope protein (Env) as it exists on native virions. Important questions that are yet to be fully addressed include what factors dictate Env processing, how different Env forms are represented on the virion, and ultimately how these issues influence the development and efficacy of NAbs. Recent data have begun to illuminate the extent to which changes in gp41 can impact the overall structure and neutralizing sensitivity of Env. Here, we present evidence to suggest that minor mutations in gp120 can significantly impact Env processing. We analyzed the gp120 sequences of 20 env variants that evolved in multiple macaques over 8 months of infection with simian/human immunodeficiency virus 89.6P. Variant gp120 sequences were subcloned into gp160 expression plasmids with identical cleavage motifs and gp41 sequences. Cells cotransfected with these plasmids and Δenv genomes were able to produce competent virus. The resulting pseudoviruses incorporated high levels of Env onto virions that exhibited a range of degrees of virion-associated Env cleavage (15 to 40%). Higher levels of cleavage correlated with increased infectivity and increased resistance to macaque plasma, HIV immunoglobulin, soluble CD4, and human monoclonal antibodies 4E10, 2F5, and b12. Based on these data, we discuss a model whereby changes in gp120 of 89.6P impact Env processing and thereby mediate escape from a range of neutralizing agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号