首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Cadherins are Ca(2+)-dependent, cell surface glycoproteins involved in cell-cell adhesion. Extracellularly, transmembrane cadherins such as E- , P-, and N-cadherin self-associate, while intracellularly they interact indirectly with the actin-based cytoskeleton. Several intracellular proteins termed catenins, including alpha-catenin, beta- catenin, and plakoglobin, are tightly associated with these cadherins and serve to link them to the cytoskeleton. Here, we present evidence that in fibroblasts alpha-actinin, but not vinculin, colocalizes extensively with the N-cadherin/catenin complex. This is in contrast to epithelial cells where both cytoskeletal proteins colocalize extensively with E-cadherin and catenins. We further show that alpha- actinin, but not vinculin, coimmunoprecipitates specifically with alpha- and beta-catenin from N- and E-cadherin-expressing cells, but only if alpha-catenin is present. Moreover, we show that alpha-actinin coimmunoprecipitates with the N-cadherin/catenin complex in an actin- independent manner. We therefore propose that cadherin/catenin complexes are linked to the actin cytoskeleton via a direct association between alpha-actinin and alpha-catenin.  相似文献   

2.
Cadherins and catenins play an important role in cell-cell adhesion. Two of the catenins, beta and gamma, are members of a group of proteins that contains a repeating amino acid motif originally described for the Drosophila segment polarity gene armadillo. Another member of this group is a 120-kD protein termed p120, originally identified as a substrate of the tyrosine kinase pp60src. In this paper, we show that endothelial and epithelial cells express p120 and p100, a 100-kD, p120- related protein. Peptide sequencing of p100 establishes it as highly related to p120. p120 and p100 both appear associated with the cadherin/catenin complex, but independent p120/catenin and p100/catenin complexes can be isolated. This association is shown by coimmunoprecipitation of cadherins and catenins with an anti-p120/p100 antibody, and of p120/p100 with cadherin or catenin antibodies. Immunocytochemical analysis with a p120-specific antibody reveals junctional colocalization of p120 and beta-catenin in epithelial cells. Catenins and p120/p100 also colocalize in endothelial and epithelial cells in culture and in tissue sections. The cellular content of p120/p100 and beta-catenin is similar in MDCK cells, but only approximately 20% of the p120/p100 pool associates with the cadherin/catenin complex. Our data provide further evidence for interactions among the different arm proteins and suggest that p120/p100 may participate in regulating the function of cadherins and, thereby, other processes influenced by cell-cell adhesion.  相似文献   

3.
《The Journal of cell biology》1996,134(6):1519-1529
Cadherins are calcium-dependent cell adhesion molecules that play fundamental roles in embryonic development, tissue morphogenesis, and cancer. A prerequisite for their function is association with the actin cytoskeleton via the catenins. Tyrosine phosphorylation of beta- catenin, which correlates with a reduction in cadherin-dependent cell adhesion, may provide cells with a mechanism to regulate cadherin activity. Here we report that beta-catenin immune precipitates from PC12 cells contain tyrosine phosphatase activity which dephosphorylates beta-catenin in vitro. In addition, we show that a member of the leukocyte antigen-related protein (LAR)-related transmembrane tyrosine phosphatase family (LAR-PTP) associates with the cadherin-catenin complex. This association required the amino-terminal domain of beta- catenin but does not require the armadillo repeats, which mediate association with cadherins. The interaction also is detected in PC9 cells, which lack alpha-catenin. Thus, the association is not mediated by alpha-catenin or by cadherins. Interestingly, LAR-PTPs are phosphorylated on tyrosine in a TrkA-dependent manner, and their association with the cadherin-catenin complex is reduced in cells treated with NGF. We propose that changes in tyrosine phosphorylation of beta-catenin mediated by TrkA and LAR-PTPs control cadherin adhesive function during processes such as neurite outgrowth.  相似文献   

4.
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.Key words: receptor protein tyrosine kinase, receptor-like protein tyrosine phosphatase, cadherins, cell adhesion, signal transduction, phospholipase C gamma, protein kinase C, catenins, IQGAP1 protein, regulated intramembrane proteolysis  相似文献   

5.
The extracellular segment of the receptor-type type protein tyrosine phosphatase PTPmu, possesses an MAM domain, an immunoglobulin domain, and four fibronectin type-III repeats. It binds homophilically, i.e., PTPmu on the surface of one cell binds to PTPmu on an apposing cell, and the binding site lies within the immunoglobulin domain. The intracellular segment of PTPmu has two PTP domains and a juxtamembrane segment that is homologous to the conserved intracellular domain of the cadherins. In cadherins, this segment interacts with proteins termed catenins to mediate association with the actin cytoskeleton. In this article, we demonstrate that PTPmu associates with a complex containing cadherins, alpha- and beta-catenin in mink lung (MvLu) cells, and in rat heart, lung, and brain tissues. Greater than 80% of the cadherin in the cell is cleared from Triton X-100 lysates of MvLu cells after immunoprecipitation with antibodies to PTPmu; however, the complex is dissociated when lysates are prepared in more stringent, SDS-containing RIPA buffer. In vitro binding studies demonstrated that the intracellular segment of PTPmu binds directly to the intracellular domain of E-cadherin, but not to alpha- or beta-catenin. Consistent with their ability to interact in vivo, PTPmu, cadherins, and catenins all localized to points of cell-cell contact in MvLu cells, as assessed by immunocytochemical staining. After pervanadate treatment of MvLu cells, which inhibits cellular tyrosine phosphatase activity including PTPmu, the cadherins associated with PTPmu are now found in a tyrosine- phosphorylated form, indicating that the cadherins may be an endogenous substrate for PTPmu. These data suggest that PTPmu may be one of the enzymes that regulates the dynamic tyrosine phosphorylation, and thus function, of the cadherin/catenin complex in vivo.  相似文献   

6.
RPTPmu is a prototypic receptor-like protein-tyrosine phosphatase (RPTP) that mediates homotypic cell-cell interactions. Intracellularly, RPTPmu consists of a relatively large juxtamembrane region and two phosphatase domains, but little is still known about its substrate(s). Here we show that RPTPmu associates with the catenin p120(ctn), a tyrosine kinase substrate and an interacting partner of cadherins. No interaction is detectable between RPTPmu and beta-catenin. Furthermore, we show that tyrosine-phosphorylated p120(ctn) is dephosphorylated by RPTPmu both in vitro and in intact cells. Complex formation between RPTPmu and p120(ctn) does not require tyrosine phosphorylation of p120(ctn). Mutational analysis reveals that both the juxtamembrane region and the second phosphatase domain of RPTPmu are involved in p120(ctn) binding. The RPTPmu-interacting domain of p120(ctn) maps to its unique N terminus, a region distinct from the cadherin-interacting domain. A mutant form of p120(ctn) that fails to bind cadherins can still associate with RPTPmu. Our findings indicate that RPTPmu interacts with p120(ctn) independently of cadherins, and they suggest that this interaction may serve to control the tyrosine phosphorylation state of p120(ctn) at sites of cell-cell contact.  相似文献   

7.
Dissolution of cell-cell adhesive contacts and increased cell-extracellular matrix adhesion are hallmarks of the migratory and invasive phenotype of cancer cells. These changes are facilitated by growth factor binding to receptor protein tyrosine kinases (RTKs). In normal cells, cell-cell adhesion molecules (CAMs), including some receptor protein tyrosine phosphatases (RPTPs), antagonize RTK signaling by promoting adhesion over migration. In cancer, RTK signaling is constitutive due to mutated or amplified RTKs, which leads to growth factor independence, or autonomy. An alternative route for a tumor cell to achieve autonomy is to inactivate cell-cell CAMs such as RPTPs. RPTPs directly mediate cell adhesion and regulate both cadherin-dependent adhesion and signaling. In addition, RPTPs antagonize RTK signaling by dephosphorylating molecules activated following ligand binding. Both RPTPs and cadherins are downregulated in tumor cells by cleavage at the cell surface. This results in shedding of the extracellular, adhesive segment and displacement of the intracellular segment, altering its subcellular localization and access to substrates or binding partners. In this commentary we discuss the signals that are altered following RPTP and cadherin cleavage to promote cell migration. Tumor cells both step on the gas (RTKs) and disconnect the brakes (RPTPs and cadherins) during their invasive and metastatic journey.  相似文献   

8.
《The Journal of cell biology》1994,125(6):1327-1340
Calcium-dependent cell-cell adhesion is mediated by the cadherin family of cell adhesion proteins. Transduction of cadherin adhesion into cellular reorganization is regulated by cytosolic proteins, termed alpha-, beta-, and gamma-catenin (plakoglobin), that bind to the cytoplasmic domain of cadherins and link them to the cytoskeleton. Previous studies of cadherin/catenin complex assembly and organization relied on the coimmunoprecipitation of the complex with cadherin antibodies, and were limited to the analysis of the Triton X-100 (TX- 100)-soluble fraction of these proteins. These studies concluded that only one complex exists which contains cadherin and all of the catenins. We raised antibodies specific for each catenin to analyze each protein independent of its association with E-cadherin. Extracts of Madin-Darby canine kidney epithelial cells were sequentially immunoprecipitated and immunoblotted with each antibody, and the results showed that there were complexes of E-cadherin/alpha-catenin, and either beta-catenin or plakoglobin in the TX-100-soluble fraction. We analyzed the assembly of cadherin/catenin complexes in the TX-100- soluble fraction by [35S]methionine pulse-chase labeling, followed by sucrose density gradient fractionation of proteins. Immediately after synthesis, E-cadherin, beta-catenin, and plakoglobin cosedimented as complexes. alpha-Catenin was not associated with these complexes after synthesis, but a subpopulation of alpha-catenin joined the complex at a time coincident with the arrival of E-cadherin at the plasma membrane. The arrival of E-cadherin at the plasma membrane coincided with an increase in its insolubility in TX-100, but extraction of this insoluble pool with 1% SDS disrupted the cadherin/catenin complex. Therefore, to examine protein complex assembly in both the TX-100- soluble and -insoluble fractions, we used [35S]methionine labeling followed by chemical cross-linking before cell extraction. Analysis of cross-linked complexes from cells labeled to steady state indicates that, in addition to cadherin/catenin complexes, there were cadherin- independent pools of catenins present in both the TX-100-soluble and - insoluble fractions. Metabolic labeling followed by chase showed that immediately after synthesis, cadherin/beta-catenin, and cadherin/plakoglobin complexes were present in the TX-100-soluble fraction. Approximately 50% of complexes were titrated into the TX-100- insoluble fraction coincident with the arrival of the complexes at the plasma membrane and the assembly of alpha-catenin. Subsequently, > 90% of labeled cadherin, but no additional labeled catenin complexes, entered the TX-100-insoluble fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
《The Journal of cell biology》1996,134(5):1271-1281
Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesivity, catenins have more recently been indicated to participate in cell and developmental signaling pathways. beta-Catenin, for example, associates directly with at least two receptor tyrosine kinases and transduces developmental signals within the Wnt pathway. Catenins also complex with the tumor suppressor protein adenomatous polyposis coli (APC), which appears to have a role in regulating cell proliferation. We have used the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to beta-catenin's central Armadillo repeat domain. Western blotting of immunoprecipitates from cell line and mouse and rat brain extracts indicate that this interaction exists in vivo. Fascin and beta-catenin's association was further substantiated in vitro using purified proteins isolated from recombinant bacterial and baculoviral sources. Immunoprecipitation analysis indicates that fascin additionally binds to plakoglobin, which is highly homologous to beta-catenin but not to p120cas, a newly described catenin which contains a more divergent Armadillo-repeat domain. Immunoprecipitation, in vitro competition, and domain-mapping experiments demonstrate that fascin and E-cadherin utilize a similar binding site within beta-catenin, such that they form mutually exclusive complexes with beta-catenin. Immunofluorescence microscopy reveals that fascin and beta-catenin colocalize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. In addition to cell-cell borders, cadherins were unexpectedly observed to colocalize with fascin and beta-catenin at cell leading edges. It is conceivable that beta-catenin participates in modulating cytoskeletal dynamics in association with the microfilament-bundling protein fascin, perhaps in a coordinate manner with its functions in cadherin and APC complexes.  相似文献   

10.
Cadherins comprise a family of calcium-dependent glycoproteins that function in mediating cell-cell adhesion in virtually all solid tissues of multicellular organisms. In epithelial cells, E-cadherin represents a key molecule in the establishment and stabilization of cellular junctions. On the cellular level, E-cadherin is concentrated at the adherens junction and interacts homophilically with E-cadherin molecules of adjacent cells. Significant progress has been made in understanding the extra- and intracellular interactions of E-cadherin. Recent success in solving the three-dimensional structure of an extracellular cadherin domain provides a structural basis for understanding the homophilic interaction mechanism and the calcium requirement of cadherins. According to the crystal structure, individual cadherin molecules cooperate to form a linear cell adhesion zipper. The intracellular anchorage of cadherins is regulated by the dynamic association with cytoplasmic proteins, termed catenins. The cytoplasmic domain of E-cadherin is complexed with either β-catenin or plakoglobin (γ-catenin). β-catenin and plakoglobin bind directly to α-catenin, giving rise to two distinct cadherin-catenin complexes (CCC). α-catenin is thought to link both CCC's to actin filaments. The anchorage of cadherins to the cytoskeleton appears to be regulated by tyrosine phosphorylation. Phosphorylation-induced junctional disassembly targets the catenins, indicating that catenins are components of signal transduction pathways. The unexpected association of catenins with the product of the tumor suppressor gene APC has led to the discovery of a second, cadherin-independent catenin complex. Two separate catenin complexes are therefore involved in the cross-talk between cell adhesion and signal transduction. In this review we focus on protein interactions regulating the molecular architecture and function of the CCC. In the light of a fundamental role of the CCC during mammalian development and tissue morphogenesis, we also discuss the phenotypes of embryos lacking E-cadherin or β-catenin. © 1996 Wiley-Liss, Inc.  相似文献   

11.
12.
Cadherin-mediated cell-cell adhesion is perturbed in protein tyrosine kinase (PTK)-transformed cells. While cadherins themselves appear to be poor PTK substrates, their cytoplasmic binding partners, the Arm catenins, are excellent PTK substrates and therefore good candidates for mediating PTK-induced changes in cadherin behavior. These proteins, p120ctn, β-catenin and plakoglobin, bind to the cytoplasmic region of classical cadherins and function to modulate adhesion and/or bridge cadherins to the actin cytoskeleton. In addition, as demonstrated recently for β-catenin, these proteins also have crucial signaling roles that may or may not be related to their effects on cell-cell adhesion. Tyrosine phosphorylation of cadherin complexes is well documented and widely believed to modulate cell adhesiveness. The data to date, however, is largely correlative and the mechanism of action remains unresolved. In this review, we discuss the current literature and suggest models whereby tyrosine phosphorylation of Arm catenins contribute to regulation or perturbation of cadherin function.  相似文献   

13.
p120 was originally identified as a substrate of pp60src and several receptor tyrosine kinases, but its function is not known. Recent studies revealed that this protein shows homology to a group of proteins, beta-catenin/Armadillo and plakoglobin (gamma-catenin), which are associated with the cell adhesion molecules cadherins. In this study, we examined whether p120 is associated with E-cadherin using the human carcinoma cell line HT29, as well as other cell lines, which express both of these proteins. When proteins that copurified with E- cadherin were analyzed, not only alpha-catenin, beta-catenin, and plakoglobin but also p120 were detected. Conversely, immunoprecipitates of p120 contained E-cadherin and all the catenins, although a large subpopulation of p120 was not associated with E-cadherin. Analysis of these immunoprecipitates suggests that 20% or less of the extractable E- cadherin is associated with p120. When p120 immunoprecipitation was performed with cell lysates depleted of E-cadherin, beta-catenin was no longer coprecipitated, and the amount of plakoglobin copurified was greatly reduced. This finding suggests that there are various forms of p120 complexes, including p120/E-cadherin/beta-catenin and p120/E- cadherin/plakoglobin complexes; this association profile contrasts with the mutually exclusive association of beta-catenin and plakoglobin with cadherins. When the COOH-terminal catenin binding site was truncated from E-cadherin, not only beta-catenin but also p120 did not coprecipitate with this mutated E-cadherin. Immunocytological studies showed that p120 colocalized with E-cadherin at cell-cell contact sites, even after non-ionic detergent extraction. Treatment of cells with hepatocyte growth factor/scatter factor altered the level of tyrosine phosphorylation of p120 as well as of beta-catenin and plakoglobin. These results suggest that p120 associates with E-cadherin at its COOH-terminal region, but the mechanism for this association differs from that for the association of beta-catenin and plakoglobin with E-cadherin, and thus, that p120, whose function could be modulated by growth factors, may play a unique role in regulation of the cadherin- catenin adhesion system.  相似文献   

14.
Cadherins are calcium‐dependent cell adhesion receptors with strong morphoregulatory functions. To mediate functional adhesion, cadherins must interact with actin cytoskeleton. Catenins are cytoplasmic proteins that mediate the interactions between cadherins and the cytoskeleton. In addition to their role in cell–cell adhesion, catenins also participate in signaling pathways that regulate cell growth and differentiation. Cadherins and catenins appear to be involved in melanocyte development and transformation. Here, we investigated the function of cadherin–catenin complexes in the normal development and transformation of melanocytes by studying the patterns of expression of the cell–cell adhesion molecules, E‐, N‐ and P‐cadherin, and the expression of their cytoplasmic partners, α‐, β‐ and Γ‐catenin, during murine development. Similar analyses were performed in vitro using murine melanoblast, melanocyte, and melanoma cell lines in the presence and absence of keratinocytes, the cells with which melanocytes interact in vivo. Overall, the results suggest that the expression of cadherins and catenins is very plastic and depends on their environment as well as the transformation status of the cells. This plasticity is important in fundamental cellular mechanisms associated with normal and pathological ontogenesis, as well as with tumorigenesis.  相似文献   

15.
Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton. In the context of stable adhesion, cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis. Here actin polymerization has been proposed to drive cell surfaces together, although F-actin reorganization also occurs as cell contacts mature. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.  相似文献   

16.
Classical cadherins are transmembrane glycoproteins involved in calcium-dependent cell-cell adhesion. Calcium ions are coordinated at the interface between successive modules of the cadherin ectodomain and are thought to regulate the adhesive interactions of cadherins when present at millimolar concentrations. It is widely accepted that calcium plays a critical role in cadherin-mediated cell-cell adhesion, but the nature of cadherin-calcium binding remains a matter of debate. We investigated the parameters of noncovalent cadherin-calcium binding, using the two N-terminal modules of E-cadherin (E/EC12) with a native N-terminal end and nondenaturing electrospray ionization mass spectrometry. By directly visualizing the molecular complexes, we demonstrated that E/EC12 binds three calcium ions, with an average KD of 20 +/- 0.7 microM. These calcium ions bound cooperatively to E/EC12 in its monomeric state, and these properties were not modified by an N-terminal extension consisting of a single methionine residue. This binding induced specific structural changes, as shown by assessments of protease sensitivity, circular dichroism, and mass spectrometry. Furthermore, the D103A mutation (a residue involved in E-cadherin adhesive function) modified calcium binding and led to a loss of cooperativity and the absence of structural changes, despite calcium binding. As the amino acids involved in calcium binding are found within the cadherin consensus motif, our findings may be relevant to other members of the cadherin family.  相似文献   

17.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

18.
Modulators of cadherin function are of great interest given that the cadherin complex actively contributes to the morphogenesis of virtually all tissues. The catenin p120(ctn) (formerly p120cas) was first identified as a src- and receptor-protein tyrosine kinase substrate and later shown to interact directly with cadherins. In common with beta-catenin and plakoglobin (gamma-catenin), p120(ctn) contains a central Armadillo repeat region by which it binds cadherin cytoplasmic domains. However, little is known about the function of p120(ctn) within the cadherin complex. We examined the role of p120(ctn)1A in early vertebrate development via its exogenous expression in Xenopus. Ventral overexpression of p120(ctn)1A, in contrast to beta-catenin, did not induce the formation of duplicate axial structures resulting from the activation of the Wnt signaling pathway, nor did p120(ctn) affect mesoderm induction. Rather, dorsal misexpression of p120(ctn) specifically perturbed gastrulation. Lineage tracing of cells expressing exogenous p120(ctn) indicated that cell movements were disrupted, while in vitro studies suggested that this may have been a consequence of reduced adhesion between blastomeres. Thus, while cadherin-binding proteins beta-catenin, plakoglobin, and p120(ctn) are members of the Armadillo protein family, it is clear that these proteins have distinct biological functions in early vertebrate development. This work indicates that p120(ctn) has a role in cadherin function and that heightened expression of p120(ctn) interferes with appropriate cell-cell interactions necessary for morphogenesis.  相似文献   

19.
A primary function of cadherins is to regulate cell adhesion. Here, we demonstrate a broader function of cadherins in the differentiation of specialized epithelial cell phenotypes. In situ, the rat retinal pigment epithelium (RPE) forms cell-cell contacts within its monolayer, and at the apical membrane with the neural retina; Na+, K(+)-ATPase and the membrane cytoskeleton are restricted to the apical membrane. In vitro, RPE cells (RPE-J cell line) express an endogenous cadherin, form adherens junctions and a tight monolayer, but Na+,K(+)-ATPase is localized to both apical and basal-lateral membranes. Expression of E- cadherin in RPE-J cells results in restriction and accumulation of both Na+,K(+)-ATPase and the membrane cytoskeleton at the lateral membrane; these changes correlate with the synthesis of a different ankyrin isoform. In contrast to both RPE in situ and RPE-J cells that do not form desmosomes, E-cadherin expression in RPE-J cells induces accumulation of desmoglein mRNA, and assembly of desmosome-keratin complexes at cell-cell contacts. These results demonstrate that cadherins directly affect epithelial cell phenotype by remodeling the distributions of constitutively expressed proteins and by induced accumulation of specific proteins, which together lead to the generation of structurally and functionally distinct epithelial cell types.  相似文献   

20.
CD148 is a transmembrane tyrosine phosphatase that is expressed at cell junctions. Recent studies have shown that CD148 associates with the cadherin/catenin complex and p120 catenin (p120) may serve as a substrate. However, the role of CD148 in cadherin cell-cell adhesion remains unknown. Therefore, here we addressed this issue using a series of stable cells and cell-based assays. Wild-type (WT) and catalytically inactive (CS) CD148 were introduced to A431D (lacking classical cadherins), A431D/E-cadherin WT (expressing wild-type E-cadherin), and A431D/E-cadherin 764AAA (expressing p120-uncoupled E-cadherin mutant) cells. The effects of CD148 in cadherin adhesion were assessed by Ca2+ switch and cell aggregation assays. Phosphorylation of E-cadherin/catenin complex and Rho family GTPase activities were also examined. Although CD148 introduction did not alter the expression levels and complex formation of E-cadherin, p120, and β-catenin, CD148 WT, but not CS, promoted cadherin contacts and strengthened cell-cell adhesion in A431D/E-cadherin WT cells. This effect was accompanied by an increase in Rac1, but not RhoA and Cdc42, activity and largely diminished by Rac1 inhibition. Further, we demonstrate that CD148 reduces the tyrosine phosphorylation of p120 and β-catenin; causes the dephosphorylation of Y529 suppressive tyrosine residue in Src, a well-known CD148 site, increasing Src activity and enhancing the phosphorylation of Y228 (a Src kinase site) in p120, in E-cadherin contacts. Consistent with these findings, CD148 dephosphorylated both p120 and β-catenin in vitro. The shRNA-mediated CD148 knockdown in A431 cells showed opposite effects. CD148 showed no effects in A431D and A431D/E-cadherin 764AAA cells. In aggregate, these findings provide the first evidence that CD148 promotes E-cadherin adhesion by regulating Rac1 activity concomitant with modulation of p120, β-catenin, and Src tyrosine phosphorylation. This effect requires E-cadherin and p120 association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号