首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enantioselective alkynylation of aldehyde catalyzed by chiral zinc(II)-complexes was studied by means of the density functional theory (DFT). All the structures were optimized completely at the B3LYP/6-31G(d,p) level. To obtain more exact energies, single-point energy calculations at B3LYP/6-31+G(d,p) level were carried out on the B3LYP/6-31G(d,p) geometries. As shown, this enantioselective alkynylation was endothermic. The chirality-determining step for the alkynylation was the formation of the catalyst–ethanol complexes and the transition states for this step involved a six-membered ring. The dominant products predicted theoretically were of (R)-chirality, in good agreement with experiment.   相似文献   

2.
Density functional calculations of the structure, atomic charges, molecular electrostatic potential and thermodynamic functions have been performed at B3LYP/6-31G(d,p) level of theory for the title compound (E)-2-[(2-hydroxy-5-nitrophenyl)-iminiomethyl]-4-nitrophenolate. The results show that the phenolate oxygen atom and all of the nitro group oxygen atoms have bigger negative charges, and the coordination ability of these atoms differs in different solvents. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6-31G(d,p) basis set by applying the Onsager method and the isodensity polarized continuum model (IPCM). The results obtained with these methods reveal that the IPCM method yielded a more stable structure than Onsager’s method. In addition, natural bond orbital and frontier molecular orbital analysis of the title compound were performed using the B3LYP/6-31G(d,p) method.  相似文献   

3.
The VCD spectrum of the monoterpene (−)-myrtenal (1) was compared with theoretical spectra using ab initio density functional theory (DFT) calculations at the B3LYP/6-31G(d,p), B3LYP/6-31G+(d,p), B3LYP/6-311G+(d,p), B3LYP/DGDZVP, and B3PW91/DGTZVP levels of theory. Conformational analysis of 1 indicated that the lowest energy conformer was s-trans-C2-C10, which contributes more than 98.5% to the total conformational population regardless of the employed level of theory. The use of a recently developed confidence level algorithm demonstrated that VCD spectra calculated for the main conformer, using the indicated hybrid functionals and basis set, gave no significant changes, from where it follows that B3LYP/DGDZVP calculations provide a superior balance between computer cost and VCD spectral accuracy. The DGDZVP basis set demanded around a quarter the time than the 6-311G+(d,p) basis set while providing similar results. The spectral comparison also provided evidence that the levorotatory enantiomer of myrtenal has the 1R absolute configuration.  相似文献   

4.
The thermal decomposition of model compounds for poly (dialkyl fumarate) was studied by using ab initio and density functional theory (DFT) calculations. To determine the most favorable reaction pathway of thermal decomposition, geometries, structures, and energies were evaluated for reactants, products, and transition states of the proposed pathways at the HF/6-31G(d) and B3LYP/6-31G(d) levels. Three possible paths (I, II and III) and subsequent reaction paths (IV and V) for the model compounds of poly (dialkyl fumarate) decomposition had been postulated. It has been found that the path (I) has the lowest activation energy 193.8 kJ mol−1 at B3LYP/6-31G(d) level and the path (I) is considered as the main path for the thermal decomposition of model compounds for poly (dialkyl fumarate).   相似文献   

5.
The tautomerism of uracil, 5-fluorouracil, and thymine has been investigated in the gas phase and in solution. Electron correlation effects were included in ab initio computations at the MP2 level, and DFT calculations were performed using the B3LYP level. Full geometry optimizations were conducted at the HF/6-31G**, HF/6-31+G**, and B3LYP/6-31+G** levels. Single-point MP2/6-31+G** calculations were performed on the HF/6-31+G** optimized geometries. The influence of the solvent was examined from self-consistent reaction field calculations performed with )=2.21 (1,4-dioxane) and )=78.54 (water). The calculated relative free energies ((G) indicate that substitution of uracil at the position group does not change the relative free energy order of the uracil tautomers in the gas phase and in 1,4-dioxane (except at the MP2 level) whereas this ordering changes in water. Attachment of a fluorine atom changes the relative free energy order of uracil tautomers in the gas phase and in solution.  相似文献   

6.
In order to gain deeper insight into structure, charge distribution, and energies of A-T base pairs, we have performed quantum chemical ab initio and density functional calculations at the HF (Hartree-Fock) and B3LYP levels with 3-21G*, 6-31G*, 6-31G**, and 6-31++G** basis sets. The calculated donor-acceptor atom distances in the Watson-Crick A-T base pair are in good agreement with the experimental mean values obtained from an analysis of 21 high resolution DNA structures. In addition, for further correction of interaction energies between adenine and thymine, the basis set superposition error (BSSE) associated with the hydrogen bond energy has been computed via the counterpoise method using the individual bases as fragments. In the Watson-Crick A-T base pair there is a good agreement between theory and experimental results. The distances for (N2...H23-N19), (N8-H13...O24), and (C1...O18) are 2.84, 2.94, and 3.63 A, respectively, at B3LYP/6-31G** level, which is in good agreement with experimental results (2.82, 2.98, and 3.52 A). Interaction energy of the Watson-Crick A-T base pair is -13.90 and -10.24 kcal/mol at B3LYP/6-31G** and HF/6-31G** levels, respectively. The interaction energy of model (9) A-T base pair is larger than others, -18.28 and -17.26 kcal/mol, and for model (2) is the smallest value, -13.53 and -13.03 kcal/mol, at B3LYP/6-31G** and B3LYP/6-31++G** levels, respectively. The computed B3LYP/6-31G** bond enthalpies for Watson-Crick A-T pairs of -14.4 kcal/mol agree well with the experimental results of -12.1 kcal/mol deviating by as little as -2.3 kcal/mol. The BSSE of some cases is large (9.85 kcal/mol) and some is quite small (0.6 kcal/mol).  相似文献   

7.
The ONIOM(B3LYP/6-31G(d):AM1) optimized structures of complexes of diurea calix[4]arene receptor (L) with alkali metals Li(+), Na(+) and K(+) and their complexes with halide ions F(-), Cl(-), Br(-), oxygen-containing anions HCO(3)(-), HSO(4)(-) and CH(3)COO(-) ions were obtained. Binding energies and thermodynamic properties of complex receptors LiL(+), NaL(+) and KL(+) with these anions were determined. The binding stabilities according to binding energies of LiL(+), NaL(+) and KL(+) associated with anions computed either at the ZPVE-corrected ONIOM(B3LYP/6-31G(d):AM1) or BSSE-corrected B3LYP/6-31 + G(d,p)//ONIOM(B3LYP/6-31G(d):AM1) are in the same order: F(-) > CH(3)COO(-) ≈ HCO(3)(-) > Br(-) ≈ HSO(4)(-) ≈ Cl(-). All the receptors LiL(+), NaL(+) and KL(+) were found to be selective toward fluoride ion.  相似文献   

8.
The Schiff base compound, N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylamine, has been -synthesized and characterized by IR, electronic spectroscopy, and X-ray single-crystal determination. Molecular geometry from X-ray experiment of the title compound in the ground state have been compared using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. Calculated results show that density functional theory (DFT) at B3LYP/6-31G(d) level can well reproduce the structure of the title compound. To investigate the solvent effect for the atomic charge distributions of the title compound, self-consistent reaction field theory with Onsager reaction field model was used. In addition, DFT calculations of the title compound, molecular electrostatic potential and thermodynamic properties were performed at B3LYP/6-31G(d) level of theory.  相似文献   

9.
In this paper, we theoretically studied the geometries, stabilities, and the electronic and thermodynamic properties of 4H-cyclopenta[2,1-b,3;4-b']dithiopene S-oxide derivatives (BTO-X, with X = BH(2), SiH(2), S, S=O, or O) using semi-empirical methods, ab initio methods, and density functional theory. The geometries and thermodynamic parameters calculated by PM3 were in good agreement with those calculated with B3LYP/6-31 G*. The band gap calculated using B3LYP/6-31 G* ranged from 3.94 eV (BTO-O) to 3.16 eV (BTO-B). The absorption λ(max) calculated using B3LYP/6-31 G* was shifted to longer wavelengths when X = BH(2), SiH(2), or S=O (due to their electron-withdrawing effects) and to shorter wavelengths for BTO-S and BTO-O as compared to the λ(max) for the thiophene S-oxide (2TO) dimer. The changes in ΔH°, ΔS°, and ΔG° calculated using both semi-empirical and DFT methods were quite similar.  相似文献   

10.
Ab initio (RHF, MP2) and Density Functional Theory (DFT) methods have been used to examine six isomers of the N15m cluster with the 6-31+G* basis set. Different from the known odd-numbered anionic N7m, N9m, and N11m clusters, in which the open-chain structures are the most stable species, the most stable N15m isomer is structure 1 (C1), which may be considered as a complex between the fragments cyclic N5m (D5h) and staggered N10 (D2d). The decomposition pathways of structure 2 (CS), containing two aromatic N5 rings connected by a N5 chain, and the open-chain structure 3 (C2v) were studied at the B3LYP/6-31+G* level of theory. Relative energies were refined at the level of B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G*+ZPE (B3LYP/6-31+G*). The barriers for N2 and N5m (D5h) fission reactions for structure 2 are predicted to be 18.2 and 14.2 kcal x mol(-1), respectively. The corresponding N2+N3m fission barrier for structure 3 is predicted to be 11.2 kcal x mol(-1). Supplementary material is available for this article if you access the article at http://dx.doi.org/10.1007/s00894-003-0118-0. A link in the frame on the left on that page takes you directly to the supplementary material. Figure Structure 1 of the N15m cluster, showing bond distances in A and bond angles in degrees  相似文献   

11.
This work presents an investigation on the conformational preferences of α,α-trehalose in gas phase and aqueous solution. Eighty-one systematically selected structures were studied at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level, giving rise to 40 unique conformers. The 19 lower energy structures and some selected other were further re-optimized at the B3LYP/6-311++G(d,p) level. The main factors accounting for the conformer’s stability were pointed out and discussed. NBO and QTAIM analyses were performed in some selected conformers in order to address the anomeric and exo-anomeric effects as well as intramolecular hydrogen bonding. The effect of solvent water on the relative stability of the conformers was accounted for by applying the conductor-like polarizable continuum model, CPCM.  相似文献   

12.
13.
Abstract

The B3LYP/6–311+G(d,p) method and three ONIOM extrapolation methods ONI-OM (B3LYP/6–311+G(d,p): AM1); ONIOM(B3LYP/6–311+G(d,p): MNDO); ONIOM (B3LYP/6–311+G(d,p): HF/3-21G(d)) were used to characterize the complexes of Zn2+ cation with anionic sulfonylated amino acid hydroxamates (RSO2NH-AA-CON(-)OH), possessing an unsubstituted RSO2NH—amino acyl moiety. According to the R moiety we distinguish between pentafluorophenyl and 4-methoxyphenyl derivates. The amino acid hydroxamates included in the study were the Gly, Ala, and Leu derivates. Of the inhibitors investigated, the weakest zinc affinity exhibits the pentafluorophenyl derivate with Gly amino acid and the strongest affinity the 4-methoxyphenyl derivate with Leu amino acid. The inhibitors form bidentate coordination bonds with the zinc cation by means of the sulfonyl oxygen and the ionized hydroxamate nitrogen atoms, respectively. The zinc affinities computed using the B3LYP/6–311 +G(d,p)//HF/6–31 +G(d,p) method are in very good agreement with the full density functional theory (DFT) B3LYP/6–311+G(d,p)//B3LYP/6- 311+G(d,p) method and this method can be adopted to model larger complexes of inhibitors with the active site of carbonic anhydrase.  相似文献   

14.
The Schiff base compound, 2-[(4-Fluorophenylimino)methyl]-3,5-dimethoxyphenol, has been synthesized and characterized by IR, electronic spectroscopy, and X-ray single-crystal determination. Molecular geometry from X-ray experiment of the title compound in the ground state have been compared using the Hartree-Fock (HF) and density functional method (B3LYP) with 6–31G(d) basis set. Calculated results show that density functional theory (DFT) and HF can well reproduce the structure of the title compound. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6–31G(d) basis set by applying the polarizable continuum model (PCM). The total energy of the title compound decrease with the increasing polarity of the solvent. By using TD-DFT and TD-HF methods, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental ones is determined. In addition, DFT calculations of the title compound, molecular electrostatic potential (MEP), natural bond orbital (NBO), and thermodynamic properties were performed at B3LYP/6–31G(d) level of theory.  相似文献   

15.
The absolute configurations (AC) of natural occurring 6-hydroxyeuryopsin (1), of its acetyl derivative 2, and of eremophilanolide 8 were confirmed by comparison of the experimental vibrational circular dichroism (VCD) spectra with theoretical curves generated from density functional theory (DFT) calculations. Initial analyses were carried out using a Monte Carlo searching with the MMFF94 molecular mechanics force field. All MMFF94 conformers were further optimized using DFT at the B3LYP/6-31G(d) level of theory, followed by calculations of their vibrational frequencies at the B3LYP/6-31G(d,p); the VCD spectra of 2 and 8 were also calculated at the B3PW91/DGDZVP level of theory. Good agreement between theoretical and experimental VCD curves unambiguously verified the 4S,5R,6S absolute configuration for 1 and 2, and the 1S,4S,5R,6S,8S,10S configuration for 8.  相似文献   

16.
This paper presents a theoretical approach to the evaluation of polaron binding energy in polymers. Quantum chemical calculations were performed on a model polymer, poly[methyl(phenyl)silylene], employing the B3LYP and CAM-B3LYP method. The polaron binding energy consists of two terms: the molecular deformation energy and electron-phonon term. Its value was found to be about 0.23 eV at the CAM-B3LYP/6-31G* level of theory.  相似文献   

17.
Using TD-PBE1PBE/6-31G* and TD-B3LYP/6-31G* approaches, we calculated the absorption and emission spectra of 1,8-naphthalmide derivatives in gas-phase. The geometric structures optimized by HF/6-31G* and B3LYP/6-31G* models and the absorption and emission maxima were in good agreement with existed experimental measurements. It was also found that the lowest singlet states corresponded mainly to the electronic transition from the highest occupied orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO). Intramolecular charge transfer occurred between substituents and naphthalimic rings. Study also showed that most compounds with low absorption excitation energies had low vertical ionization potentials. Finally, the delocalization electronic energies between substituents and naphthalimic rings of isomers were investigated to obtain further sight into their stability.  相似文献   

18.
Complete assignment of the (1)H and (13)C NMR spectra of all possible d-glucopyranosyl-d-glucopyranosides was performed and the (1)H chemical shifts and proton-proton coupling constants were refined by computational spectral analyses (using PERCH NMR software) until full agreement between the calculated and experimental spectra was achieved. To support the experimental results, the (1)H and (13)C chemical shifts and the spin-spin coupling constants between the non-hydroxyl protons of alpha- and beta-d-glucopyranose (1a and 1b) were calculated with density functional theory (DFT) methods at the B3LYP/pcJ-2//B3LYP/6-31G(d,p) level of theory. The effects of different glycosidic linkage types and positions on the glucose ring conformations and on the alpha/beta-ratio of the reducing end hydroxyl groups were investigated. Conformational analyses were also performed for anomerically pure forms of methyl d-glucopyranosides (13a and 13b) and fully protected derivatives such as 1,2,3,4,6-penta-O-acetyl-d-glucopyranoses (14a and 14b).  相似文献   

19.
The molecular structure (bond distances and angles), conformational properties, dipole moment and vibrational spectroscopic data (vibrational frequencies, IR and Raman intensities) of phenyl benzoate were calculated using Hartree–Fock (HF), density functional (DFT), and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6-31G* to 6-311++G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2, B3LYP and B3PW91 levels with basis sets including diffuse functions. The B3LYP/6-31+G* theory level estimates the shape of the experimental functions for phenyl torsion around the Ph–O and Ph–C bonds well, but reproduces the height of the rotational barriers poorly. The B3LYP/6-31+G* harmonic force constants were scaled by applying the scaled quantum mechanical force field (SQM) technique. The calculated vibrational spectra were interpreted and band assignments were reported. They are in excellent agreement with experimental IR and Raman spectra.Figure Calculated and experimental (GED) potential energy functions for torsional motion of phenyl benzoate relative to the minimum value. a The potential function for torsion about the O3–C4 bond. b The potential function for torsion about the C2–C10 bond.  相似文献   

20.
Several economical methods for geometry optimisation, applicable to larger molecules, have been evaluated for phosphorus acid derivatives. MP2/cc-pVDZ and B3LYP/6-31+G(d) geometry optimizations are used as reference points, results from geometry optimizations for other methods and their subsequent single point energy calculations are compared to these references. The geometries from HF/MIDI! optimizations were close to those of the references and subsequent single point energies with B3LYP/6-31+G(d,p) or EDF1/6-31+G(d) gave a mean average deviation (MAD) of less than 0.5 kcal mol-1 from those obtained with the reference geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号