首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I. Y. Lee  E. C. Slater 《BBA》1972,283(3):395-402
Under anaerobic conditions cytochrome b in beef-heart mitochondria is partially reduced in the presence of NADH, whereas other cytochromes are completely reduced. Addition of antimycin together with oxygen under these conditions causes an immediate reduction of cytochromes b-558, b-562 and b-566 and oxidation of cytochrome c. During the subsequent transient aerobic steady state cytochromes b-558 and b-566 are rapidly re-oxidized without changes in redox state of cytochrome c, but cytochrome b-562 remains reduced. When oxygen is consumed by the leak through or around the antimycin-inhibition site, cytochrome b-562 becomes oxidized with concomitant reduction of cytochrome c.

The cytochromes b in lyophilized beef-heart mitochondria are more readily accessible to electrons from NADH, and in the presence of antimycin and NADH a complete and stable reduction is obtained under both aerobic and anaerobic conditions. Gradual addition of rotenone under these conditions causes re-oxidation of cytochromes b in which oxidation of cytochromes b-558 and b-566 precedes that of cytochrome b-562.

It is concluded that (1) the effect of antimycin in the presence of oxygen involves all three cytochromes b, (2) the reducibility of the cytochromes b in the aerobic steady state of antimycin-treated mitochondria is dependent upon the potential of the substrate redox couple registered on the cytochromes, and (3) the midpoint potential of cytochrome b-562 in the presence of antimycin is higher than that of cytochrome b-558 or b-566.  相似文献   


2.
1. Light-induced absorbance changes of cytochrome b-559 and cytochrome f in the -band region were examined in leaves and in isolated chloroplasts.

2. Absorbance changes of cytochrome b-559 were not detected in untreated leaves or in most preparations of isolated chloroplasts. After treatment of leaves or chloroplasts with carbonyl cyanide m-chlorophenylhydrazone, high rates of photooxidation of cytochrome b-559 were obtained, both in far-red (>700 nm) and red actinic light. Cytochrome f was photooxidized in far-red light, but in red light it remained mainly in the reduced state. The initial rates of photooxidation of cytochrome b-559 in leaves or chloroplasts treated with carbonyl cyanide m-chlorophenylhydrazone were considerably decreased by 3-(3′,4′-dichlorophenyl)-1,1-dimethyl urea.

3. A slow photoreduction of cytochrome b-559 was observed in aged mutant pea chloroplasts in red light.

4. The results do not support the view that cytochrome b-559 is a component of the electron transport chain between the light reactions. It is suggested that cytochrome b-559 is located on a side path from Photosystem II, but with a possible additional link to Photosystem I.  相似文献   


3.
1. Cytochrome b-562 is more reduced in submitochondrial particles of mutant 28 during the aerobic steady-state respiration with succinate than in particles of the wild type. When anaerobiosis is reached, the reduction of cytochrome b is preceded by a rapid reoxidation in the mutant. A similar reoxidation is observed in the wild type in the presence of low concentrations of antimycin.

2. In contrast to the wild type, inhibition of electron transport in the mutant has a much higher antimycin titre than effects on cytochromes b (viz., aerobic steadystate reduction; reduction in the presence of substrate, cyanide and oxygen; the ‘red shift’ and lowering of E0 of cytochrome b-562). Moreover, the titration curve of electron transport is hyperbolic whereas the curves for the reduction are sigmoidal. The conclusion is, that in both mutant and wild type, the actions of antimycin on electron transport and cytochromes b are separable.

3. The red shift in the mutant is more extensive than in the wild type.

4. Cytochrome b-558 and cytochrome b-566 (that absorbs in mutant and wild type at 564.5 nm) do not respond simultaneously to addition of antimycin, indicating that they are two separate cytochromes.

5. The difference between the effect of antimycin on electron transport and cytochromes b reduction is also found in intact cells of the mutant.

6. A model is suggested for the wild-type respiratory chain in which (i) the cytochromes b lie, in an uncoupled system, out of the main electron-transfer chain, (ii) antimycin induces a conformation change in QH2-cytochrome c reductase resulting in effects on cytochrome b and inhibition of electron transport, (iii) a second antimycinbinding site with low affinity to the antibiotic is present, capable of inhibiting electron transport.  相似文献   


4.
W. Bandlow  K. Wolf  F. Kaudewitz  E.C. Slater 《BBA》1974,333(3):446-459
1. A chromosomal respiration-deficient mutant of the petite-negative yeast Schizosaccharomyces pombe was isolated. Its mitochondria show respiration rates of about 7% of the wild-type respiration with NADH and succinate as substrate, and 45% with ascorbate in the presence of tetramethyl-p-phenylenediamine. Oxidation of NADH and succinate is insensitive to antimycin and cyanide and that of ascorbate is much less sensitive to cyanide than the wild type.

2. The amounts of cytochromes c1 and aa3 are similar in the mutant and wild type. Cytochrome b-566 could not be detected in low-temperature spectra after reduction with various substrates or dithionite. A b-558 is, however, present.

3. The b-cytochromes in the mutant are not reduced by NADH or succinate during the steady state even after addition of ubiquinone-1. QH2-3: cytochrome c reductase activity is very low and succinate oxidation is highly stimulated by phenazine methosulphate.

4. Antimycin does not bind to either oxidized or reduced mitochondrial particles of the mutant.

5. In contrast to the b-cytochromes of the wild type, b-558 in the mutant reacts with CO.

6. Cytochromes aa3, c and c1 are partly reduced in aerated submitochondrial particles isolated from the mutant and the EPR signal of Cu (II), measured at 35°K, is detectable only after the addition of ferricyanide. In the mutant, a signal with a trough at g = 2.01 is found, in addition to the signal at g = 1.98 found in the wild type.

7. The ATPase activity of particles isolated from the mutant is much lower than in the wild type but is still inhibited by oligomycin.  相似文献   


5.
Shigeru Itoh 《BBA》1980,593(2):212-223
1. Electrogenic steps in photosynthetic cyclic electron transport in chromatophore membrane of Chromatium vinosum were studied by measuring absorption changes of added merocyanin dye and of intrinsic carotenoid.

2. The change in dye absorbance was linear with the membrane potential change induced either by light excitation or by application of diffusion potential by adding valinomycin in the presence of K+ concentration gradient.

3. It was estimated that chromatophore membrane became 40–60 mV and 110–170 mV inside positive upon single and multiple excitations with single-turnover flashes, respectively, from the responses of the dye and the carotenoid.

4. Electron transfers between cytochrome c-555 or c-552 and reaction center bacteriochlorophyll dimer (BChl2) and between BChl2 and the primary electron acceptor were concluded to be electrogenic from the redox titration of the dye response.

5. No dye response which corresponded to the change of redox level of cytochrome b was observed in the titration curve. Addition of antimycin A slightly decreased the dye response.

6. The dye response was decreased under phosphorylating conditions.

7. From the results obtained localization of the electron transfer components in chromatophore membrane is discussed.  相似文献   


6.
Bayard T. Storey 《BBA》1973,292(3):592-602

1. 1. Cycles of oxidation followed by reduction at pH 7.2 have been induced in uncoupled anaerobic mung bean mitochondria treated with succinate and malonate by addition of oxygen-saturated medium. Under the conditions used, cytochromes b557, b553, c549 (corresponding to c1 in mammalian mitochondria) and ubiquinone are completely oxidized in the aerobic state, but become completely reduced in anaerobiosis.

2. 2. The time course of the transition from fully oxidized to fully reduced in anaerobiosis was measured for cytochromes c549, b557, and b553. The intramitochondrial redox potential (IMPh) was calculated as a function of time for each of the three cytochromes from the time course of the oxidized-to-reduced transition and the known midpoint potentials of the cytochromes at pH 7.2. The three curves so obtained are superimposable, showing that the three cytochromes are in redox equilibrium under these conditions during the oxidized-to-reduced transition.

3. 3. This result shows that the slow reduction of cytochrome b557 under these conditions, heretofore considered anomalous, is merely a consequence of its more negative midpoint potential of +42 mV at pH 7.2, compared to +75 mV for cytochrome b553 and +235 mV for cytochrome c549. Cytochrome b557 is placed on the low potential side of coupling site II and transfers electrons to cytochrome c549 via the coupling site.

4. 4. The time course of the transition from fully oxidized to fully reduced was also measured for ubiquinone. Using the change in intramitochondrial potential IMPh with time obtained from the three cytochromes, the change in redox state of ubiquinone with IMPh was calculated. When replotted as IMPh versus the logarithm of the ratio (fraction oxidized)/(fraction reduced), two redox components with n = 2 were found. The major component is ubiquinone with a midpoint potential Em7.2 = + 70 mV. The minor component has a midpoint potential Em7.2 = − 12 mV; its nature is unknown.

Abbreviations: IMPh, intramitochondrial potential, referred to the normal hydrogen electrode; Em7.2, midpoint potential at pH 7.2  相似文献   


7.
A. K. Ghosh  S. N. Bhattacharyya 《BBA》1971,245(2):335-346
1. Mitochondria isolated from Saccharomyces Carlsbergensis are found to have three phosphorylation sites in the respiratory chain for the oxidation of NADH and NAD+-linked substrates and two for succinate oxidation. Freshly isolated mitochondria exist in an inhibited state with no respiratory control, but on ageing for 2–3 h a good coupled state is obtained. -Ketogultarate and -glycerophosphate are poorly oxidized in these mitochondria.

2. Exogenous NADH is a very good substrate for yeast mitochondrial respiration and apparently has a very low Km. However, one-third of the added NADH is not available for oxidation probably due to some form of compartmentation. Studies of both oxygen uptake and the redox changes of cytochrome b show complete oxidation of two-third of the added NADH.

3. Difference spectra of yeast mitochondria at liquid-nitrogen temperatures show all the characteristic peaks of cytochromes a (600 nm), b (558, 525 and 428 nm), c1 (552 nm) and c (545 and 516 nm).

4. The reduction of cytochrome b by dicumarol in antimycin A inhibited mitochondria provides evidence for an energy conservation site on the substrate side of cytochrome b.

5. In the absence of added ADP, the oxidation of malate and pyruvate occurs in the yeast mitochondria in a new respiratory state (State X) where the oxygen uptake occurs at State 4 rate but the redox level of the flavins, cytochrome b and c are similar to State 3. State X respiration is believed to be due to depletion of the high energy intermediate C I caused by the substrate anions accumulation.

6. The responses of yeast mitochondria to Ca2+ are qualitatively similar to those in rat liver mitochondria, particularly with respect to respiratory stimulation, membrane alkalinization and its accumulation in the mitochondria with succinate as the substrate in the presence and absence of acetate.  相似文献   


8.
Three types of b cytochromes are demonstrated in Candida utilis mitochondria. One of these b cytochromes has a symmetrical -band at 561.5 nm at room temperature. This b cytochrome is readily reduced either by anaerobiosis or by cyanide treatment in the presence of glycerol 1-phosphate or succinate both in coupled and uncoupled mitochondria. The second b cytochrome has a double -band at 565 nm and 558 nm. This b cytochrome is readily reduced either by anaerobiosis or by cyanide treatment in the presence of glycerol 1-phosphate or succinate in coupled mitochondria, but in uncoupled mitochondria it is slowly reduced after anaerobiosis and this reduction rate is enhanced by antimycin A addition. Thus the oxidation-reduction state of this cytochrome is energy dependent. The first cytochrome is spectroscopically identified as cytochrome bK and the second as cytochrome bT. The third b cytochrome has an -band around 563 nm (b563) and is reduced slowly after anaerobiosis in uncoupled mitochondria but faster than the bT. Further properties of this component are not known. Midpoint potentials of cytochromes bT, b563 and bK are approximately −50 mV, +5 mV, and +65 mV, respectively.

In intact cells, cytochrome bT is reduced immediately after anaerobiosis or cyanide treatment, and rapidly oxidized when uncoupler is added. Addition of antimycin A instead of uncoupler to the anaerobic cells causes oxidation of mainly cytochrome bT while addition of antimycin A to the aerobic cells results in a reduction of the cytochrome bT.  相似文献   


9.
G. Unden  S.P.J. Albracht  A. Krger 《BBA》1984,767(3):460-469
The isolated menaquinol: fumarate oxidoreductase (fumarate reductase complex) from Vibrio succinogenes was investigated with respect to the redox potentials and the kinetic response of the prosthetic groups. The following results were obtained. (1) The redox state of the components was measured as a function of the redox potential established by the fumarate/succinate couple, after freezing of the samples (173 K). From these measurements, the midpoint potential of the [2Fe-2S] cluster (−59 mV), the [4Fe-4S] cluster (−24 mV) and the flavin/flavosemiquinone couple (about −20 mV) was obtained. (2) Potentiometric titration of the enzyme in the presence of electron-mediating chemicals gave, after freezing, apparent midpoint potentials that were 30–100 mV more negative than those found with the fumarate/succinate couple. (3) The rate constants of reduction of the components on the addition of succinate or 2,3-dimethyl-1,4-naphthoquinol were as great as or greater than the corresponding turnover numbers of the enzyme in quinone reduction by succinate or fumarate reduction by the quinol. In the oxidation of the reduced enzyme by fumarate, cytochrome b oxidation was about as fast as the corresponding turnover number of quinol oxidation by fumarate, while the [2Fe-2S] and half of the [4Fe-4S] cluster responded more than 2-times slower. The rate constant of the other half of the 4-Fe cluster was one order of magnitude smaller than the turnover number.  相似文献   

10.
J. A. Berden  E. C. Slater 《BBA》1970,216(2):237-249
1. Succinate-cytochrome c reductase activity was reconstituted by incubating a mixture of succinate dehydrogenase, cytochrome c1, ubiquinone-10, phospholipid and a preparation of cytochrome b, made by the method of .

2. Preparations of cytochrome b active in reconstitution contained 5–28% native cytochrome b, as adjudged by reducibility with succinate in the reconstituted preparation and by lack of reaction with CO. Preparations of cytochrome b containing no native cytochrome b according to this criterion were inactive in reconstitution.

3. With a fixed amount of cytochrome b, the activity of the reconstituted preparation increased with increasing amounts of cytochrome c1 until a ratio of about 2b (total): 1c1 (allowing for the cytochrome c1 present in the cytochrome b preparation) was reached.

4. The amount of antimycin necessary for maximal inhibition of the reconstituted enzyme is a function of the amount of the cytochrome b and is independent of the amount of cytochrome c1. It is equal to about one half the amount of native cytochrome b.

5. Preparations of intact or reconstituted succinate-cytochrome c reductase or of cytochrome b completely quench the fluorescence of added antimycin, until an amount of antimycin equal to onehalf the amount of native cytochrome b present was added. Antimycin added in excess of this amount fluoresces with normal intensity. The quenching is only partial in the presence of Na2S2O4. Denatured cytochrome b does not quench the fluorescence.

6. Since preparations of cytochrome b active in reconstitution contained cytochrome c1 in an amount exceeding one half the amount of native cytochrome b present in the preparation, there is no evidence that native cytochrome b has been resolved from cytochrome c1. The stimulatory action of cytochrome c1 may be due to the restoration of a damaged membrane conformation.

7. Based on the assumption that the bc1 segment of the respiratory chain contains 2b:1c1:1 antimycin-binding sites, the specific quenching of antimycin fluorescence by binding to cytochrome b enables an accurate determination of the absorbance coefficients of cytochromes b and c1. These are 25.6 and 20.1 mM−1×cm−1 for the wavelength pairs 563–577 nm and 553–539 nm, respectively, in the difference spectrum reduced minus oxidized.  相似文献   


11.
David B. Knaff  Bob B. Buchanan 《BBA》1975,376(3):549-560
Chromatophores isolated from the purple sulfur bacterium Chromatium and the green sulfur bacterium Chlorobium exhibit absorbance changes in the cytochrome -band region consistent with the presence of a b-type cytochrome. Cytochrome content determined by reduced minus oxidized difference spectra and by heme analysis suggests that each bacterium contains one cytochrome b per molecule of photochemically active bacteriochlorophyll (reaction-center bacteriochlorophyll).

The b-type cytochrome in Chromatium has an -band maximum at 560 nm and a midpoint oxidation-reduction potential of −5 mV at pH 8.0. The b-type cytochrome in Chlorobium has an -band maximum at 564 nm and an apparent midpoint oxidation-reduction potential near −90 mV.

Chromatophores isolated from both Chromatium and Chlorobium cells catalyze a photoreduction of cytochrome b that is enhanced in the presence of antimycin A. Antimycin A and 2-n-heptyl-4-hydroxyquinoline-N-oxide inhibit endogenous (but not phenazine methosulfate-mediated) cyclic photophosphorylation in Chromatium chromatophores and non-cyclic electron flow from Na2S to NADP in Chlorobium chromatophores. These observations suggest that b-type cytochromes may function in electron transport reactions in photosynthetic sulfur bacteria.  相似文献   


12.
《BBA》1969,189(3):317-326
1. Pretreatment of sub-mitochondrial particles with cholate results in a change in the curve describing inhibition by antimycin of the succinate-cytochrome c reductase from sigmoidal towards linear. This effect of cholate is reversed by partial removal of the cholate by dialysis, either in the absence or presence of antimycin.

2. Treatment with cholate has the same action on the sigmoidal effect curve of antimycin on the reducibility of cytochrome b. This is also reversed by dialysis.

3. The effect of antimycin on the displacement to the red of the -band of ferrocytochrome b, measured in the presence of succinate, NADH or reduced ubiquinone Q-2, is also described by a sigmoidal curve that is changed to a linear one by addition of cholate.

4. Linear displacement curves are obtained with menaquinol or Na2S2O4.

5. It is proposed that antimycin is an allosteric inhibitor of the respiratory chain. This allosteric effect should be distinguished from the effect of antimycin on the “conformation stability” of Complex III.  相似文献   


13.
1. In membranes prepared from dark grown cells of Rhodopseudomonas capsulata, five cytochromes of b type (E0 at pH 7.0 +413±5, +270±5, +148±5, +56±5 and −32±5 mV) can be detected by redox titrations at different pH values. The midpoint potentials of only three of these cytochromes (b148, b56, and b−32) vary as a function of pH with a slope of 30 mV per pH unit.

2. In the presence of a Co/N2 mixture, the apparent E0 of cytochrome b270 shifts markedly towards higher potentials (+355 mV); a similar but less pronounced shift is apparent also for cytochrome b150. The effect of CO on the midpoint potential of cytochrome b270 is absent in the respiration deficient mutant M6 which possesses a specific lesion in the CO-sensitive segment of the branched respiratory chain present in the wild type strain.

3. Preparations of spheroplasts with lysozyme digestion lead to the release of a large amount of cytochrome c2 and of virtually all cytochrome cc′. These preparations show a respiratory chain impaired in the electron pathway sensitive to low KCN concentration, in agreement with the proposed role of cytochrome c2 in this branch; on the contrary, the activity of the CO-sensitive branch remains unaffected, indicating that neither cytochrome c2 nor the CO-binding cytochrome cc′ are involved in this pathway.

4. Membranes prepared from spheroplasts still possess a CO-binding pigment characterized by maxima at 420.5, 543 and 574 nm and minima at 431, 560 nm in CO-difference spectra and with an band at 562.5 nm in reduced minus oxidized difference spectra. This membrane-bound cytochrome, which is coincident with cytochrome b270, can be classified as a typical cytochrome “o” and considered the alternative CO-sensitive oxidase.  相似文献   


14.

1. 1. Difference spectra of whole cells and of a particulate fraction of a streptomycin-bleached strain of Euglena gracilis showed the presence of a b-type cytochrome, cytochrome b (561 Euglena), and an a-type cytochrome, cytochrome a-type (609 Euglena). The cytochromes were characterized by pyridine hemochromogen formation and were found associated with a particulate fraction enriched with mitochondria.

2. 2. Both b-type and a-type cytochromes were reduced by succinate, oxidized by oxygen and reacted with a soluble c-type cytochrome, cytochrome c-type (556 Euglena), in reversible oxidation-reduction reactions. The steady-state level of reduction for each cytochrome was 92, 22 and 5% of the anaerobic level for the b-type, c-type and a-type cytochrome, respectively.

3. 3. Oxidation of c-type and a-type cytochromes was completely inhibited by cyanide, although respiration of a particulate fraction was only 60% inhibited by the same concentration of cyanide. Antimycin A inhibited respiration by up to 70% but completely inhibited reduction of the c-type cytochrome.

4. 4. The data suggest that electron transfer in the respiratory pathway of Euglena involves the b-, c- and a-type cytochrome in a direct sequence. The cyanide and antimycin A-insensitive oxidation pathway is considered to involve a more direct oxidation of the b-type cytochrome.

Abbreviations: STE medium, 250 mM sucrose, 24 mM Tris-HCI buffer (pH 7.6) and 0.1 mM EDTA  相似文献   


15.
During a survey of a series of electron transport mutants of Chlamydomonas reinhardtii, we have observed a hitherto unrecognised component, cytochrome b-560, in a strain (F18) which entirely lacks the cytochrome bf complex. This component is present at approx. 1 nmol/mg chlorophyll, has a midpoint potential of −125 mV (n = 1) at pH 7.2 and is slowly reduced by dithionite. The cytochrome was also observed in thylakoid membranes prepared from wild-type Chlamydomonas and from higher plants after extraction of the cytochrome bf complex by detergent treatment. It could not be observed in thylakoid membrane fragments prepared from the cyanobacterium Phormidium laminosum.  相似文献   

16.
B.Dean Nelson  Pr Gellerfors 《BBA》1974,357(3):358-364
Purified Complex III from beef heart contains two b cytochromes: a high-potential (Em 7.2 = +93 mV) cytochrome b-562 which can be enzymatically reduced, and a low-potential (Em 7.2 = −34 mV) cytochrome b-565 which is reduced only by dithionite. The two components each contribute approximately 50% to the total cytochrome b of Complex III. Cytochrome c1 of Complex III titrates with a half-reduction potential of +232 mV.  相似文献   

17.
W. A. Cramer  P. Horton  J. J. Donnell 《BBA》1974,368(3):361-370
The presence of low (1–4 μM) concentrations of carbonylcyanide p-trifluoromethoxyphenylhydrazone during actinic illumination of chloroplasts generally inhibits the rate of subsequent dark chemical oxidation-reduction reactions of cytochrome ƒ and b-559. Ferricyanide oxidation and ascorbate reduction of cytochromes ƒ and b-559 are inhibited, as is hydroquinone reduction of cytochrome b-559. Inhibition by carbonylcyanide p-trifluoromethoxyphenylhydrazone of hydroquinone reduction of cytochrome ƒ, the most rapid of these chemical oxidation-reduction reactions, cannot be detected. The rate of the chemical redox reactions of the cytochromes in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone are all markedly dependent upon the concentration of oxidant or reductant except the hydroquinone reduction of cytochrome b-559 photooxidized in the presence of carbonylcyanide p-trifluoromethoxyphenylhydrazone.

The data is interpreted in terms of an effect of carbonylcyanide p-trifluoromethoxyphenylhydrazone on thylakoid membrane structure which generally inhibits accessibility to the hydrophobic interior of the membrane, possibly through an increase in membrane microviscosity. The question of whether such an effect on membrane structure could be involved in uncoupling or inhibition effects of the carbonylcyanidephenylhydrazone compounds is discussed, as is the special effect of these compounds on the cytochrome b-559 photoreactions at room temperature.  相似文献   


18.
P. Horton  W. A. Cramer 《BBA》1974,368(3):348-360
(1) (a) A concentration range of ferricyanide ( 0.125–0.5 mM) can be found which in the dark causes oxidation of cytochrome ƒ with two distinct kinetic components of comparable amplitude. The slow oxidation has a half time of 1–2 min. (b) The oxidation of cytochrome ƒ by ferricyanide is rapid and monophasic after the chloroplasts are frozen and thawed. (c) The oxidation of cytochrome b-559 by ferricyanide in the dark is mostly monophasic with a time course similar to that of the fast component in the cytochrome ƒ oxidation. (d) Ascorbate reduction of cytochromes ƒ and b-559 appears monophasic. Reduction of cytochrome b-559 by ascorbate is somewhat faster, and that by hydroquinone somewhat slower, than the corresponding reduction of cytochrome ƒ.

(2) (a) The kinetics of dark ferricyanide oxidation of cytochrome ƒ after actinic preillumination in the presence of an electron acceptor are approximately monophasic with a half time of about 30 s and do not show the presence of the slowly oxidized component observed after prolonged dark incubation. (b) The effect of actinic preillumination in altering the time course of ferricyanide oxidation appears to persist for several minutes in the dark. (c) Preillumination causes an increase in the extent of cytochrome b-559 oxidation by low concentrations of ferricyanide. The increase is inhibited if 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea is present during the preillumination. (d) The presence of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea during preillumination does not inhibit the amplitude or rate of ferricyanide oxidation of cytochrome ƒ, although the presence of the inhibitor KCN does cause such inhibition.

(3) It is proposed that a significant fraction of the cytochrome ƒ population resides at a position in the membrane relatively inaccessible to the aqueous interface compared to high potential cytochrome b-559. Actinic illumination would cause a structural or conformational change in the cytochrome ƒ and/or the membrane resulting in an increase in accessibility to this fraction of the cytochrome ƒ population.  相似文献   


19.
Myxothiazol inhibited oxygen consumption of beef heart mitochondria in the presence and absence of 2,4-dinitrophenol, as well as NADH oxidation by submitochondrial particles. The doses required for 50% inhibition were 0.58 mol myxothiazol/mol cytochrome b for oxygen consumption of beef heart mitochondria, and 0.45 mol/mol cytochrome b for NADH oxidation by submitochondrial particles. Difference spectra with beef heart mitochondria and with cell suspensions of Saccharomyces cerevisiae revealed that myxothiazol blocked the electron transport within the cytochrome b-c1 segment of the respiratory chain. Myxothiazol induced a spectral change in cytochrome b which was different from and independent of the shift induced by antimycin. Myxothiazol did not give the extra reduction of cytochrome b typical for antimycin. Studies on the effect of mixtures of myxothiazol and antimycin on the inhibition of NADH oxidation indicated that the binding sites of the two inhibitors are not identical.  相似文献   

20.

1. 1. The kinetics of light-induced absorbance changes due to oxidation and reduction of cytochromes were measured in a suspension of intact cells of the unicellular red alga Porphyridium aerugineum. Absorbance changes in the region 540–570 nm upon alternating far-red light and darkness indicated the oxidation of cytochrome ƒ and reduction of cytochrome b563 upon illumination. The relative efficiencies of far-red and orange light indicated that both reactions were driven by Photosystem I.

2. 2. Experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), with anaerobic cells and in alternating far-red and orange light indicated that cytochrome b563 reacts in a cyclic chain around Photosystem I, and that the reduced cytochrome does not react with oxygen or with another oxidized product of Photosystem II. The quantum requirement for the photoreduction was about 6 quanta/equiv at 700 nm. A low concentration of N-methylphenazonium methosulphate (PMS) enhanced the rate of reoxidation of cytochrome b563 in the dark. In the presence of higher concentrations of PMS a photooxidation, driven by Photosystem I, instead of reduction was observed. These observations suggest that PMS enhances the rate of reactions between reduced cytochrome b563 and oxidized products of Photosystem I.

3. 3. In the presence of carbonylcyanide m-chlorophenylhydrazone (CCCP) a light-induced decrease of absorption at 560 nm occurred. Spectral evidence suggested the photooxidation of cytochrome b559 under these conditions. Inhibition by DCMU and a relatively efficient action of orange light suggested that this photooxidation is driven by Photosystem II.

Abbreviations: DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; CCCP, carbonylcyanide m-chlorophenylhydrazone; FCCP, carbonylcyanide p-trifluoromethoxyphenylhydrazone; P700, chlorophyllous pigment absorbing at 700 nm, primary electron donor of Photosystem I; PMS, N-methylphenazonium methosulphate  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号