首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Three multiplex polymerase chain reactions (PCRs) targeted on Bifidobacterium and related species were designed to identify human species. The selected primers yielded amplified products of various sizes, each specific for a species. Three to four pairs were gathered in one PCR reaction and their specificity under multiplex conditions was confirmed using DNA from 26 reference strains. Using this technique on unidentified faecal strains, B. bifidum, B. longum and B. breve species were commonly recovered in infants while B. adolescentis, B. catenulatum/B. pseudocatenulatum continuum and B. longum species were predominant in adults. Thus, a single PCR can provide the assignment of a strain to one these species, reducing the number of PCR reactions and hands-on time for the identification of human isolates of bifidobacteria. Moreover, this technique is also applicable for the in situ detection of bifidobacteria in DNA extracts from human stools.  相似文献   

2.
In order to clarify the distribution of bifidobacterial species in the human intestinal tract, a 16S rRNA-gene-targeted species-specific PCR technique was developed and used with DNAs extracted from fecal samples obtained from 48 healthy adults and 27 breast-fed infants. To cover all of the bifidobacterial species that have been isolated from and identified in the human intestinal tract, species-specific primers for Bifidobacterium longum, B. infantis, B. dentium, and B. gallicum were developed and used with primers for B. adolescentis, B. angulatum, B. bifidum, B. breve, and the B. catenulatum group (B. catenulatum and B. pseudocatenulatum) that were developed in a previous study (T. Matsuki, K. Watanabe, R. Tanaka, and H. Oyaizu, FEMS Microbiol. Lett. 167:113-121, 1998). The specificity of the nine primers was confirmed by PCR, and the species-specific PCR method was found to be a useful means for identifying Bifidobacterium strains isolated from human feces. The results of an examination of bifidobacterial species distribution showed that the B. catenulatum group was the most commonly found taxon (detected in 44 of 48 samples [92%]), followed by B. longum and B. adolescentis, in the adult intestinal bifidobacterial flora and that B. breve, B. infantis, and B. longum were frequently found in the intestinal tracts of infants. The present study demonstrated that qualitative detection of the bifidobacterial species present in human feces can be accomplished rapidly and accurately.  相似文献   

3.
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.  相似文献   

4.
In this study, a competitive PCR was developed to estimate the quantity of bifidobacteria in human faecal samples using two 16S rRNA gene Bifidobacterium genus-specific primers, Bif164f and Bif662r. A PCR-temporal temperature gradient gel electrophoresis (TTGE) with the same primers also allowed us to describe the Bifidobacterium species present in these faecal samples. The PCR product obtained from the competitor had 467 bp, and was 47 bp shorter than the PCR products obtained from Bifidobacterium strains. The number of bifidobacterial cells was linear from 10 to 10(8) cells per PCR assay. Taking into account the dilutions of the extracted DNA, the linear range was over 8 x 10(5) bifidobacteria g(-1) of faeces. Reproducibility was assessed from 10 independent DNA extractions from the same stool and the coefficient of variation was 0.5%. When the competitive PCR was compared with the culture method, a similar count of seven out of nine Bifidobacterium pure cultures were obtained, or had a difference inferior or equal to 1 log(10). In faecal samples, the enumeration of Bifidobacterium genus in most cases gave higher results with competitive PCR than with culture on selective Columbia-Beerens agar pH 5 (P < 0.05). In conclusion, this competitive PCR allows a rapid, highly specific and reproducible quantification of Bifidobacterium genus in faecal samples. TTGE fragments co-migrating with B. longum CIP64.63 fragment were found in 10 out of 11 faecal samples. Bifidobacterium adolescentis and B. bifidum were detected in five out of 11 subjects. Thus, cPCR and PCR-TTGE can be associated in order to characterize human faecal bifidobacteria.  相似文献   

5.
Based on the 16S rDNA sequences, species specific primers were designed for the rapid identification by DNA amplification of nine human Bifidobacterium spp., namely B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. dentium, B. infantis, B. longum, B. pseudocatenulatum. B. lactis currently included in dairy products was added to the series. The primers were designed to target different positions of the 16S rDNA, allowing the simultaneous identification of these ten species of Bifidobacterium using two mixtures of primers. The identification procedure described in this paper was validated by establishing a correlation with an AluI restriction pattern of the different full length amplified 16S rDNA. This multiple primer DNA amplification technique was applied for the identification of pure colonies of Bifidobacterium spp. or directly from total bacteria recovered from human fecal samples. The technique was shown to be useful to detect dominant species and, when primers were used in separate reactions, underrepresented species could be identified as well.  相似文献   

6.
A highly sensitive quantitative PCR detection method has been developed and applied to the distribution analysis of human intestinal bifidobacteria by combining real-time PCR with Bifidobacterium genus- and species-specific primers. Real-time PCR detection of serially diluted DNA extracted from cultured bifidobacteria was linear for cell counts ranging from 10(6) to 10 cells per PCR assay. It was also found that the method was applicable to the detection of Bifidobacterium in feces when it was present at concentrations of >10(6) cells per g of feces. Concerning the distribution of Bifidobacterium species in intestinal flora, the Bifidobacterium adolescentis group, the Bifidobacterium catenulatum group, and Bifidobacterium longum were found to be the three predominant species by examination of DNA extracted from the feces of 46 healthy adults. We also examined changes in the population and composition of Bifidobacterium species in human intestinal flora of six healthy adults over an 8-month period. The results showed that the composition of bifidobacterial flora was basically stable throughout the test period.  相似文献   

7.
Quantitative real-time PCR assays targeting the groEL gene for the specific enumeration of 12 human fecal Bifidobacterium species were developed. The housekeeping gene groEL (HSP60 in eukaryotes) was used as a discriminative marker for the differentiation of Bifidobacterium adolescentis, B. angulatum, B. animalis, B. bifidum, B. breve, B. catenulatum, B. dentium, B. gallicum, B. longum, B. pseudocatenulatum, B. pseudolongum, and B. thermophilum. The bifidobacterial chromosome contains a single copy of the groEL gene, allowing the determination of the cell number by quantification of the groEL copy number. Real-time PCR assays were validated by comparing fecal samples spiked with known numbers of a given Bifidobacterium species. Independent of the Bifidobacterium species tested, the proportion of groEL copies recovered from fecal samples spiked with 5 to 9 log(10) cells/g feces was approximately 50%. The quantification limit was 5 to 6 log(10) groEL copies/g feces. The interassay variability was less than 10%, and variability between different DNA extractions was less than 23%. The method developed was applied to fecal samples from healthy adults and full-term breast-fed infants. Bifidobacterial diversity in both adults and infants was low, with mostly ≤3 Bifidobacterium species and B. longum frequently detected. The predominant species in infant and adult fecal samples were B. breve and B. adolescentis, respectively. It was possible to distinguish B. catenulatum and B. pseudocatenulatum. We conclude that the groEL gene is a suitable molecular marker for the specific and accurate quantification of human fecal Bifidobacterium species by real-time PCR.  相似文献   

8.
Twenty-eight exclusively breast-fed healthy infants and 16 infants also exclusively breast-fed with allergic colitis (aged 85 +/- 60 and 98 +/- 58 d, respectively) were screened for differences in fecal flora. Bifidobacteria were detected in 23 healthy infants and only in 4 fecal samples of infants with allergic colitis. All bifidobacteria-free infants possessed Gram-positive regular rods as a major group of their fecal flora. These bacteria were identified as clostridia using genus-specific FISH probe. Infants with allergy colitis possessed significantly lower counts of bifidobacteria and total anaerobes and significantly higher counts of clostridia in their feces. In healthy infants, Bifidobacterium longum was the most frequently found species (54.5% of the samples), followed by B. adolescentis (20.0), B. breve (18.2), B. bifidum (16.4), B. dentium (10.9) and B. pseudocatenulatum (1.80). Bifidobacterial isolates from two babies with allergic colitis were identified as B. longum, one child from patients group contained species B. dentium and one baby B. adolescentis. Our results suggest that there are significantly lower counts of bifidobacteria in infants with allergic colitis than in healthy infants.  相似文献   

9.
AIMS: Bifidobacterium species are known for their beneficial effects on health and their wide use as probiotics. Although various polymerase chain reaction (PCR) methods for the identification of Bifidobacterium species have been published, the reliability of these methods remains open to question. METHODS AND RESULTS: In this study, we evaluated 37 previously reported PCR primer sets designed to amplify 16S rDNA, 23S rDNA, intergenic spacer regions, or repetitive DNA sequences of various Bifidobacterium species. CONCLUSIONS: Ten of 37 experimental primer sets showed specificity for B. adolescentis, B. angulatum, B. pseudocatenulatum, B. breve, B. bifidum, B. longum, B. longum biovar infantis and B. dentium. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that published Bifidobacterium primer sets should be re-evaluated for both reproducibility and specificity for the identification of Bifidobacterium species using PCR. Improvement of existing PCR methods will be needed to facilitate identification of other Bifidobacterium strains, such as B. animalis, B. catenulatum, B. thermophilum and B. subtile.  相似文献   

10.
AIM: To develop real-time quantitative PCR methods, based on the use of probes labelled with a stable fluorescent lanthanide chelate, for the quantification of different human faecal bifidobacterial populations. METHODS AND RESULTS: The designed quantitative PCR assays were found to be specific for the corresponding Bifidobacterium species or groups (Bifidobacterium longum group, Bifidobacterium catenulatum group, Bifidobacterium adolescentis, Bifidobacterium breve, Bifidobacterium angulatum, Bifidobacterium bifidum and Bifidobacterium dentium). The detection limits of the methodologies used ranged between 2 x 10(5) and 9 x 10(3) cells g(-1) of faeces. The applicability of the developed assays was tested by analysing 20 human faecal samples. Bif. longum group was found to be the qualitatively and quantitatively predominant bifidobacterial group. CONCLUSIONS: The real-time PCR procedures developed here are specific, accurate, rapid and easy methods for the quantification of Bifidobacterium groups or species in human faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The developed procedures will facilitate rapid and objective counting of large numbers of samples increasing our knowledge on the role of gut bifidobacterial microbiota in health and disease. This will contribute to the efficient use of intestinal bacterial assays in research, food and pharmaceutical development as well as in the assessment of dietary management of diseases.  相似文献   

11.
AIMS: The aim of the present study was to compare several molecular methods for the identification and genotyping of bifidobacteria, and further to investigate genetic heterogeneity and functional properties of bifidobacterial isolates from intestinal samples of Finnish adult subjects. METHODS AND RESULTS: A total of 153 intestinal bifidobacterial isolates were included in initial screening and 34 isolates were further characterized. Identification results obtained with PCR-ELISA and ribotyping were well in accordance with each other, while randomly amplified polymorphic DNA (RAPD) gave tentative identification only to Bifidobacterium bifidum and to 65% of the B. longum isolates. The most commonly detected species were B. longum biotype longum followed by B. adolescentis and B. bifidum. In addition, B. animalis (lactis), B. angulatum and B. pseudocatenulatum were found. Ribotyping and pulsed-field gel electrophoresis (PFGE) proved to be discriminatory methods for bifidobacteria, but also RAPD revealed intraspecies heterogeneity. Besides two B. animalis (lactis) isolates with very close similarity to a commercially available probiotic strain, none of the intestinal isolates showed optimal survival in all tolerance (acid, bile and oxygen) or growth performance tests. CONCLUSIONS: Several species/strains of bifidobacteria simultaneously colonize the gastrointestinal tract of healthy Finnish adults and intestinal Bifidobacterium isolates were genetically heterogeneous. Functional properties of bifidobacteria were strain-dependent. SIGNIFICANCE AND IMPACT OF THE STUDY: Applicability of ribotyping with the automated RiboPrinter System for identification and genotyping of bifidobacteria was shown in the present study.  相似文献   

12.
Twenty-four Bifidobacterium strains were examined for their ability to bind to immobilized human and bovine intestinal mucus glycoproteins. Each of the tested bacteria exhibited its characteristic adhesion to human and bovine fecal mucus. No significant differences were found among the taxonomic species. Among the tested bacteria, B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. infantis, B. longum and B. pseudocatenulatum adhered to human fecal mucus better than bovine fecal mucus, while the binding of B. animalis and B. lactis was not preferential. These results suggest that the mucosal adhesive properties of bifidobacteria may be a strain dependent feature, and the mucosal binding of the human bifidobacteria may be more host specific.  相似文献   

13.
On the basis of 16S rRNA sequences, 5 species-specific forward primers were designed for the identification of 5 Bifidobacterium species isolated from human intestine, namely B. bifidum, B. adolescentis, B. infantis, B. breve and B. longum. As the 5 primers targeted at different sites of 16S rDNA, by using their mixture and a genus-specific reversed primer, the 5 Bifidobacterium species can be simultaneously identified in individual or in mixed culture through PCR amplification. The specificity of the primers was confirmed by the use of genomic DNAs from type strains of all 32 Bifidobacterium species and 6 other relatives. The 5-primer mixture was also applied to the identification of Bifidobacterium strains used commercially. The results turned out to be in accordance with those from conventional identification. This multiple-primer method provides a useful tool for rapid identification of the 5 Bifidobacterium species indicated.  相似文献   

14.
A healthy intestinal microbiota is considered to be important for priming of the infants' mucosal and systemic immunity. Breast-fed infants typically have an intestinal microbiota dominated by different Bifidobacterium species. It has been described that allergic infants have different levels of specific Bifidobacterium species than healthy infants. For the accurate quantification of Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium infantis, and Bifidobacterium longum in fecal samples, duplex 5' nuclease assays were developed. The assays, targeting rRNA gene intergenic spacer regions, were validated and compared with conventional PCR and fluorescent in situ hybridization methods. The 5' nuclease assays were subsequently used to determine the relative amounts of different Bifidobacterium species in fecal samples from infants receiving a standard formula or a standard formula supplemented with galacto- and fructo-oligosaccharides (OSF). A breast-fed group was studied in parallel as a reference. The results showed a significant increase in the total amount of fecal bifidobacteria (54.8% +/- 9.8% to 73.4% +/- 4.0%) in infants receiving the prebiotic formula (OSF), with a diversity of Bifidobacterium species similar to breast-fed infants. The intestinal microbiota of infants who received a standard formula seems to resemble a more adult-like distribution of bifidobacteria and contains relatively more B. catenulatum and B. adolescentis (2.71% +/- 1.92% and 8.11% +/- 4.12%, respectively, versus 0.15% +/- 0.11% and 1.38% +/- 0.98% for the OSF group). In conclusion, the specific prebiotic infant formula used induces a fecal microbiota that closely resembles the microbiota of breast-fed infants also at the level of the different Bifidobacterium species.  相似文献   

15.
A PCR-ELISA method was extended for detection of most common Bifidobacterium species in humans and applied to a feeding trial including administration of Bifidobacterium lactis Bb-12 and galacto-oligosaccharide (GOS)-containing syrup as probiotic and prebiotic preparations, respectively. For PCR-ELISA, oligonucleotide probes based on 16S rDNA sequences were designed and tested for specificity and sensitivity with nine different bifidobacterial species followed by analysis of faecal samples. Bifidobacteria were monitored for their fluctuations during and after the feeding trial. Bifidobacterium longum was the most common species found in the faecal samples, followed by B. adolescentis and B. bifidum. During ingestion of the probiotic B. lactis Bb-12, the strain appeared in the faeces but was absent again one week after finishing of the trial. The species that were observed in the faecal samples taken prior to the feeding experiments persisted also in samples derived from the pre-feeding and feeding periods. The most consistent change observed was the decrease in the relative amount of B. longum in the test group ingesting either B. lactis Bb-12 alone or in combination with GOS-syrup. Since the amounts of B. longum increased again in the post-feeding sample with these subjects, it may suggest that to some extent B. lactis Bb-12 is able to transiently replace B. longum.  相似文献   

16.
Twenty-one healthy bottle-fed infants were screened monthly (1-4 months) for bifidobacteria in their stools. Bifidobacteria were detected by culture and isolates specified by PCR. Alternatively, direct PCR in undiluted fecal suspensions was carried out for detection of bifidobacteria under the cultural detection level. All infants harbored cultivable bifidobacteria throughout the study period. Beerens medium was shown to permit a better recovery of bifidobacteria than MRS and horse blood Columbia agar. Direct PCR detection proved valuable in detecting species for which no cultural isolate could be recovered since the species were under the cultural detection level. B. bifidum, B. longum-infantis and B. breve were confirmed as dominant and stable species in infant stools while B. adolescentis and B. catenulatum group exhibited unstable colonization profiles. A trend towards B. breve decrease began at month 3 while carriage of the B. catenulatum group and B. adolescentis was rising. This observation warrants further analysis to assess a possible switch occurring at month 3 in bottle-fed infants, between so-called infant and adult bifidobacterial species.  相似文献   

17.
This study aimed at developing a novel multiplex polymerase chain reaction (PCR) primer set for identification of the potentially probiotic Bifidobacterium species B. adolescentis, B. animalis subsp. animalis (B. animalis), B. bifidum, B. breve, B. longum biovar infantis (B. infantis), B. animalis subsp. lactis B. lactis, B. longum biovar longum (B. longum) and B. pseudolongum. The primer set comprised specific and conserved primers and was derived from the integrated sequences of 16S and 23S rRNA genes and the rRNA intergenic spacer region (ISR) of each species. It could detect and identify type strains and isolates from pharmaceuticals or dairy products corresponding to the eight Bifidobacterium species with high specificity. It was also useful for screening of the related strains from natural sources such as the gastro-intestinal tract and feces. We suggest that the assay system from this study is an efficient tool for simple, rapid and reliable identification of Bifidobacterium species for which probiotic strains are known.  相似文献   

18.
Molecular biological methods based on genus-specific PCR, species-specific PCR, and amplified ribosomal DNA restriction analysis (ARDRA) of two PCR amplicons (523 and 914bp) using six restriction enzymes were used to differentiate among species of Bifidobacterium. The techniques were established using DNA from 16 type and reference strains of bifidobacteria of 11 species. The discrimination power of 914bp amplicon digestion was higher than that of 523bp amplicon digestion. The 914bp amplicon digestion by six restrictases provided unique patterns for nine species; B. catenulatum and B. pseudocatenulatum were not differentiated yet. The NciI digestion of the 914bp PCR product enabled to discriminate between each of B. animalis, B. lactis, and B. gallicum. The reference strain B. adolescentis CCM 3761 was reclassified as a member of the B. catenulatum/B. pseudocatenulatum group. The above-mentioned methods were applied for the identification of seven strains of Bifidobacterium spp. collected in the Culture Collection of Dairy Microorganisms (CCDM). The strains collected in CCDM were differentiated to the species level. Six strains were identified as B. lactis, one strain as B. adolescentis.  相似文献   

19.
【背景】越来越多的研究发现人类的诸多疾病与肠道菌群失衡有关。乳酸菌和双歧杆菌属于肠道中的有益菌,在不同人群肠道中的多样性不尽相同。【目的】在种水平上分析健康蒙古族人群肠道菌群中乳酸菌和双歧杆菌的多样性。【方法】以27名健康蒙古族志愿者为研究对象,其中14名来自中国内蒙古,13名来自蒙古国。首次采用乳酸菌和双歧杆菌的特异性引物扩增与PacBioSMRT三代测序技术相结合,在种水平上探讨志愿者肠道中乳酸菌和双歧杆菌的丰度和生物多样性,并进一步分析性别、BMI(Bodymassindex)值和地域对上述两者可能的影响,以及优势菌种之间的相关性。【结果】在种的水平上,27名志愿者肠道样品中共鉴定到68个乳酸菌和11个双歧杆菌,其中平均相对含量在1%以上的乳酸菌有8个,包括唾液链球菌(Streptococcus salivarius,36.41%)、瘤胃乳酸杆菌(Lactobacillus ruminis,17.94%)、德氏乳杆菌(Lactobacillus delbrueckii,3.11%)、罗氏乳杆菌(Lactobacillus rogosae,2.23%)、轻型链球菌(Streptococcus mitis,2.18%)、阴道乳杆菌(Lactobacillus vaginalis,2.02%)、魏斯氏乳杆菌(Weissella confusa,1.54%)和鼠李糖乳杆菌(Lactobacillus rhamnosus,1.09%);双歧杆菌有5个,包括青春双歧杆菌(Bifidobacterium adolescentis,39.88%)、长双歧杆菌(Bifidobacterium longum,27.15%)、链状双歧杆菌(Bifidobacterium catenulatum,26.30%)、两歧双歧杆菌(B. bifidum,3.92%)和角双歧杆菌(Bifidobacterium angulatum,1.71%),聚类分析分为链状双歧杆菌和青春双歧杆菌2个主要的类群。分析结果显示:性别、BMI值和地域均未能显著影响志愿者肠道中乳酸菌和双歧杆菌的菌群结构(P0.05),但男性和女性之间、中国内蒙古地区和外蒙古国的志愿者之间的个别乳酸菌菌种相对含量存在显著差异(P0.05)。对样品中的优势乳酸菌和双歧杆菌进行Spearman相关性分析发现,乳酸菌和双歧杆菌彼此之间相关性较为密切,不同菌种间相关性不尽相同,与具体的菌种有关。【结论】首次采用PacBio SMRT测序技术在种的水平揭示了健康蒙古族人肠道中乳酸菌和双歧杆菌菌种多样性,为在种水平上解析肠道中乳酸菌和双歧杆菌多样性提供了新的研究思路和实施方案。  相似文献   

20.
The abilities of seven bifidobacterial isolates ( Bifidobacterium adolescentis , B. bifidum (two strains), B. catenulatum , B. infantis , B. longum , B. pseudolongum ) to utilize 15 different carbohydrate sources (eight oligosaccharide products, and a variety of monosaccharides and disaccharides) were studied, with regard to maximum specific growth rates and production of bacterial cell mass. Results showed that substrate utilization was highly variable and that considerable interspecies and interstrain differences existed. Galactooligosaccharides and oligofructose, with a low degree of polymerization, supported best growth of the test micro-organisms. In contrast, xylooligosaccharides and pyrodextrins were almost invariably poor bifidobacterial substrates. In many species, maximum specific growth rates and bacterial cell yields were higher on oligosaccharides compared to their monosaccharide constituents, particularly with respect to fructooligosaccharides. Bifidobacterium pseudolongum , B. longum and B. catenulatum were the most nutritionally versatile isolates studied in relation to the range of oligosaccharide products utilized, and the extent to which bacteria could grow on these substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号