共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of Xenopus p21-activated kinase (X-PAK2) by Cdc42 and maturation-promoting factor controls Xenopus oocyte maturation 总被引:2,自引:0,他引:2
Cau J Faure S Vigneron S Labbé JC Delsert C Morin N 《The Journal of biological chemistry》2000,275(4):2367-2375
Signal transduction cascades involved in regulation of the cell cycle machinery are poorly understood. In the Xenopus oocyte model, meiotic maturation is triggered by MPF, a complex of p34(cdc2)-cyclin B, which is activated in response to a progesterone signal by largely unknown mechanisms. We have previously shown that the p21-activated kinase (PAK) family negatively regulates the MPF amplification loop. In this study, we identify the endogenous PAK2 as a key enzyme in this regulation and describe the pathways by which PAK2 is regulated. We show that the small GTPase Cdc42 is required for maintenance of active endogenous X-PAK2 in resting stage VI oocytes, whereas Rac1 is not involved in this regulation. During the process of maturation, X-PAK2 phosphorylation results in its inactivation and allows maturation to proceed to completion. Activation of mitogen-activated protein kinase and cyclin B-p34(cdc2) is coincident with X-PAK2 inactivation, and purified active MPF inhibits X-PAK2, demonstrating the existence of a new positive feedback loop. Our results confirm and extend the importance of p21-activated kinases in the control of the G(2)/M transition. We hypothesize that the X-PAK2/Cdc42 pathway could link p34(cdc2) activity to the major cytoskeleton rearrangements leading to spindle migration and anchorage to the animal pole cortex. 相似文献
2.
Autophosphorylation of p21-activated protein kinase gamma-PAK is stimulated at 10 microM sphingosine in vitro and is maximal at 100 microM. Sites autophosphorylated on gamma-PAK in response to sphingosine are identical to those obtained with Cdc42(GTP). Autophosphorylation is paralleled by stimulation of gamma-PAK activity as measured with peptide and protein substrates. In 3T3-L1 cells, sphingosine stimulates the autophosphorylation and activity of gamma-PAK associated with the membrane-containing particulate fraction by 2.8-fold, but does not stimulate the activity of the soluble enzyme. Thus, gamma-PAK is activatable via a Cdc42-independent mechanism, suggesting sphingosine has a role in gamma-PAK activation under conditions of cell stress. 相似文献
3.
Regulation of the Bfa1p-Bub2p complex at spindle pole bodies by the cell cycle phosphatase Cdc14p
下载免费PDF全文

The budding yeast mitotic exit network (MEN) is a GTPase-driven signal transduction cascade that controls the release of the phosphatase Cdc14p from the nucleolus in anaphase and thereby drives mitotic exit. We show that Cdc14p is partially released from the nucleolus in early anaphase independent of the action of the MEN components Cdc15p, Dbf2p, and Tem1p. Upon release, Cdc14p binds to the spindle pole body (SPB) via association with the Bfa1p-Bub2p GTPase activating protein complex, which is known to regulate the activity of the G protein Tem1p. Cdc14p also interacts with this GTPase. The association of the MEN component Mob1p with the SPB acts as a marker of MEN activation. The simultaneous binding of Cdc14p and Mob1p to the SPB in early anaphase suggests that Cdc14p initially activates the MEN. In a second, later step, which coincides with mitotic exit, Cdc14p reactivates the Bfa1p-Bub2p complex by dephosphorylating Bfa1p. This inactivates the MEN and displaces Mob1p from SPBs. These data indicate that Cdc14p activates the MEN in early anaphase but later inactivates it through Bfa1p dephosphorylation and so restricts MEN activity to a short period in anaphase. 相似文献
4.
Smirnova TI Chadwick TG MacArthur R Poluektov O Song L Ryan MM Schaaf G Bankaitis VA 《The Journal of biological chemistry》2006,281(46):34897-34908
The major yeast phosphatidylinositol/phosphatidylcholine transfer protein Sec14p is the founding member of a large eukaryotic protein superfamily. Functional analyses indicate Sec14p integrates phospholipid metabolism with the membrane trafficking activity of yeast Golgi membranes. In this regard, the ability of Sec14p to rapidly exchange bound phospholipid with phospholipid monomers that reside in stable membrane bilayers is considered to be important for Sec14p function in cells. How Sec14p-like proteins bind phospholipids remains unclear. Herein, we describe the application of EPR spectroscopy to probe the local dynamics and the electrostatic microenvironment of phosphatidylcholine (PtdCho) bound by Sec14p in a soluble protein-PtdCho complex. We demonstrate that PtdCho movement within the Sec14p binding pocket is both anisotropic and highly restricted and that the C5 region of the sn-2 acyl chain of bound PtdCho is highly shielded from solvent, whereas the distal region of that same acyl chain is more accessible. Finally, high field EPR reports on a heterogeneous polarity profile experienced by a phospholipid bound to Sec14p. Taken together, the data suggest a headgroup-out orientation of Sec14p-bound PtdCho. The data further suggest that the Sec14p phospholipid binding pocket provides a polarity gradient that we propose is a primary thermodynamic factor that powers the ability of Sec14p to abstract a phospholipid from a membrane bilayer. 相似文献
5.
Qiyu Feng John G Albeck Richard A Cerione Wannian Yang 《The Journal of biological chemistry》2002,277(7):5644-5650
The Cool (cloned-out of library)/Pix (for PAK-interactive exchange factor) proteins directly bind to members of the PAK family of serine/threonine kinases and regulate their activity. Three members of the Cool/Pix family have shown distinct regulatory activities: (i) p50(Cool-1) inhibits Cdc42/Rac-stimulated PAK activity, (ii) p85(Cool-1)/beta-Pix has a permissive effect on Cdc42/Rac-stimulated activity, and (iii) p90(Cool-2)/alpha-Pix strongly activates PAK. We initially suspected that these different functional effects were due to a binding interaction that occurs at the carboxyl-terminal ends of the larger Cool/Pix proteins, thus enabling them to stimulate (or at least permit) rather than inhibit PAK activity. This led to the identification of the Cat proteins (for Cool-associated tyrosine phosphosubstrates). However, here we show that the Cat proteins bind to the carboxyl-terminal ends of p85(Cool-1) (residues 523-546) and Cool-2 (residues 647-670), and that the binding of Cat to Cool-2 in fact is not necessary for the Cool-2-mediated activation of PAK. Rather, an 18-amino acid region, designated T1, that is present in the Cool-1 proteins, but missing in Cool-2, is essential for controlling the regulation of PAK activity by Cool-1/beta-Pix in vivo. Deletion of T1 yielded a p85(Cool-1) molecule that mimicked the Cool-2 protein and was capable of strongly stimulating PAK activity. However, when T1 was added to Cool-2, the ability of Cool-2 to directly activate PAK was lost. We conclude that T1 represents a novel regulatory domain that accounts for the specific functional effects on PAK activity exhibited by the different members of the Cool/Pix family. 相似文献
6.
The Saccharomyces cerevisiae kinase Ste20 is a member of the p21-activated kinase (PAK) family with several functions, including pheromone-responsive signal transduction. While PAKs are usually activated by small G proteins and Ste20 binds Cdc42, the role of Cdc42-Ste20 binding has been controversial, largely because Ste20 lacking its entire Cdc42-binding (CRIB) domain retains kinase activity and pheromone response. Here we show that, unlike CRIB deletion, point mutations in the Ste20 CRIB domain that disrupt Cdc42 binding also disrupt pheromone signaling. We also found that Ste20 kinase activity is stimulated by GTP-bound Cdc42 in vivo and this effect is blocked by the CRIB point mutations. Moreover, the Ste20 CRIB and kinase domains bind each other, and mutations that disrupt this interaction cause hyperactive kinase activity and bypass the requirement for Cdc42 binding. These observations demonstrate that the Ste20 CRIB domain is autoinhibitory and that this negative effect is antagonized by Cdc42 to promote Ste20 kinase activity and signaling. Parallel results were observed for filamentation pathway signaling, suggesting that the requirement for Cdc42-Ste20 interaction is not qualitatively different between the mating and filamentation pathways. While necessary for pheromone signaling, the role of the Cdc42-Ste20 interaction does not require regulation by pheromone or the pheromone-activated G beta gamma complex, because the CRIB point mutations also disrupt signaling by activated forms of the kinase cascade scaffold protein Ste5. In total, our observations indicate that Cdc42 converts Ste20 to an active form, while pathway stimuli regulate the ability of this active Ste20 to trigger signaling through a particular pathway. 相似文献
7.
8.
Krasinska L de Bettignies G Fisher D Abrieu A Fesquet D Morin N 《Experimental cell research》2007,313(6):1225-1239
Whereas early cytokinesis events have been relatively well studied, little is known about its final stage, abscission. The Cdc14 phosphatase is involved in the regulation of multiple cell cycle events, and in all systems studied Cdc14 misexpression leads to cytokinesis defects. In this work, we have cloned two CDC14 cDNA from Xenopus, including a previously unreported CDC14B homologue. We use Xenopus and human cell lines and demonstrate that localization of Cdc14 proteins is independent of both cell-type and species specificity. Ectopically expressed XCdc14A is centrosomal in interphase and localizes to the midbody in cytokinesis. By using XCdc14A misregulation, we confirm its control over different cell cycle events and unravel new functions during abscission. XCdc14A regulates the G1/S and G2/M transitions. We show that Cdc25 is an in vitro substrate for XCdc14A and might be its target at the G2/M transition. Upregulated wild-type or phosphatase-dead XCdc14A arrest cells in a late stage of cytokinesis, connected by thin cytoplasmic bridges. It does not interfere with central spindle formation, nor with the relocalization of passenger protein and centralspindlin complexes to the midbody. We demonstrate that XCdc14A upregulation prevents targeting of exocyst and SNARE complexes to the midbody, both essential for abscission to occur. 相似文献
9.
Signal transduction pathways that co-regulate a given biological process often are organized into networks by molecules that act as coincidence detectors. Phosphoinositides and the Rho-type GTPase Cdc42 regulate overlapping processes in all eukaryotic cells. However, the coincidence detectors that link these pathways into networks remain unknown. Here we show that the p21-activated protein kinase-related kinase Cla4 of yeast integrates signaling by Cdc42 and phosphatidylinositol 4-phosphate (PI4P). We found that the Cla4 pleckstrin homology (PH) domain binds in vitro to several phosphoinositide species. To determine which phosphoinositides regulate Cla4 in vivo, we analyzed phosphatidylinositol kinase mutants (stt4, mss4, and pik1). This indicated that the plasma membrane pool of PI4P, but not phosphatidylinositol 4,5-bisphosphate or the Golgi pool of PI4P, is required for localization of Cla4 to sites of polarized growth. A combination of the Cdc42-binding and PH domains of Cla4 was necessary and sufficient for localization to sites of polarized growth. Point mutations affecting either domain impaired the ability of Cla4 to regulate cell morphogenesis and the mitotic exit network (localization of Lte1). Therefore, Cla4 must retain the ability to bind both Cdc42 and phosphoinositides, the hallmark of a coincidence detector. PI4P may recruit Cla4 to the plasma membrane where Cdc42 activates its kinase activity and refines its localization to cortical sites of polarized growth. In mammalian cells, the myotonic dystrophy-related Cdc42-binding kinase possesses p21-binding and PH domains, suggesting that this kinase may be a coincidence detector of signaling by Cdc42 and phosphoinositides. 相似文献
10.
Activation of the canonical mitogen-activated protein kinase (MAPK) cascade by soluble mitogens is blocked in non-adherent cells. It is also blocked in cells in which the cAMP-dependent protein kinase (PKA) is activated. Here we show that inhibition of PKA allows anchorage-independent stimulation of the MAPK cascade by growth factors. This effect is transient, and its duration correlates with sustained tyrosine phosphorylation of paxillin and focal-adhesion kinase (FAK) in non-adherent cells. The effect is sensitive to cytochalasin D, implicating the actin cytoskeleton as an important factor in mediating this anchorage-independent signalling. Interestingly, constitutively active p21-activated kinase (PAK) also allows anchorage-independent MAPK signalling. Furthermore, PKA negatively regulates PAK in vivo, and whereas the induction of anchorage-independent signaling resulting from PKA suppression is blocked by dominant negative PAK, it is markedly prolonged by constitutively active PAK. These observations indicate that PKA and PAK are important regulators of anchorage-dependent signal transduction. 相似文献
11.
A member of the family of p21-activated protein kinases, gamma-PAK, has cytostatic properties and is activated during apoptosis and in response to DNA damage. To determine whether gamma-PAK is activated by other types of cell stress and to assess its mechanism of activation, the response of gamma-PAK to hyperosmotic stress was examined. In 3T3-L1 mouse fibroblasts, there are two pools of gamma-PAK: the majority of the protein kinase is soluble and has low specific activity, whereas gamma-PAK associated with the particulate fraction has significantly higher specific activity. Hyperosmolarity promotes translocation of gamma-PAK from the soluble to the particulate fraction; this parallels activation of the protein kinase. Activation but not translocation of gamma-PAK is wortmannin-sensitive, suggesting the involvement of a phosphoinositide 3-kinase-related activity. gamma-PAK translocation in response to hyperosmolarity parallels Cdc42 translocation to the particulate fraction in vivo and can be induced in vitro by guanosine 5'-3-O-(thio)triphosphate. Cotransfection of gamma-PAK with constitutively active Cdc42 induces gamma-PAK activation and translocation, whereas inactive Cdc42 inhibits both processes in response to hyperosmotic stress, suggesting that Cdc42 has a role in the translocation and activation of gamma-PAK. alpha-PAK is not activated in response to hyperosmolarity in 3T3-L1 cells. A two-step model of gamma-PAK activation is presented. 相似文献
12.
The Cdc14 family of dual-specificity protein phosphatases (DSPs) is conserved within eukaryotes and functions to down-regulate mitotic Cdk activities, promoting cytokinesis and mitotic exit. We have integrated structural and kinetic analyses to define the molecular mechanism of the dephosphorylation reaction catalysed by Cdc14. The structure of Cdc14 illustrates a novel arrangement of two domains, each with a DSP-like fold, arranged in tandem. The C-terminal domain contains the conserved PTP motif of the catalytic site, whereas the N-terminal domain, which shares no sequence similarity with other DSPs, contributes to substrate specificity, and lacks catalytic activity. The catalytic site is located at the base of a pronounced surface channel formed by the interface of the two domains, and regions of both domains interact with the phosphopeptide substrate. Specificity for a pSer-Pro motif is mediated by a hydrophobic pocket that is capable of accommodating the apolar Pro(P+1) residue of the peptide. Our structural and kinetic data support a role for Cdc14 in the preferential dephosphorylation of proteins modified by proline-directed kinases. 相似文献
13.
14.
AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance. 相似文献
15.
16.
Involvement of p21(Waf1/Cip1) in protein kinase C alpha-induced cell cycle progression 总被引:13,自引:0,他引:13
下载免费PDF全文

Protein kinase C (PKC) plays an important role in the regulation of glioma growth; however, the identity of the specific isoform and mechanism by which PKC fulfills this function remain unknown. In this study, we demonstrate that PKC activation in glioma cells increased their progression through the cell cycle. Of the six PKC isoforms that were present in glioma cells, PKC alpha was both necessary and sufficient to promote cell cycle progression when stimulated with phorbol 12-myristate 13-acetate. Also, decreased PKC alpha expression resulted in a marked decrease in cell proliferation. The only cell cycle-regulatory molecule whose expression was rapidly altered and increased by PKC alpha activity was the cyclin-cyclin-dependent kinase (CDK) inhibitor p21(Waf1/Cip1). Coimmunoprecipitation studies revealed that p21(Waf1/Cip1) upregulation was accompanied by an incorporation of p21(Waf1/Cip1) into various cyclin-CDK complexes and that the kinase activity of these complexes was increased, thus resulting in cell cycle progression. Furthermore, depletion of p21(Waf1/Cip1) by antisense strategy attenuated the PKC-induced cell cycle progression. These results suggest that PKC alpha activity controls glioma cell cycle progression through the upregulation of p21(Waf1/Cip1), which facilitates active cyclin-CDK complex formation. 相似文献
17.
Shimada M Namikawa-Yamada C Nakanishi M Murakami H 《The Journal of biological chemistry》2005,280(38):32640-32648
Screening of cdc mutants of fission yeast for those whose cell cycle arrest is independent of the DNA damage checkpoint identified the RNA splicing-deficient cdc28 mutant. A search for mutants of cdc28 cells that enter mitosis with unspliced RNA resulted in the identification of an orb5 point mutant. The orb5+ gene, which encodes a catalytic subunit of casein kinase II, was found to be required for cell cycle arrest in other mutants with defective RNA metabolism but not for operation of the DNA replication or DNA damage checkpoints. Loss of function of wee1+ or rad24+ also suppressed the arrest of several splicing mutants. Overexpression of the major B-type cyclin Cdc13p induced cdc28 cells to enter mitosis. The abundance of Cdc13p was reduced, and the phosphorylation of Cdc2p on tyrosine 15 was maintained in splicing-defective cells. These results suggest that regulation of Cdc13p and Cdc2p is required for G2 arrest in splicing mutants. 相似文献
18.
RhoA, Cdc42, and Rac1 are small GTPases that regulate cytoskeletal reorganization leading to changes in cell morphology and cell motility. Their signaling pathways are activated by guanine nucleotide exchange factors and inactivated by GTPase-activating proteins (GAPs). We have identified a novel RhoGAP, BPGAP1 (for BNIP-2 and Cdc42GAP Homology (BCH) domain-containing, Proline-rich and Cdc42GAP-like protein subtype-1), that is ubiquitously expressed and shares 54% sequence identity to Cdc42GAP/p50RhoGAP. BP-GAP1 selectively enhanced RhoA GTPase activity in vivo although it also interacted strongly with Cdc42 and Rac1. "Pull-down" and co-immunoprecipitation studies indicated that it formed homophilic or heterophilic complexes with other BCH domain-containing proteins. Fluorescence studies of epitope-tagged BPGAP1 revealed that it induced pseudopodia and increased migration of MCF7 cells. Formation of pseudopodia required its BCH and GAP domains but not the proline-rich region, and was differentially inhibited by coexpression of the constitutively active mutant of RhoA, or dominant negative mutants of Cdc42 and Rac1. However, the mutant without the proline-rich region failed to confer any increase in cell migration despite the induction of pseudopodia. Our findings provide evidence that cell morphology changes and migration are coordinated via multiple domains in BPGAP1 and present a novel mode of regulation for cell dynamics by a RhoGAP protein. 相似文献
19.
p21-activated kinases (PAKs) are implicated in integrin signalings, and have been proposed to associate with paxillin indirectly. We show here that paxillin can bind directly to PAK3. We examined several representative focal adhesion proteins, and found that paxillin is the sole protein that associates with PAK3. PAK3 associated with the alpha and beta isoforms of paxillin, but not with gamma. We also show that paxillin alpha associated with both the kinase-inactive and the Cdc42-activated forms of PAK3 in vivo, without affecting the activation states of the kinase. A number of different functions have been ascribed to PAKs; and PAKs can bind directly to growth factor signaling-adaptor molecule, Nck, and a guanine nucleotide exchanger, betaPIX. Our results revealed that paxillin alpha can compete with Nck and betaPIX in the binding of PAK3. Moreover, paxillin alpha can be phosphorylated by PAK3 at serine. Therefore, paxillin alpha, but not gamma, appears to be capable of linking both the kinase-inactive and activated forms of PAK3 to integrins independent of Nck and betaPIX, as Nck links PAK1 to growth factor receptors. Our results also revealed that paxillin is involved in highly complexed protein-protein interactions in integrin signaling. 相似文献
20.
During the G1/S transition, p21 proteolysis is mediated by Skp2; however, p21 reaccumulates in G2 and is degraded again in prometaphase. How p21 degradation is controlled in mitosis remains unexplored. We found that Cdc20 (an activator of the ubiquitin ligase APC/C) binds p21 in cultured cells and identified a D box motif in p21 necessary for APC/C(Cdc20)-mediated ubiquitylation of p21. Overexpression of Cdc20 or Skp2 destabilized wild-type p21; however, only Skp2, but not Cdc20, was able to destabilize a p21(D box) mutant. Silencing of Cdc20 induced an accumulation of p21, increased the fraction of p21 bound to Cdk1, and inhibited Cdk1 activity in p21(+/+) prometaphase cells, but not in p21(-/-) cells. Thus, in prometaphase Cdc20 positively regulates Cdk1 by mediating the degradation of p21. We propose that the APC/C(Cdc20)-mediated degradation of p21 contributes to the full activation of Cdk1 necessary for mitotic events and prevents mitotic slippage during spindle checkpoint activation. 相似文献