首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The ability of Shewanella decolorationis S12 to obtain energy for growth by coupling the oxidation of various electron donors to dissimilatory azoreduction was investigated. This microorganism can reduce a variety of azo dyes by use of formate, lactate, pyruvate, or H(2) as the electron donor. Furthermore, strain S12 grew to a maximal density of 3.0 x 10(7) cells per ml after compete reduction of 2.0 mM amaranth in a defined medium. This was accompanied by a stoichiometric consumption of 4.0 mM formate over time when amaranth and formate were supplied as the sole electron acceptor and donor, respectively, suggesting that microbial azoreduction is an electron transport process and that this electron transport can yield energy to support growth. Purified membranous, periplasmic, and cytoplasmic fractions from S12 were analyzed, but only the membranous fraction was capable of reducing azo dyes with formate, lactate, pyruvate, or H(2) as the electron donor. The presence of 5 microM Cu(2+) ions, 200 microM dicumarol, 100 microM stigmatellin, and 100 microM metyrapone inhibited anaerobic azoreduction activity by both whole cells and the purified membrane fraction, showing that dehydrogenases, cytochromes, and menaquinone are essential electron transfer components for azoreduction. These results provide evidence that the microbial anaerobic azoreduction is linked to the electron transport chain and suggest that the dissimilatory azoreduction is a form of microbial anaerobic respiration. These findings not only expand the number of potential electron acceptors known for microbial energy conservation but also elucidate the mechanisms of microbial anaerobic azoreduction.  相似文献   

2.
Shewanella decolorationis S12 was able to reduce various azo dyes in a defined medium with formate, lactate, and pyruvate or H2 as electron donors under anaerobic conditions. Purified membranous, periplasmic, and cytoplasmic fractions from strain S12 analyzed, respectively, only membranous fraction was capable of reducing azo dye in the presence of electron donor, indicating that the enzyme system for anaerobic azoreduction was located on cellular membrane. Respiratory inhibitor Cu2+, dicumarol, stigmatellin, and metyrapone inhibited anaerobic azoreduction by purified membrane fraction, suggesting that the bacterial anaerobic azoreduction by strain S12 was a biochemical process that oxidizes the electron donors and transfers the electrons to the acceptors through a multicompound system related to electron transport chain. Dehydrogenases, cytochromes, and menaquinones were essential electron transport components for the azoreduction. The electron transport process for azoreduction was almost fully inhibited by O2, 6 mM of , and 0.9 mM of , but not by 10 mM of Fe3+. The inhibition may be a result from the competition for electrons from electron donors. These findings impact on the understanding of the mechanism of bacterial anaerobic azoreduction and have implication for improving treatment methods of wastewater contaminated by azo dyes.  相似文献   

3.
Physiologically distinct facultative anaerobic microorganisms were isolated and investigated for their ability to oxidize different substrates with azo compounds as a terminal electron acceptor. Four strains of dissimilatory azoreducing bacteria (DARBs), isolated from activated sludge of a textile-printing wastewater treatment plant, could reduce azo compound by coupling oxidation of several of electron donors. Different strains preferred specific electron donor for azoreduction, such as hydrogen, formate or lactate. Evolutionary relationships among these DARBs were examined by phylogenetic analysis of 16S rDNA sequences. Members of the genera Citrobacter (AzoR-1), Acinetobacter (AzoR-3), and Pseudomonas (AzoR-9) formed a monophyletic group within the gamma subdivision of the class Proteobacteria, which was closely related to the member of the previously described Shewanella decolorationnis S12 that obtained its energy for growth by dissimilatory azoreduction process. The genus Bacillus (AzoR-6) made up a distinct branch within the Firmicutes cluster. The results of this study expanded the limited number of microbial isolates that are known to be capable of dissimilatory azoreduction and demonstrated that the ubiquity of azoreduction coupling with hydrogen or organic acids as an electron donor.  相似文献   

4.
Electron transfer pathways for azoreduction by S. decolorationis S12 were studied using a mutant S12-22 which had a transposon insertion in ccmA. The results imply that there are two different pathways for electron transport to azo bonds. The colony of S12-22 was whitish and incapable of producing mature c-type cytochromes whose α-peak was at 553 nm in the wild type S12. The mutant S12-22 could not use formate as the sole electron donor for azoreduction either in vivo or in vitro, but intact cells of S12-22 were able to reduce azo dyes of low polarity, such as methyl red, when NADH was served as the sole electron donor. Although the highly polar-sulfonated amaranth could not be reduced by intact cells of S12-22, it could be efficiently reduced by cell extracts of the mutant when NADH was provided as the sole electron donor. These results suggest that the mature c-type cytochromes are essential electron mediators for the extracellular azoreduction of intact cells, while the other pathway without the involvement of mature c-type cytochromes, NADH-dependent oxidoreductase-mediated electron transfer pathway can reduce lowly polar sulfonated azo dyes inside the whole cells or highly polar sulfonated azo dyes in the cell extracts without bacterial membrane barriers.  相似文献   

5.
In this paper, the hydrogen (H2)-dependent discoloration of azo dye amaranth by Shewanella oneidensis MR-1 was investigated. Experiments with hydrogenase-deficient strains demonstrated that periplasmic [Ni–Fe] hydrogenase (HyaB) and periplasmic [Fe–Fe] hydrogenase (HydA) are both respiratory hydrogenases of dissimilatory azoreduction in S. oneidensis MR-1. These findings suggest that HyaB and HydA can function as uptake hydrogenases that couple the oxidation of H2 to the reduction of amaranth to sustain cellular growth. This constitutes to our knowledge the first report of the involvement of [Fe-Fe] hydrogenase in a bacterial azoreduction process. Assays with respiratory inhibitors indicated that a menaquinone pool and different cytochromes were involved in the azoreduction process. High-performance liquid chromatography analysis revealed that flavin mononucleotide and riboflavin were secreted in culture supernatant by S. oneidensis MR-1 under H2-dependent conditions with concentration of 1.4 and 2.4 μmol g protein-1, respectively. These endogenous flavins were shown to significantly accelerate the reduction of amaranth at micromolar concentrations acting as electron shuttles between the cell surface and the extracellular azo dye. This work may facilitate a better understanding of the mechanisms of azoreduction by S. oneidensis MR-1 and may have practical applications for microbiological treatments of dye-polluted industrial effluents.  相似文献   

6.
A possibility of dissimilatory MnO2 reduction at extremely high salt and pH was studied in sediments from hypersaline alkaline lakes in Kulunda Steppe (Altai, Russia). Experiments with anaerobic sediment slurries demonstrated a relatively rapid reduction of colloidal MnO2 in the presence of acetate and formate as electron donor at in situ conditions (i.e., pH 10 and a salt content from 0.6 to 4 M total Na+). All reduced Mn at these conditions remained in the solid phase. A single, stable enrichment culture was obtained from the slurries consistently reducing MnO2 at pH 10 and 0.6 M total Na+ with formate. A pure culture of a haloalkaliphilic Mn-reducing bacterium obtained from the positive enrichment was phylogenetically closely related to the anaerobic haloalkaliphilic Bacillus arseniciselenatis isolated from Mono Lake (CA, USA). Bacillus sp. strain AMnr1 was obligately anaerobic, able to grow either by glucose fermentation, or respiring few nonfermentable substrates by using MnO2 as the electron acceptor. Optimal growth by dissimilatory MnO2 reduction was achieved with glycerol as electron donor at pH 9.5–10 and salt content between 0.4 and 0.8 M total Na+.  相似文献   

7.
To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing 99Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O4] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H2 served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0.85% NaCl and with extracellular particulates (0.2 to 0.001 μm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 μm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O4 in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of Eh and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products.  相似文献   

8.
Microbial formate production and consumption during syntrophic conversion of ethanol or lactate to methane was examined in purified flocs and digestor contents obtained from a whey-processing digestor. Formate production by digestor contents or purified digestor flocs was dependent on CO2 and either ethanol or lactate but not H2 gas as an electron donor. During syntrophic methanogenesis, flocs were the primary site for formate production via ethanol-dependent CO2 reduction, with a formate production rate and methanogenic turnover constant of 660 μM/h and 0.044/min, respectively. Floc preparations accumulated fourfold-higher levels of formate (40 μM) than digestor contents, and the free flora was the primary site for formate cleavage to CO2 and H2 (90 μM formate per h). Inhibition of methanogenesis by CHCl3 resulted in formate accumulation and suppression of syntrophic ethanol oxidation. H2 gas was an insignificant intermediary metabolite of syntrophic ethanol conversion by flocs, and its exogenous addition neither stimulated methanogenesis nor inhibited the initial rate of ethanol oxidation. These results demonstrated that >90% of the syntrophic ethanol conversion to methane by mixed cultures containing primarily Desulfovibrio vulgaris and Methanobacterium formicicum was mediated via interspecies formate transfer and that <10% was mediated via interspecies H2 transfer. The results are discussed in relation to biochemical thermodynamics. A model is presented which describes the dynamics of a bicarbonate-formate electron shuttle mechanism for control of carbon and electron flow during syntrophic methanogenesis and provides a novel mechanism for energy conservation by syntrophic acetogens.  相似文献   

9.
Bacterial iodate (IO3) reduction is poorly understood largely due to the limited number of available isolates as well as the paucity of information about key enzymes involved in the reaction. In this study, an iodate-reducing bacterium, designated strain SCT, was newly isolated from marine sediment slurry. SCT is phylogenetically closely related to the denitrifying bacterium Pseudomonas stutzeri and reduced 200 μM iodate to iodide (I) within 12 h in an anaerobic culture containing 10 mM nitrate. The strain did not reduce iodate under the aerobic conditions. An anaerobic washed cell suspension of SCT reduced iodate when the cells were pregrown anaerobically with 10 mM nitrate and 200 μM iodate. However, cells pregrown without iodate did not reduce it. The cells in the former category showed methyl viologen-dependent iodate reductase activity (0.31 U mg−1), which was located predominantly in the periplasmic space. Furthermore, SCT was capable of anaerobic growth with 3 mM iodate as the sole electron acceptor, and the cells showed enhanced activity with respect to iodate reductase (2.46 U mg−1). These results suggest that SCT is a dissimilatory iodate-reducing bacterium and that its iodate reductase is induced by iodate under anaerobic growth conditions.  相似文献   

10.
Aim: To investigate the role of soluble and insoluble iron in azoreduction by resting cells of Shewanella decolorationis S12. Methods and Results: A series of analytical experiments were carried out. Results showed that insoluble Fe2O3 all delayed the reduction of amaranth but did not inhibit it. Adsorption to Fe2O3 particles by the bacterial cell surface could be the reason leading to the delay in azoreduction. For the soluble iron, an important finding was that azoreduction activities were inhibited by soluble iron in high concentration because of its higher redox potential, and the inhibition was strengthened when the electron donor supply was insufficient. However, activities of azoreduction could be enhanced by low concentration of soluble iron. This stimulating effect was because of the electron transfer but not the cell growth. Conclusions: The effects of iron on azoreduction by the resting cells depended on the solubility and concentration of the iron compounds, which was different from what was observed by the growing cells in the previous studies. Significance and Impact of the Study: This study has both theoretical significance in the microbial physiology and practical significance in the bioremediation of azo dyes‐contaminated environment.  相似文献   

11.
The kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei were studied with log-phase formate-grown cultures. The progress of formate degradation was followed by the formyltetrahydrofolate synthetase assay for formate and fitted to the integrated form of the Michaelis-Menten equation. The Km and Vmax values for Methanobacterium formicicum were 0.58 mM formate and 0.037 mol of formate h−1 g−1 (dry weight), respectively. The lowest concentration of formate metabolized by Methanobacterium formicicum was 26 μM. The Km and Vmax values for Methanospirillum hungatei were 0.22 mM and 0.044 mol of formate h−1 g−1 (dry weight), respectively. The lowest concentration of formate metabolized by Methanospirillum hungatei was 15 μM. The apparent Km for formate by formate dehydrogenase in cell-free extracts of Methanospirillum hungatei was 0.11 mM. The Km for H2 uptake by cultures of Methanobacterium formicicum was 6 μM dissolved H2. Formate and H2 were equivalent electron donors for methanogenesis when both substrates were above saturation; however, H2 uptake was severely depressed when formate was above saturation and the dissolved H2 was below 6 μM. Formate-grown cultures of Methanobacterium formicicum that were substrate limited for 57 h showed an immediate increase in growth and methanogenesis when formate was added to above saturation.  相似文献   

12.
Whole-cell assays of methane and trichloroethylene (TCE) consumption have been performed on Methylosinus trichosporium OB3b expressing particulate methane monooxygenase (pMMO). From these assays it is apparent that varying the growth concentration of copper causes a change in the kinetics of methane and TCE degradation. For M. trichosporium OB3b, increasing the copper growth concentration from 2.5 to 20 μM caused the maximal degradation rate of methane (Vmax) to decrease from 300 to 82 nmol of methane/min/mg of protein. The methane concentration at half the maximal degradation rate (Ks) also decreased from 62 to 8.3 μM. The pseudo-first-order rate constant for methane, Vmax/Ks, doubled from 4.9 × 10−3 to 9.9 × 10−3 liters/min/mg of protein, however, as the growth concentration of copper increased from 2.5 to 20 μM. TCE degradation by M. trichosporium OB3b was also examined with varying copper and formate concentrations. M. trichosporium OB3b grown with 2.5 μM copper was unable to degrade TCE in both the absence and presence of an exogenous source of reducing equivalents in the form of formate. Cells grown with 20 μM copper, however, were able to degrade TCE regardless of whether formate was provided. Without formate the Vmax for TCE was 2.5 nmol/min/mg of protein, while providing formate increased the Vmax to 4.1 nmol/min/mg of protein. The affinity for TCE also increased with increasing copper, as seen by a change in Ks from 36 to 7.9 μM. Vmax/Ks for TCE degradation by pMMO also increased from 6.9 × 10−5 to 5.2 × 10−4 liters/min/mg of protein with the addition of formate. From these whole-cell studies it is apparent that the amount of copper available is critical in determining the oxidation of substrates in methanotrophs that are expressing only pMMO.  相似文献   

13.
During anaerobic growth of Klebsiella pneumoniae on citrate, 9.4 mmol of H2/mol of citrate (4-kPa partial pressure) was formed at the end of growth besides acetate, formate, and CO2. Upon addition of NiCl2 (36 μM) to the growth medium, hydrogen formation increased about 36% to 14.8 mmol/mol of citrate (6 kPa), and the cell yield increased about 15%. Cells that had been harvested and washed under anoxic conditions exhibited an H2-dependent formation of NAD(P)H in vivo. The reduction of internal NAD(P)+ was also achieved by the addition of formate. In crude extracts, the H2:NAD+ oxidoreductase activity was 0.13 μmol min−1 mg−1, and 76% of this activity was found in the washed membrane fraction. The highest specific activities of the membrane fraction were observed in 50 mM potassium phosphate, with 1.6 μmol of NADPH formed min−1 mg−1 at pH 7.0 and 1.7 μmol of NADH formed min−1 mg−1 at pH 9.5. In the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the Na+/H+ antiporter monensin, the H2-dependent reduction of NAD+ by membrane vesicles decreased only slightly (about 16%). The NADP+- or NAD+-reducing hydrogenases were solubilized from the membranes with the detergent lauryldimethylamine-N-oxide or Triton X-100. NAD(P)H formation with H2 as electron donor, therefore, does not depend on an energized state of the membrane. It is proposed that hydrogen which is formed by K. pneumoniae during citrate fermentation is recaptured by a novel membrane-bound, oxygen-sensitive H2:NAD(P)+ oxidoreductase that provides reducing equivalents for the synthesis of cell material.  相似文献   

14.
The potential for humic substances to serve as terminal electron acceptors in microbial respiration and the effects of humic substances on microbial azoreduction were investigated. The dissimilatory azoreducing microorganism Shewanella decolorationis S12 was able to conserve energy to support growth from electron transport to humics coupled to the oxidation of various organic substances or H2. Batch experiments suggested that when the concentration of anthraquinone-2-sulfonate (AQS), a humics analog, was lower than 3 mmol/l, azoreduction of strain S12 was accelerated under anaerobic condition. However, there was obvious inhibition to azoreduction when the concentration of the AQS was higher than 5 mmol/l. Another humics analog, anthraquinone-2-sulfonate (AQDS), could still prominently accelerate azoreduction, even when the concentration was up to 12 mmol/l, but the rate of acceleration gradually decreased with the increasing concentration of the AQDS. Toxic experiments revealed that AQS can inhibit growth of strain S12 if the concentration past a critical one, but AQDS had no effect on the metabolism and growth of strain S12 although the concentration was up to 20 mmol/l. These results demonstrated that a low concentration of humic substances not only could serve as the terminal electron acceptors for conserving energy for growth, but also act as redox mediator shuttling electrons for the anaerobic azoreduction by S. decolorationis S12. However, a high concentration of humic substances could inhibit the bacterial azoreduction, resulting on the one hand from the toxic effect on cell metabolism and growth, and on the other hand from competion with azo dyes for electrons as electron acceptor.  相似文献   

15.
Pyrobaculum aerophilum, a hyperthermophilic archaeon, can respire either with low amounts of oxygen or anaerobically with nitrate as the electron acceptor. Under anaerobic growth conditions, nitrate is reduced via the denitrification pathway to molecular nitrogen. This study demonstrates that P. aerophilum requires the metal oxyanion WO42− for its anaerobic growth on yeast extract, peptone, and nitrate as carbon and energy sources. The addition of 1 μM MoO42− did not replace WO42− for the growth of P. aerophilum. However, cell growth was completely inhibited by the addition of 100 μM MoO42− to the culture medium. At lower tungstate concentrations (0.3 μM and less), nitrite was accumulated in the culture medium. The accumulation of nitrite was abolished at higher WO42− concentrations (<0.7 μM). High-temperature enzyme assays for the nitrate, nitrite, and nitric oxide reductases were performed. The majority of all three denitrification pathway enzyme activities was localized to the cytoplasmic membrane, suggesting their involvement in the energy metabolism of the cell. While nitrite and nitric oxide specific activities were relatively constant at different tungstate concentrations, the activity of nitrate reductase was decreased fourfold at WO42− levels of 0.7 μM or higher. The high specific activity of the nitrate reductase enzyme observed at low WO42− levels (0.3 μM or less) coincided with the accumulation of nitrite in the culture medium. This study documents the first example of the effect of tungstate on the denitrification process of an extremely thermophilic archaeon. We demonstrate here that nitrate reductase synthesis in P. aerophilum occurs in the presence of high concentrations of tungstate.  相似文献   

16.
Hydrogen Metabolism in Shewanella oneidensis MR-1   总被引:1,自引:0,他引:1       下载免费PDF全文
Shewanella oneidensis MR-1 is a facultative sediment microorganism which uses diverse compounds, such as oxygen and fumarate, as well as insoluble Fe(III) and Mn(IV) as electron acceptors. The electron donor spectrum is more limited and includes metabolic end products of primary fermenting bacteria, such as lactate, formate, and hydrogen. While the utilization of hydrogen as an electron donor has been described previously, we report here the formation of hydrogen from pyruvate under anaerobic, stationary-phase conditions in the absence of an external electron acceptor. Genes for the two S. oneidensis MR-1 hydrogenases, hydA, encoding a periplasmic [Fe-Fe] hydrogenase, and hyaB, encoding a periplasmic [Ni-Fe] hydrogenase, were found to be expressed only under anaerobic conditions during early exponential growth and into stationary-phase growth. Analyses of ΔhydA, ΔhyaB, and ΔhydA ΔhyaB in-frame-deletion mutants indicated that HydA functions primarily as a hydrogen-forming hydrogenase while HyaB has a bifunctional role and represents the dominant hydrogenase activity under the experimental conditions tested. Based on results from physiological and genetic experiments, we propose that hydrogen is formed from pyruvate by multiple parallel pathways, one pathway involving formate as an intermediate, pyruvate-formate lyase, and formate-hydrogen lyase, comprised of HydA hydrogenase and formate dehydrogenase, and a formate-independent pathway involving pyruvate dehydrogenase. A reverse electron transport chain is potentially involved in a formate-hydrogen lyase-independent pathway. While pyruvate does not support a fermentative mode of growth in this microorganism, pyruvate, in the absence of an electron acceptor, increased cell viability in anaerobic, stationary-phase cultures, suggesting a role in the survival of S. oneidensis MR-1 under stationary-phase conditions.  相似文献   

17.
An anaerobic enrichment with pyruvate as electron donor and thiosulfate at pH 10 and 0.6 M Na+ inoculated with pasteurized soda lake sediments resulted in a sulfidogenic coculture of two morphotypes of obligately anaerobic haloalkaliphilic endospore-forming clostridia, which were further isolated in pure culture. Strain AHT16 was a thin long rod able to ferment sugars and pyruvate and to respire H2, formate and pyruvate using thiosulfate and fumarate as electron acceptors and growing optimally at pH 9.5. Thiosulfate was reduced incompletely to sulfide and sulfite. The strain was closely related (99% sequence similarity) to a peptolytic alkaliphilic clostridium Natronincola peptidovorans. Strain AHT17 was a short rod with a restricted respiratory metabolism, growing with pyruvate and lactate as electron donor and sulfite, thiosulfate and elemental sulfur as electron acceptors with a pH optimum 9.5. Thiosulfate was reduced completely via sulfite to sulfide. The ability of AHT17 to use sulfite explained the stability of the original coculture of the two clostridia—one member forming sulfite from thiosulfate and another consuming it. Strain AHT17 formed an independent deep phylogenetic lineage within the Clostridiales and is proposed as a new genus and species Desulfitisporum alkaliphilum gen. nov., sp. nov. (=DSM 22410T = UNIQEM U794T).  相似文献   

18.
The present study describes the biotransformation of 2,4,6-trinitrotoluene (TNT) (220 μM) by using anaerobic sludge (10%, vol/vol) supplemented with molasses (3.3 g/liter). Despite the disappearance of TNT in less than 15 h, roughly 0.1% of TNT was attributed to mineralization (14CO2). A combination of solid-phase microextraction–gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry identified two distinctive cycles in the degradation of TNT. One cycle was responsible for the stepwise reduction of TNT to eventually produce triaminotoluene (TAT) in relatively high yield (160 μM). The other cycle involved TAT and was responsible for the production of azo derivatives, e.g., 2,2′,4,4′-tetraamino-6,6′-azotoluene (2,2′,4,4′-TA-6,6′-azoT) and 2,2′,6,6′-tetraamino-4,4′-azotoluene (2,2′,6,6′-TA-4,4′-azoT) at pH 7.2. These azo compounds were also detected when TAT was treated with the anaerobic sludge but not with an autoclaved sludge, suggesting the biotic nature of their formation. When the anaerobic conditions in the TAT-containing culture medium were removed by aeration and/or acidification (pH 3), the corresponding phenolic compounds, e.g., hydroxy-diaminotoluenes and dihydroxy-aminotoluenes, were observed at room temperature. Trihydroxytoluene was detected only after heating TAT in water at 100°C. When 13CH3-labeled TNT was used as the N source in the above microcosms, we were unable to detect 13C-labeled p-cresol or [13CH3]toluene, indicating the absence of denitration or deamination in the biodegradation process. The formation and disappearance of TAT were not accompanied by mineralization, suggesting that TAT acted as a dead-end metabolite.  相似文献   

19.
Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to better understand this electron transfer process for energy production, Geobacter sulfurreducens was inoculated into chambers in which a graphite electrode served as the sole electron acceptor and acetate or hydrogen was the electron donor. The electron-accepting electrodes were maintained at oxidizing potentials by connecting them to similar electrodes in oxygenated medium (fuel cells) or to potentiostats that poised electrodes at +0.2 V versus an Ag/AgCl reference electrode (poised potential). When a small inoculum of G. sulfurreducens was introduced into electrode-containing chambers, electrical current production was dependent upon oxidation of acetate to carbon dioxide and increased exponentially, indicating for the first time that electrode reduction supported the growth of this organism. When the medium was replaced with an anaerobic buffer lacking nutrients required for growth, acetate-dependent electrical current production was unaffected and cells attached to these electrodes continued to generate electrical current for weeks. This represents the first report of microbial electricity production solely by cells attached to an electrode. Electrode-attached cells completely oxidized acetate to levels below detection (<10 μM), and hydrogen was metabolized to a threshold of 3 Pa. The rates of electron transfer to electrodes (0.21 to 1.2 μmol of electrons/mg of protein/min) were similar to those observed for respiration with Fe(III) citrate as the electron acceptor (Eo′ =+0.37 V). The production of current in microbial fuel cell (65 mA/m2 of electrode surface) or poised-potential (163 to 1,143 mA/m2) mode was greater than what has been reported for other microbial systems, even those that employed higher cell densities and electron-shuttling compounds. Since acetate was completely oxidized, the efficiency of conversion of organic electron donor to electricity was significantly higher than in previously described microbial fuel cells. These results suggest that the effectiveness of microbial fuel cells can be increased with organisms such as G. sulfurreducens that can attach to electrodes and remain viable for long periods of time while completely oxidizing organic substrates with quantitative transfer of electrons to an electrode.  相似文献   

20.
Shewanella decolorationis S12, a representative dissimilatory azo-reducing bacterium of Shewanella genus, can grow by coupling the oxidation of hydrogen to the reduction of azo compounds as the sole electron acceptor, indicating that an uptake hydrogenase is an important component for electron transfer for azoreduction. For searching to the uptake hydrogenase in the genome of S. decolorationis, two operons, hyd and hya, were cloned and sequenced, which encode periplasmically oriented Fe-only hydrogenase and a Ni-Fe hydrogenase, respectively, according to the homologous comparison with other bacterial hydrogenases. In order to assess the roles of these two enzymes in hydrogen-dependent azoreduction and growth, hyd- and hya-deficient mutants were generated by gene replacement. Hya was found to be required for hydrogen-dependent reduction of azo compound by resting cell suspensions and to be essential for growth with hydrogen as electron donor and azo compound as electron acceptor. Hyd, in contrast, was not. These findings suggest that Hya is an essential respiratory hydrogenase of dissimilatory azoreduction in S. decolorationis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号