首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tropical shrimp genus Synalpheus includes the only eusocial marine animals. In much of the Caribbean, eusocial species have dominated the diverse fauna of sponge-dwelling shrimp in coral rubble for at least the past two decades. Here we document a recent, dramatic decline and apparent local extinction of eusocial shrimp species on the Belize Barrier Reef. Our collections from shallow reefs in central Belize in 2012 failed to locate three of the four eusocial species formerly abundant in the area, and showed steep declines in colony size and increases in frequency of queenless colonies prior to their disappearance. Concordant with these declines, several nonsocial, pair-forming Synalpheus species increased in frequency. The decline in eusocial shrimp is explained in part by disappearance of two sponge species on which they specialize. Eusocial shrimp collections from Jamaica in 2012 showed similar patterns of decline in colony size and increased queenlessness compared with prior Jamaican collections. The decline and local extinction of eusocial shrimp happened against a backdrop of changes in coral assemblages during recent decades, and may reflect changes in abundance and quality of dead coral substratum and succession of the diverse cryptic organisms living within it. These changes document potentially worrisome declines in a unique taxon of eusocial marine animals.  相似文献   

2.
Eusocial Hymenoptera show a unique divergence in lifespan of queens and workers; queens belong to the longest lived insects while workers in most eusocial species have significantly shorter lives. The different phenotypes within a colony emerge through reproductive division of labour, which is a characteristic trait of eusocial animals. Division of labour as a measure of organismal complexity increases with colony size in eusocial species similar to the increase of complexity with size that has been shown for the whole range of living organisms. We show that queen and worker lifespan diverge in closely related species representing the transition from solitary to social life and show that queen and worker lifespan are correlated if colony size is taken into account: with increasing colony size the lifespan differential between queen and worker increases, whereas neither queen nor worker lifespan is associated with colony size. Additionally, the lifespan differential is better explained by colony size than by the weight differences between the castes. The divergence of phenotypes found is in line with the increasing specialization of subunits in larger organisms, which leads to increasing complexity. We argue that division of labour is acting to increase colony efficiency, which in turn shapes the investments made into individuals leading to short‐lived workers and long‐lived queens. Additionally, maintenance investments may be shaped due to the variable extrinsic risk faced by different castes. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 710–724.  相似文献   

3.
4.
In eusocial invertebrates, queens commonly show morphological and behavioural modifications to their role as the principal breeders in their colonies. With the exception of naked mole-rats, Heterocephalus glaber, morphological modification of breeders has yet to be shown in cooperative vertebrates, but the behaviour of dominant individuals may be modified so as to maximize reproductive success. We studied the cooperative behaviour of dominant and subordinate adults in meerkats, Suricata suricatta, and found that the decision rules governing the contributions of dominant breeders differed from those of subordinate helpers. Dominant breeders contributed less than adult helpers to babysitting and pup feeding, but raised their individual contributions to pup care to a greater extent when helper:pup ratios were low. In contrast to subordinates, dominant breeders did not increase their contributions when they foraged successfully. Finally, while subordinates of both sexes assisted in rearing the young when dominants bred, dominant females contributed little when subordinates attempted to breed, and male helpers (but not females) reduced their contributions to the care of pups. Our results suggest that the division of labour between breeders and helpers in meerkats is intermediate between that of facultatively cooperative species, where parents are principally responsible for rearing young, and that of specialized eusocial species, which show a well-defined division of labour between breeders and workers.  相似文献   

5.
6.
Insect genitals vary greatly among species and provide a key tool for species-level taxonomy. Insects differing in the genitalia are often treated as discrete, reproductively isolated species. This principle dates back to the lock-and-key hypothesis, which states that genitalia vary between species in order to provide a mechanical reproductive isolation system. Thus, the hypothesis assumes low within-species variability in genital traits. However, recent studies suggest that sexual selection may be responsible for the evolution of insect genitalia. We studied allometry and genital size and shape variation in a dimorphic moth Selenia tetralunaria . We found that the genitalia showed negative allometry in relation to body size as reported in many insect and spider species. This allometry was stronger in internal genital structures than it was in external genitalia. We also found that there was more variation in internal compared with external genitalia. Finally, we found that the shape of genital structures differed between morphs in all three examined areas. S. tetralunaria is among the first reported cases of genitally dimorphic insect species. Considerable variation in internal genitalia and especially the presence of genital shape differences between morphs were not consistent with the predictions of the lock-and-key hypothesis.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 297–307.  相似文献   

7.
In eusocial Hymenoptera, haplodiploid life cycles, obligate sterile castes, and polyandry may facilitate selection for hybridization. We analyzed a broad hybrid zone between the ecologically distinct seed‐harvester ants Pogonomyrmex occidentalis (Cresson) and Pogonomyrmex maricopa (Wheeler) using mitochondrial (mt)DNA sequence data, eight morphological markers, and 14 random amplified polymorphic DNA (RAPD) markers. Average mtDNA sequence divergence among parental species was 11.34%, indicating secondary contact. RAPD markers were significantly correlated with morphological variation, confirming the interspecific hybrid origin of all morphologically putative hybrid colonies. A morphological hybrid index indicates an abundance of both F1 hybrids and parental morphotypes within colonies. Individual character frequencies plotted against distance show coincident and concordant clines, suggesting little to no introgression. The structure of the hybrid zone is two‐fold. Within the western region, stark reversals in character frequencies coincide with overt soil differences, indicating a mosaic hybrid zone structure. The eastern region is a riparian habitat where four adjacent populations were composed entirely of hybrid colonies. These habitat associations suggest that hybrid worker genomes permit dispersal into intermediate environments that select against one or both parental species. The present study suggests that, in addition to retaining reproductive compatibility, ecologically distinct species of ants may generate hybrid colonies maintained by environmental selection. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 320–336.  相似文献   

8.
Previous studies have indicated that the common European pipistrelle bat ( Pipistrellus pipistrellus ) comprises two cryptic species, P. pipistrellus and Pipistrellus pygmaeus , which differ in echolocation call frequency and mitochondrial DNA sequence. However, levels of divergence based on nuclear markers have not been examined, and hence the potential for male-mediated gene flow between the species cannot be discounted. Moreover, little is known about population structure and migration patterns in either species. Here, we describe the use of microsatellites to investigate nuclear DNA differentiation between, and the pattern of population genetic structure within, the two cryptic pipistrelle species. In total, 1300 individuals from 82 maternity colonies were sampled across the British Isles and Continental Europe. We show, using multivariate analyses, that colonies of the same species are generally genetically more similar to each other than to those from the other species regardless of geographical location. Our findings support the hypothesis that the species are reproductively isolated. Significant patterns of genetic isolation by distance were identified in both species, indicating that mating may occur before any long-distance autumnal migration. The presence of a sea channel does not confer higher levels of genetic differentiation among colonies over and above distance alone in either species. Differences in genetic population structure were identified between the species, with P. pipistrellus showing a wider range of levels of genetic differentiation among colonies and a stronger relationship between genetic and geographical distance than P. pygmaeus . Differences in dispersal, mating behaviour, colony size and/or postglacial colonization patterns could contribute to the differences observed.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 539–550.  相似文献   

9.
A. Berruti 《Ostrich》2013,84(1-2):8-12
Berruti, A. 1991. Comparison of the diet of breeding and nonbreeding Cape Gannets Morus capensis. Ostrich 62:8-12.

The effects of breeding status on the diet composition of Cape Gannets Morus capensis were tested at two colonies in the western Cape, South Africa. At both colonies, there were no significant differences in the species composition of the diet, but the mean energy content of regurgitations of breeders was significantly greater. Although the regurgitations of breeders were heavier and contained more fish at both colonies, only the number of fish per regurgitation from breeders at one colony was significantly greater. Birds feeding chicks at Malgas Island took significantly shorter fish than nonbreeders. The small effect of breeding status on prey species composition shows that temporal and geographical variation in prey availability is more important than breeding status in affecting diet cornposition of the Cape Gannet.  相似文献   

10.
Summary Studies of eusocial halictines suggest that workers have many reproductive options, including sterile altruism in the maternal nest, combined helping and personal reproduction, and diapause and spring nest founding. How and when workers exercise these various options influences the strength of colony social organization. Halictus sexcinctus exhibits highly polymorphic social behaviour, with solitary colonies in central Europe and both eusocial and communal colonies in southern Greece. Indirect evidence suggests that some worker-brood females are actually gynes. A distinctly bimodal size distribution among foundresses in 1998, the lower size peak being close to the modal body size of workers from 1997, suggests that large worker-brood females overwinter and return to the aggregation as eusocial foundresses. Other first-brood females remain in the maternal nest as workers, although few can be classified as classical, sterile altruists. Only 17% of older, healthy workers are sterile (i.e. had ovarian development scores 0.1), whereas about 83% are reproductive, exhibiting at least one 1/4-developed oocyte. About 57% of older workers have at least one fully or 3/4 developed oocyte, signifying that they are ready or almost ready to lay. Sterile workers exhibit greater total wear (combined mandibular and wing wear) scores than reproductive workers, suggesting that they are older, have higher activity rates, or both.  相似文献   

11.
Sexually dimorphic weaponry often results from intrasexual selection, and weapon size can vary seasonally when costs of bearing the weapon exceed the benefits outside of the reproductive season. Weapons can also be favored in competition over nonreproductive resources such as food or shelter, and if such nonreproductive competition occurs year‐round, weapons may be less likely to vary seasonally. In snapping shrimp (Alpheus angulosus), both sexes have an enlarged snapping claw (a potentially deadly weapon), and males of many species have larger claws than females, although females are more aggressive. This contrasting sexual dimorphism (larger weaponry in males, higher aggression in females) raises the question of whether weaponry and aggression are favored by the same mechanisms in males and females. We used field data to determine whether either sex shows seasonal variation in claw size such as described above. We found sexual dimorphism increased during the reproductive season due to opposing changes in both male and female claw size. Males had larger claws during the reproductive season than during the nonreproductive season, a pattern consistent with sexual selection. Females, however, had larger claws during the nonreproductive season than during the reproductive season—a previously unknown pattern of variation in weapon size. The observed changes in female weapon size suggest a trade‐off between claw growth and reproduction in the reproductive season, with investment in claw growth primarily in the nonreproductive season. Sexually dimorphic weaponry in snapping shrimp, then, varies seasonally due to sex differences in seasonal patterns of investment in claw growth, suggesting claws may be advantageous for both sexes but in different contexts. Thus, understanding sexual dimorphisms through the lens of one sex yields an incomplete understanding of the factors favoring their evolution.  相似文献   

12.
Crabs of the genus Macrophthalmus are known to exhibit highly developed and diverse social behaviour, such as allocleaning, fighting and waving display behaviour, the first being observed widely throughout the genus. Fighting behaviour between males has been classified previously into grasping fighting and claw‐extending fighting, and male waving display into four patterns, the vertical non‐forward‐pointing type, vertical forward‐pointing type, lateral non‐forward‐pointing type and lateral forward‐pointing type, on the basis of interspecific behaviour comparisons. To understand the evolutionary pathways of these social behavioural activities, 978‐bp nucleotide sequences from mitochondrial 16S rRNA genes of 21 species, including two outgroup taxa, were analysed and a molecular phylogeny was reconstructed. The resultant tree demonstrated striking inconsistencies with the relationships inferred from morphological features. Species with similar habitat conditions showed similar morphological features, although they were not phylogenetically close relatives. Phylogenetic analysis of allocleaning behaviour suggested that it evolved once in the early history of the lineage. The analysis of fighting behaviour demonstrated that species with claw‐extending fighting, being a more complex behaviour than grasping fighting, are found in the most ancestral part of the phylogeny. The analysis also revealed that claw‐extending fighting has evolved secondarily on two occasions, suggesting that fighting behaviour is not characterized by sufficient phylogenetic components. The superimposition of a waving pattern on to the phylogeny indicated that the lateral non‐forward‐pointing type has evolved from the vertical non‐forward‐pointing type, the lateral forward‐pointing type having evolved from the vertical forward‐pointing type. This scenario also appeared reasonable with respect to the behavioural trends of cheliped movements in waving. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 88 , 45–59.  相似文献   

13.
Reproductive allocation strategies have been historically described as lying on a continuum between capital and income breeding. Capital breeders have been defined as species that allocate stored reserves to reproduction, whereas income breeders have been defined as species that allocate relatively recently‐ingested food resources to reproduction. Snakes are considered capital breeders because they efficiently store large amounts of nutrients and energy, potentially enough to support an entire reproductive bout without feeding. We examined the abilities of five viviparous snake species to allocate income to follicles during vitellogenesis. We fed 15N‐labelled L‐leucine to experimental females of each species during vitellogenesis, whereas control females were fed unlabelled meals. After ovulation, we measured yolk 15N p.p.m. using mass spectrometry. Maternal scale samples taken before labelling were used to estimate endogenous 15N concentrations, which should represent ‘capital’. Scale samples taken at ovulation were used to determine whether snakes assimilated 15N‐labelled‐leucine from labelled diets. Yolks and post‐ovulatory scales of labelled females were significantly more enriched in 15N than those of unlabelled females in all species, indicating significant assimilation and allocation of income‐derived amino acids to the yolk during vitellogenesis. The lack of among‐species differences suggests that all species allocated income amino acids to vitellogenesis. The results obtained in the present study suggest that proportional utilization of income or capital depends on the frequency and timing of foraging success during reproductive events. Therefore, capital and income breeding may be consequences of both life‐history and environmental constraints on foraging success, rather than strategies of reproductive allocation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 390–404.  相似文献   

14.
Colonies of co-operatively breeding African mole-rats have traditionally been thought to be composed of a single breeding female, one or two breeding males, and their offspring. In the naked mole-rat (Heterocephalus glaber), the occurrence of facultative inbreeding means incest avoidance cannot prevent reproduction in subordinate group members, and physiological suppression of reproductive function by the breeding female occurs in both sexes. In contrast, previous studies of captive colonies of the Damaraland mole-rat (Cryptomys damarensis) suggest that breeding within a colony is restricted to a single breeding pair, simply because all other colony members are highly related (first- or second-order relatives) and this species is an obligate outbreeder. Using microsatellite markers, we investigated parentage and colony composition in 18 wild Damaraland mole-rat colonies to determine whether inbreeding avoidance alone can explain the high levels of reproductive skew in this species. Multiple and unidentified paternity was widespread within colonies and immigrants of both sexes were regularly identified. Unrelated, opposite-sex nonbreeders were found coexisting in two colonies. These results suggest that, in the wild, conditions exist where nonreproductive females can come into contact with unrelated males, even when they do not disperse from their natal colony. Inbreeding avoidance alone is therefore insufficient to maintain the high levels of reproductive skew identified in this species suggesting that the breeding female somehow suppresses the reproductive function in nonbreeding females.  相似文献   

15.
In mammals, ‘female‐biased’ sexual size dimorphism (SSD), in which females are larger than males, is uncommon. In the present study, we examined Sylvilagus, a purported case of female‐biased SSD, for evolutionary correlations among species between SSD, body‐size, and life‐history variables. We find that: (1) although most species are female‐biased, the degree and direction of SSD vary more than was previously recognized and (2) the degree of SSD decreases with increasing body size. Hence, Sylvilagus provides a new example, unusual for a female‐biased taxon, in which allometry for SSD is consistent with ‘Rensch's Rule’. As a corollary to Rensch's Rule, we observe that changes in SSD in Sylvilagus are typically associated with larger, more significant changes in males than females. Female‐biased SSD could be produced by selection for larger females, smaller males, or both. Although larger female size may be related to high fecundity and the extremely rapid fetal and neonatal growth in Sylvilagus, we find little evidence for a correlation between SSD and various fecundity‐related traits in among‐species comparisons. Smaller male size may confer greater reproductive success through greater mobility and reduced energetic requirements. We propose that a suite of traits (female dispersion, large male home ranges, reduced aggression, and a promiscuous mating system) has favoured smaller males and thus influenced the evolution of SSD in cottontails. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 141–156.  相似文献   

16.
Genitalia are among the most variable of morphological traits, and recent research suggests that this variability may be the result of sexual selection. For example, large bacula may undergo post‐copulatory selection by females as a signal of male size and age. This should lead to positive allometry in baculum size. In addition to hyperallometry, sexually selected traits that undergo strong directional selection should exhibit high phenotypic variation. Nonetheless, in species in which pre‐copulatory selection predominates over post‐copulatory selection (such as those with male‐biased sexual size dimorphism), baculum allometry may be isometric or exhibit negative allometry. We tested this hypothesis using data collected from two highly dimorphic species of the Mustelidae, the American marten (Martes americana) and the fisher (Martes pennanti). Allometric relationships were weak, with only 4.5–10.1% of the variation in baculum length explained by body length. Because of this weak relationship, there was a large discrepancy in slope estimates derived from ordinary least squares and reduced major axis regression models. We conclude that stabilizing selection rather than sexual selection is the evolutionary force shaping variation in baculum length because allometric slopes were less than one (using the ordinary least squares regression model), a very low proportion of variance in baculum length was explained by body length, and there was low phenotypic variability in baculum length relative to other traits. We hypothesize that this pattern occurs because post‐copulatory selection plays a smaller role than pre‐copulatory selection (manifested as male‐biased sexual size dimorphism). We suggest a broader analysis of baculum allometry and sexual size dimorphism in the Mustelidae, and other taxonomic groups, coupled with a comparative analysis and with phylogenetic contrasts to test our hypothesis. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 955–963.  相似文献   

17.
Naked mole-rat colonies are societies with a high reproductive skew, breeding being restricted to one dominant female (the ''queen'') and 1-3 males. Other colony members of both sexes are reproductively suppressed. Experimental removal of breeding males allowed us to investigate the relationship between urinary testosterone and cortisol, dominance rank, and male reproductive status. Dominance rank was strongly correlated with body weight, age, and urinary testosterone titres in males. No relationship between urinary cortisol levels and male reproductive status or dominance was found. Breeding males were among the highest-ranking, heaviest and oldest males in their respective colonies, and were succeeded by other high-ranking, large, old colony males. In contrast to females, no evidence of competition over breeding status was observed among males. Male-male agonism was low both before and after removal of breeders and mate guarding was not observed. The lower reproductive skew for males compared with female skew or queen control over male reproduction may explain why males compete less strongly than females over breeding status after removal of same-sexed breeders.  相似文献   

18.
Naked mole-rats (Heterocephalus glaber) are eusocial rodents that live in large subterranean colonies including a single breeding female and 1-3 breeding males; all other members of the colony, known as subordinates, are reproductively suppressed. We recently found that naked mole-rats lack many of the sex differences in the brain and spinal cord commonly found in other rodents. Instead, neural morphology is influenced by breeding status, such that breeders, regardless of sex, have more neurons than subordinates in the ventromedial nucleus of the hypothalamus (VMH), and larger overall volumes of the bed nucleus of the stria terminalis (BST), paraventricular nucleus (PVN) and medial amygdala (MeA). To begin to understand how breeding status influences brain morphology, we examined the distribution of androgen receptor (AR) immunoreactivity in gonadally intact breeders and subordinates of both sexes. All animals had AR+ nuclei in many of the same regions positive for AR in other mammals, including the VMH, BST, PVN, MeA, and the ventral portion of the premammillary nucleus (PMv). We also observed diffuse labeling throughout the preoptic area, demonstrating that distribution of the AR protein in presumptive reproductive brain nuclei is well-conserved, even in a species that exhibits remarkably little sexual dimorphism. In contrast to other rodents, however, naked mole-rats lacked AR+ nuclei in the suprachiasmatic nucleus and hippocampus. Males had more AR+ nuclei in the MeA, VMH, and PMv than did females. Surprisingly, breeders had significantly fewer AR+ nuclei than subordinates in all brain regions examined (VMH, BST, PVN, MeA, and PMv). Thus, social status is strongly correlated with AR immunoreactivity in this eusocial species.  相似文献   

19.
Recent studies of reproductive skew have revealed great variationin the distribution of direct fitness among group members, yetthere have been surprisingly few attempts to explore the consequencesof such variation for stable group size, and none that takeinto account the future benefits of group membership to nonbreeders.This means that the existing theory is not suited to explainthe group size of most cooperatively breeding vertebrates andprimitively social insects in which group membership involvessubstantial future benefits. Here we model the group size ofsuch species as social queues in which nonbreeders can inherita breeding position if they outlive those ahead of them in thequeue. We demonstrate, however, that the results can be generalizedto systems in which inheritance occurs via scramble competition,rather than via a strict queue. The model predicts that stablegroup size will depend on the number of breeding positions inthe group and the mortality rates of breeders and nonbreeders,but not on the distribution of reproduction among the pool ofbreeders. This is because deaths occur at random, so that eachindividual has the same chance of surviving to reach each breedingposition. We tested a specific prediction of the model usingdata on ovarian development in the paper wasp, Polistes dominulus.We found a positive correlation between group size and the proportionof females with fully developed eggs, as predicted. Our resultsclarify the interaction between the dominance structure andsize of animal groups and add to the growing recognition ofthe potential for inheritance as a major determinant of bothindividual behavior and group-level characteristics of animalsocieties.  相似文献   

20.
Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size–complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen–worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size–complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号