首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
朱宝利  佟卉春  陈伟  东秀珠 《微生物学报》2009,49(10):1341-1346
摘要:【目的】寡发酵链球菌(Streptococcus oligofermentans)是从无龋人的口腔中分离到的一株链球菌,好氧条件下产生、同时也耐受高浓度(4.4 mmol/L)的过氧化氢。本研究探讨dpr基因对寡发酵链球菌抗过氧化氢的贡献。【方法】克隆和表达寡发酵链球菌dpr基因,分析Dpr蛋白的功能;构建寡发酵链球菌的dpr基因突变株,比较野生株和突变株对不同浓度过氧化氢的耐受程度;并将寡发酵链球菌dpr基因克隆到对过氧化氢耐受力低的变形链球菌中,分析其对变形链球菌过氧化氢耐受能力的影响。【结果】  相似文献   

2.
本研究采用过氧化物酶法,定性和定量分析不同条件下血链球菌产生的过氧化氢,结果显示,过氧化酶法则定过氧化氢的最小浓度为3ppm,过氧化氢产生的量随血链球菌生长速度提高而增加,在对数生长期产量最多,24小时后速度减慢。血链球菌产生过氧化氢的最高值为0.02%。在厌氧条件下,血链球菌不产生或很少产生过氧化氢。  相似文献   

3.
提出了在恒定不同pH的发酵条件下,乳酸链球菌SM526的菌体生长、底物消耗、乳酸及Nisin产生的动力学模型。菌体生长、乳酸及Nisin产生用逻辑方程描述,而底物消耗是菌体生长和乳酸产生速率的函数。模型表明,乳酸链球菌SM526菌体生长和乳酸产生的最佳pH为7.0,而Nisin产生的最佳pH却为6.5。  相似文献   

4.
壳寡聚糖对变形链球菌乳酸脱氢酶及γ谷丙转氨酶的影响   总被引:1,自引:0,他引:1  
目的 研究壳寡聚糖对变形链球菌乳酸脱氢酶(LDH)及γ谷丙转氨酶(γ-GT)的影响。方法 将变形链球菌接种在含壳寡聚糖的培养基中,测定培养上清液中乳酸脱氢酶及γ谷丙转氨酶等细胞内酶的含量。结果 菌液上清中的LDH和γ-GT2种细胞内酶含量显著高于空白对照组。表明接种在含壳寡聚糖培养基中的细菌出现了明显的细胞内酶溢出,并与浓度相关。结论 壳寡聚糖对细菌的细胞壁有破坏作用,可能是壳寡聚糖具有防龋功能的原因。  相似文献   

5.
在以前工作的基础上,对已获得的产乳酸氧化酶的5株菌进行复筛,对产酶量大的一株菌进行了分类鉴定,确定该菌株属迟钝爱德华氏菌生物群I(Edwardsiella tarda Biogroup I)。这与曾报道的产乳酸氧化酶分枝杆菌(Mycobacterium)和片球菌(Pediococcus)是不同的菌。分别研究了培养基中的培养初始pH、核黄素、乳酸钠以及硫酸铵对发酵产乳酸氧化酶的影响。这一酶源在酶法生产丙酮酸及医疗诊断和酶电极应用上有意义。  相似文献   

6.
提出了在恒定不同pH的发酵条件下,乳酸链球菌SM526的菌体生长、底物消耗、乳酸及N isin产生的动力学模型。菌体生长、乳酸及N isin产生用逻辑方程描述,而底物消耗是菌体生长和乳酸产生速率的函数。模型表明,乳酸链球菌SM526菌体生长和乳酸产生的最佳pH为7.0,而N isin产生的最佳pH却为6.5。  相似文献   

7.
通过DEAESephadexA 5 0阴离子交换柱 ,SephadexG 75分子筛 ,ResourseQ阴离子交换柱三步层析从湖南产的烙铁头蛇毒中分离、纯化得到一个L 氨基酸氧化酶 (TM LAO) ,它由两个非共价的亚基组成 ,每个亚基的分子量为 5 5kD。与台湾产的烙铁头蛇毒L 氨基酸氧化酶分子量 ( 70kD)不同。TM LAO的N末端氨基酸序列是ADNKNPLEECFRETNYEEFLEIAR ,与报道的蝰科的L 氨基酸氧化酶的相似性比眼镜蛇科的要高。TM LAO能抑制大肠杆菌、金黄色葡萄球菌和痢疾杆菌的生长 ,杀死肿瘤细胞以及诱导血小板聚集。这些活性能被过氧化氢酶所抑制 ,说明TM LAO生理学功能主要是通过酶反应产生的过氧化氢 (H2 O2 )介导的  相似文献   

8.
单胺氧化酶   总被引:6,自引:0,他引:6  
单胺氧化酶(monoamine oxidase,MAO)是生物体内一种十分重要的酶,它在大脑和周围神经组织中催化一些生物体产生的胺,氧化脱氨产生过氧化氢(H2O2).单胺氧化酶A和B基因的克隆清楚地证明了这些酶是由不同的多肽组成的.单胺氧化酶A和B的基因定位于X染色体(Xp11.23),都由15个外显子组成,而且它们的内含子-外显子组织是完全一致的.这些事实表明单胺氧化酶A和B的基因很可能从同一个祖先进化而来.单胺氧化酶A和B具有不同的底物和抑制剂专一性,在生物神经递质代谢和行为方面具有不同的作用.  相似文献   

9.
在本研究工作中分别从42℃的恒化富集培养物和30℃的分批富集培养物中分离到4株产肌氨酸氧化酶(SOX)的节杆菌。对所产SOX的特性分析表明,从42℃恒化培养物中分离得到的菌株42-1所产的酶比分批培养法分离得到菌株的酶具有高的热稳定性和低的Km值。对菌株42-1产酶发酵条件的研究表明,SOX可以被诱导物如肌氨酸、肌酸、肌酐和氯化胆碱诱导产生。在发酵过程中适当减少通气量对SOX的产生有显著的促进作用。葡萄糖等容易利用的碳源的存在对SOX的合成不产生降解代谢产物抑制作用,而尿素的存在则对SOX的生成有强的抑制作用。因而菌株42-1分解肌酸的主要作用是为细胞提供生长所需的氮源。  相似文献   

10.
目的目的通过新疆伊犁黑蜂蜂胶乙醇提取物(Ethanol Extract of Propolis,EEP)对不同状态下变形链球菌乳酸脱氢酶活性及其相关基因表达影响的作用,研究伊犁黑蜂蜂胶抑制变形链球菌产酸的原因并探讨其可能的防龋机制。方法 (1)分别培养浮游状态与生物膜状态下生长的变形链球菌,根据实验分组用含梯度浓度EEP的BHI培养基、50 mg/L氟化钠的BHI培养基作用18 h,通过还原性辅酶I氧化法测定乳酸脱氢酶活性。(2)分别培养浮游状态与生物膜状态下生长变形链球菌,根据实验分组用含梯度浓度EEP的BHI培养基、含50 mg/L氟化钠的BHI培养基作用18 h,反转录-实时荧光定量PCR(RTq PCR)法测定各组乳酸脱氢酶编码基因ldh表达情况。结果 (1)在浮游状态与生物膜状态下,EEP组和Na F组乳酸脱氢酶活性均有降低,差异具有统计学意义(P0.05)。(2)浮游状态时,实验组组和阳性对照组ldh表达明显受到抑制(P0.05);生物膜状态下,实验组在1 MBEC、1/2 MBEC、1/4 MBEC浓度时ldh表达受到抑制(P0.05),Na F组ldh表达差异没有统计学意义(P0.05)。结论伊犁黑蜂蜂胶能够抑制浮游状态与生物膜状态下变形链球菌乳酸脱氢酶活性及其编码基因ldh表达,来抑制细菌产酸,伊犁黑蜂蜂胶可能是通过此途径抑制变形链球菌产酸,从而达到防龋的效果。  相似文献   

11.
Complex interspecies interactions occur constantly between oral commensals and the opportunistic pathogen Streptococcus mutans in dental plaque. Previously, we showed that oral commensal Streptococcus oligofermentans possesses multiple enzymes for H(2)O(2) production, especially lactate oxidase (Lox), allowing it to out-compete S. mutans. In this study, through extensive biochemical and genetic studies, we identified a pyruvate oxidase (pox) gene in S. oligofermentans. A pox deletion mutant completely lost Pox activity, while ectopically expressed pox restored activity. Pox was determined to produce most of the H(2)O(2) in the earlier growth phase and log phase, while Lox mainly contributed to H(2)O(2) production in stationary phase. Both pox and lox were expressed throughout the growth phase, while expression of the lox gene increased by about 2.5-fold when cells entered stationary phase. Since lactate accumulation occurred to a large degree in stationary phase, the differential Pox- and Lox-generated H(2)O(2) can be attributed to differential gene expression and substrate availability. Interestingly, inactivation of pox causes a dramatic reduction in H(2)O(2) production from lactate, suggesting a synergistic action of the two oxidases in converting lactate into H(2)O(2). In an in vitro two-species biofilm experiment, the pox mutant of S. oligofermentans failed to inhibit S. mutans even though lox was active. In summary, S. oligofermentans develops a Pox-Lox synergy strategy to maximize its H(2)O(2) formation so as to win the interspecies competition.  相似文献   

12.
The oral microbial flora contains over 500 different microbial species that often interact as a means to compete for limited space and nutritional resources. Streptococcus mutans, a major caries-causing pathogen, is a species which tends to interact competitively with other species in the oral cavity, largely due to its ability to generate copious quantities of the toxic metabolite, lactic acid. However, during a recent clinical study, we discovered a novel oral streptococcal species, Streptococcus oligofermentans, whose abundance appeared to be inversely correlated with that of S. mutans within dental plaque samples and thus suggested a possible antagonistic relationship with S. mutans. In this study, we used a defined in vitro interspecies interaction assay to confirm that S. oligofermentans was indeed able to inhibit the growth of S. mutans. Interestingly, this inhibitory effect was relatively specific to S. mutans and was actually enhanced by the presence of lactic acid. Biochemical analyses revealed that S. oligofermentans inhibited the growth of S. mutans via the production of hydrogen peroxide with lactic acid as the substrate. Further genetic and molecular analysis led to the discovery of the lactate oxidase (lox) gene of S. oligofermentans as responsible for this biological activity. Consequently, the lox mutant of S. oligofermentans also showed dramatically reduced inhibitory effects against S. mutans and also exhibited greatly impaired growth in the presence of the lactate produced by S. mutans. These data indicate that S. oligofermentans possesses the capacity to convert its competitor's main 'weapon' (lactic acid) into an inhibitory chemical (H(2)O(2)) in order to gain a competitive growth advantage. This fascinating ability may be an example of a counteroffensive strategy used during chemical warfare within the oral microbial community.  相似文献   

13.
Tong H  Chen W  Shi W  Qi F  Dong X 《Journal of bacteriology》2008,190(13):4716-4721
We previously demonstrated that Streptococcus oligofermentans suppressed the growth of Streptococcus mutans, the primary cariogenic pathogen, by producing hydrogen peroxide (H(2)O(2)) through lactate oxidase activity. In this study, we found that the lox mutant of S. oligofermentans regained the inhibition while growing on peptone-rich plates. Further studies demonstrated that the H(2)O(2) produced on peptone by S. oligofermentans was mainly derived from seven L-amino acids, i.e., L-aspartic acid, L-tryptophan, L-lysine, L-isoleucine, L-arginine, L-asparagine, and L-glutamine, indicating the possible existence of L-amino acid oxidase (LAAO) that can produce H(2)O(2) from L-amino acids. Through searching the S. oligofermentans genome for open reading frames with a conserved flavin adenine dinucleotide binding motif that exists in the known LAAOs, including those of snake venom, fungi, and bacteria, a putative LAAO gene, assigned as aao(So), was cloned and overexpressed in Escherichia coli. The purified protein, SO-LAAO, showed a molecular mass of 43 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and catalyzed H(2)O(2) formation from the seven L-amino acids determined above, thus confirming its LAAO activity. The SO-LAAO identified in S. oligofermentans differed evidently from the known LAAOs in both substrate profile and sequence, suggesting that it could represent a novel LAAO. An aao(So) mutant of S. oligofermentans did lose H(2)O(2) formation from the seven L-amino acids, further verifying its function as an LAAO. Furthermore, the inhibition by S. oligofermentans of S. mutans in a peptone-rich mixed-species biofilm was greatly reduced for the aao(So) mutant, indicating the gene's importance in interspecies competition.  相似文献   

14.
Tong H  Zhu B  Chen W  Qi F  Shi W  Dong X 《FEMS microbiology letters》2006,264(2):213-219
Streptococcus oligofermentans is a newly characterized species belonging to the mitis group of oral streptococci. So far no correlation has been demonstrated between S. oligofermentans and dental caries. Furthermore, a reverse correlation has been observed between the number of S. oligofermentans and the number of Streptococcus mutans, a major cariogenic pathogen, in the oral cavity. These properties suggest that S. oligofermentans may have a potential to be used as a 'probiotics' for caries prevention. In this study, we aim to establish a genetic system in S. oligofermentans to further study the biology of this new species. Using homologous regions of the comCDE locus in other streptococci, the comC gene was isolated and sequenced. A synthetic competence-stimulating peptide (CSP) was synthesized and shown to be able to effectively induce competence in S. oligofermentans. This CSP-induced transformation system in S. oligofermentans was used to construct green fluorescent protein (gfp) and luciferase (luc) reporter systems, both of which are driven by the lactate dehydrogenase (ldh) promoter. These reporter systems were further shown to be highly expressed in planktonic and biofilm cells, suggesting that these reporter systems can be used in future ecological studies of S. oligofermentans.  相似文献   

15.
A novel bifunctional catalase with an additional phenol oxidase activity was isolated from a thermophilic fungus, Scytalidium thermophilum. This extracellular enzyme was purified ca. 10-fold with 46% yield and was biochemically characterized. The enzyme contains heme and has a molecular weight of 320 kDa with four 80 kDa subunits and an isoelectric point of 5.0. Catalase and phenol oxidase activities were most stable at pH 7.0. The activation energies of catalase and phenol oxidase activities of the enzyme were found to be 2.7 +/- 0.2 and 10.1 +/- 0.4 kcal/mol, respectively. The pure enzyme can oxidize o-diphenols such as catechol, caffeic acid, and L-DOPA in the absence of hydrogen peroxide and the highest oxidase activity is observed against catechol. No activity is detected against tyrosine and common laccase substrates such as ABTS and syringaldazine with the exception of weak activity with p-hydroquinone. Common catechol oxidase inhibitors, salicylhydroxamic acid and p-coumaric acid, inhibit the oxidase activity. Catechol oxidation activity was also detected in three other catalases tested, from Aspergillus niger, human erythrocyte, and bovine liver, suggesting that this dual catalase-phenol oxidase activity may be a common feature of catalases.  相似文献   

16.
Aims:  To investigate hydrogen peroxide production by lactic acid bacteria (LAB) and to determine the key factors involved.
Methods and Results:  Six strains of Weissella cibaria produced large amounts (2·2–3·2 mmol l−1) of hydrogen peroxide in GYP broth supplemented with sodium acetate, but very low accumulations in glucose yeast peptone broth without sodium acetate. Increased production of hydrogen peroxide was also recorded when strains of W. cibaria were cultured in the presence of potassium acetate, sodium isocitrate and sodium citrate. Oxidases and peroxidases were not detected, or were present at low levels in W. cibaria . However, strong nicotinamide adenine dinucleotide (NADH) oxidase activity was recorded, suggesting that the enzyme plays a key role in production of hydrogen peroxide by W. cibaria .
Conclusions:  Weissella cibaria produces large quantities of hydrogen peroxide in aerated cultures, in a process that is dependent on the presence of acetate in the culture medium. NADH oxidase is likely the key enzyme in this process.
Significance and Impact of the Study:  This is the first study showing that sodium acetate, normally present in culture media of LAB, is a key factor for hydrogen peroxide production by W. cibaria . The exact mechanisms involved are not known.  相似文献   

17.
The ability of the rabbit blastocyst to reduce nitroblue tetrazolium (NBT) to formazan in the presence of cyanide was assayed as an indicator of extramitochondrial oxidase activity capable of generating the superoxide radical. A cytochemical method initially developed for the detection and localization of hydrogen peroxide production at the ultrastructural level in phagocytosing leukocytes (Briggs et al.: J Cell Biol 67:566, 1975) was also applied to the blastocyst. The results demonstrate that the rabbit blastocyst acquires the ability to reduce NBT by a cyanide-insensitive process and to generate hydrogen peroxide between the fourth and fifth days postcoitum. The enzymatic activity responsible is apparently an NAD(P)H-dependent oxidase in the outer, microvillous plasma membrane of the trophoblast.  相似文献   

18.
AIMS: The characterization of global aerobic metabolism of Lactobacillus plantarum LP652 under different aeration levels, in order to optimize acetate production kinetics and to suppress H2O2 toxicity. METHODS AND RESULTS: Cultures of L. plantarum were grown on different aeration conditions. After sugar exhaustion and in the presence of oxygen, lactate was converted to acetate, H2O2 and carbon dioxide with concomitant ATP production. Physiological assays were performed at selected intervals in order to assess enzyme activity and vitality of the strain during lactic acid conversion. The maximal aerated condition led to fast lactate-to-acetate conversion kinetics between 8 and 12 h, but H2O2 immediately accumulated, thus affecting cell metabolism. Pyruvate oxidase activity was highly enhanced by oxygen tension and was responsible for H2O2 production after 12 h of culture, whereas lactate oxidase and NADH-dependent lactate dehydrogenase activities were not correlated to metabolite production. Limited NADH oxidase (NOX) and NADH peroxidase (NPR) activities were probably responsible for toxic H2O2 levels in over-aerated cultures. CONCLUSION: Modulating initial airflow led to the maximal specific activity of NOX and NPR observed after 24 h of culture, thus promoting H2O2 destruction and strain vitality at the end of the process. SIGNIFICANCE AND IMPACT OF THE STUDY: Optimal aeration conditions were determined to minimize H2O2 concentration level during growth on lactate.  相似文献   

19.
Lysyl oxidase catalyzes the final known enzymatic step required for collagen and elastin cross-linking in the biosynthesis of normal mature functional insoluble extracellular matrices. In addition, lysyl oxidase has been identified as a possible tumor suppressor. Lysyl oxidase activity in biological samples is traditionally and most reliably assessed by tritium release end-point assays using radiolabeled collagen or elastin substrates involving laborious vacuum distillation of the released tritiated water. In addition, a less sensitive fluorometric method exists that employs nonpeptidyl amine lysyl oxidase substrates and measures hydrogen peroxide production with horseradish peroxidase coupled to homovanillate oxidation. The present study describes a more sensitive fluorescent assay for lysyl oxidase activity that utilizes 1,5-diaminopentane as substrate, and released hydrogen peroxide is detected using Amplex red in horseradish peroxidase-coupled reactions. This method allows the detection of 40 ng of enzyme per 2 ml assay at 37 degrees C and is 7.5 times more sensitive than the currently available fluorometric assay for enzyme activity. This method eliminates the interference that occurs in some biological samples and can be successfully used to detect lysyl oxidase activity in cell culture experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号