首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The recent shift of Rhagoletis pomonella (Diptera: Tephritidae) from its native host downy hawthorn, Crataegus mollis, to introduced domesticated apple, Malus domestica, in the eastern United States is a model for sympatric host race formation. However, the fly is also present in the western United States, where it may have been introduced via infested apples within the last 60 years. In addition to apple, R. pomonella also infests two hawthorns in the West, one the native black hawthorn, C. douglasii, and the other the introduced English ornamental hawthorn, C. monogyna. Here, we test for behavioral evidence of host races in the western United States. through flight tunnel assays of western R. pomonella flies to host fruit volatile blends. We report that western apple, black hawthorn, and ornamental hawthorn flies showed significantly increased levels of upwind‐directed flight to their respective natal compared to nonnatal fruit volatile blends, consistent with host race status. We discuss the implications of the behavioral results for the origin(s) of western R. pomonella, including the possibility that western apple flies were not introduced, but may represent a recent shift from local hawthorn fly populations.  相似文献   

2.
Intra- and interspecific resource competition are potentially important factors affecting host plant use by phytophagous insects. In particular, escape from competitors could mediate a successful host shift by compensating for decreased feeding performance on a new plant. Here, we examine the question of host plant-dependent competition for apple (Malus pumila)- and hawthorn (Crataegus mollis)-infesting larvae of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae) at a field site near Grant, Michigan, USA. Interspecific competition from tortricid (Cydia pomonella, Grapholita prunivora, and Grapholita packardi) and agonoxenid (subfamily Blastodacninae) caterpillars and a curculionid weevil (Conotrachelus crataegi) was much stronger for R. pomonella larvae infesting the ancestral host hawthorn than the derived host apple. Egg to pupal survivorship was estimated as 52.8% for fly larvae infesting hawthorn fruit without caterpillars and weevils compared to only 27.3% for larvae in harthorns with interspecific insects. Survivorship was essentially the same between fly larvae infesting apples in the presence (44.8%) or absence (42.6%) of interspecific insects. Intraspecific competition among maggots was also stronger in hawthorns than apples. The order or time that a larva exited a hawthorn fruit was a significant determinant of its pupal mass, with earlier emerging larvae being heavier than later emerging larvae. This was not the case for larvae in apples, as the order or time that a larva exited an apple fruit had relatively little influence on its pupal mass. Our findings suggest that decreased performance related to host plant chemistry/nutrition may restrict host range expansion and race formation in R. pomonella to those plants where biotic/ecological factors (i.e. escape from competitors and parasitoids) adequately balance the survivorship equation. This balance permits stable fly populations to persist on novel plants, setting the stage for the evolution of host specialization under certain mitigating conditions (e.g. when mating is host specific and host-associated fitness trade-offs exist).  相似文献   

3.
Ecological speciation via host-shifting is often invoked as a mechanism for insect diversification, but the relative importance of this process is poorly understood. The shift of Rhagoletis pomonella in the 1850s from the native downy hawthorn, Crataegus mollis, to introduced apple, Malus pumila, is a classic example of sympatric host race formation, a hypothesized early stage of ecological speciation. The accidental human-mediated introduction of R. pomonella into the Pacific Northwest (PNW) in the late 1970s allows us to investigate how novel ecological opportunities may trigger divergent adaptation and host race formation on a rapid timescale. Since the introduction, the fly has spread in the PNW, where in addition to apple, it now infests native black hawthorn, Crataegus douglasii, and introduced ornamental hawthorn, Crataegus monogyna. We use this “natural experiment” to test for genetic differentiation among apple, black, and ornamental hawthorn flies co-occurring at three sympatric sites. We report evidence that populations of all three host-associations are genetically differentiated at the local level, indicating that partial reproductive isolation has evolved in this novel habitat. Our results suggest that conditions suitable for initiating host-associated divergence may be common in nature, allowing for the rapid evolution of new host races when ecological opportunity arises.  相似文献   

4.
Rhagoletis pomonella Walsh (Diptera: Tephritidae) originating from domesticated apple (Malus pumila), hawthorn (Crataegus mollis) (Rosaceae), and flowering dogwood (Cornus florida) (Cornaceae) were tested sequentially in flight‐tunnel assays to volatile blends previously identified from the three fruit types. The majority of flies flew to odor sources containing their natal blend (68–83%). Some flies from each fruit type also flew to non‐natal fruit blends (11–39%), but of these non‐natal responders the vast majority were flies that responded to their natal blend as well. The results indicate that individual flies within R. pomonella populations infesting different host types have different degrees of specificity with respect to discriminating among fruit volatile blends, and that a moderate proportion of apple, hawthorn, and dogwood flies (10–30%) are broad responders, with the capacity to recognize and orient to more than one blend. The observed variability in response specificity could facilitate sympatric shifts to new host plants.  相似文献   

5.
Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life‐history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval‐infested apples 40–65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early‐ and late‐maturing apple varieties in the region. To investigate the life‐history timing hypothesis, we used a field‐based experiment to characterize the host‐associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host‐fruiting time generate allochronic isolation among apple‐, black hawthorn‐, and ornamental hawthorn‐associated fly populations. We conclude that host‐associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host‐fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process.  相似文献   

6.
Ecological speciation with gene flow may be an important mode of diversification for phytophagous insects. The recent shift of Rhagoletis pomonella from its native host downy hawthorn (Crataegus mollis) to introduced apple (Malus domestica) in the northeastern United States is a classic example of sympatric host race formation. Here, we test whether R. pomonella has similarly formed host races on four native Crataegus species in the southern United States: western mayhaw (C. opaca), blueberry hawthorn (C. brachyacantha), southern red hawthorn (C. mollis var. texana) and green hawthorn (C. viridis). These four southern hosts differ from each other in their fruiting phenology and in the volatile compounds emitted from the surface of their fruits. These two traits form the basis of ecological reproductive isolation between downy hawthorn and apple flies in the north. We report evidence from microsatellite population surveys and eclosion studies supporting the existence of genetically differentiated and partially reproductively isolated host races of southern hawthorn flies. The results provide an example of host shifting and ecological divergence involving native plants and imply that speciation with gene flow may be commonly initiated in Rhagoletis when ecological opportunity presents itself.  相似文献   

7.
An outstanding issue in the study of insect host races concerns the idea of ‘recursive adaptive divergence’, whereby adaptation can occur repeatedly across space and/or time, and the most recent adaptive episode is defined by one or more previously similar cases. The host plant shift of the apple maggot fly, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae, Carpomyini), from ancestral downy hawthorn [Crataegus mollis (Torr. & A. Gray) Scheele] to introduced, domesticated apple (Malus domestica Borkh.) in the eastern USA has long served as a model system for investigating ecologically driven host race formation in phytophagous insect specialists. Here, we report results from an annual geography survey of eclosion time demonstrating a similar ecological pattern among nascent host-associated populations of the fly recently introduced ca. 40 years ago from its native range in the east into the Pacific Northwest (PNW) region of the USA. Specifically, using data collected from 25 locations across 5 years, we show that apple-infesting fly populations in the PNW have rapidly and repeatedly shifted (and maintained differences in) their adult eclosion life-history timing to infest two novel hawthorn hosts with different fruiting phenologies – a native species (Crataegus douglasii Lindl.) and an introduced species (Crataegus monogyna Jacq.) – generating partial allochronic reproductive isolation in the process. The shifts in the PNW parallel the classic case of host race formation in the eastern USA, but have occurred bi-directionally to two hawthorn species with phenologies slightly earlier (black hawthorn) and significantly later (ornamental hawthorn) than apple. Our results imply that R. pomonella can both possess and retain extensive-standing variation (i.e., ‘adaptive memory’) in diapause traits, even following introductions, to rapidly and temporally track novel phenological host opportunities when they arise. Thus, ‘specialized’ host races may not constitute evolutionary dead ends. Rather, adaptive phenotypic and genetic memory may carry over from one host shift to the next, recursively facilitating host race formation in phytophagous insects.  相似文献   

8.
Summary Numerous authors have suggested that genetic subdivision within a population in a heterogeneous environment is more likely if individuals tend, through prior experience, to breed in the same habitat in which they developed. Under semi-field conditions we demonstrate that prior adult experience alters habitat preference in the apple maggot fly, Rhagoletis pomonella (Tephritidae), a frugivorous parasitic insect thought to have undergone sympatric divergence in host use in historical times. Females exposed to a particular host fruit species — apple (Malus pumila) or hawthorn (Crataegus mollis) — in a field cage oviposited at a higher rate in test fruit of that species than did inexperienced females or females exposed to the other species. Females exposed to a particular host fruit species also tended to remain longer in test trees harboring fruit of that species than did inexperienced females or females exposed to the other species. Prior adult experience thus alters two components of habitat preference in the apple maggot fly: oviposition preference and habitat fidelity. We discuss how these effects of experience on habitat preference should increase the likelihood that individuals mate assortatively and may further increase the likelihood that apple maggot populations become genetically subdivided.  相似文献   

9.
Summary One of the most controversial putative cases of host race formation in insects is that of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae). A principal cause of the controversy is lack of relevant data. In laboratory and field enclosure experiments, we compared the host acceptance behavior of sympatric populations of flies originating from naturally infested hawthorn (the native host) and apple (an introduced host) in Amherst, Massachusetts or East Lansing, Michigan. In general, hawthorn fruit were accepted for ovipositional attempts nearly equally by apple and hawthorn origin females, whereas apples were accepted much more often by apple than hawthorn origin females. Similarly, males of apple and hawthorn origin exhibited about equal duration of residence on hawthorn fruits as sites at which to acquire potential mates, while males of apple origin tended to reside substantially longer than males of hawthorn origin on apples. Irrespective of fly origin, both sexes always responded more positively to hawthorn fruit than to apples. Because all flies assayed were naive (ruling out effects of prior host experience of adults) and because tests revealed no influence of pre-imaginal fruit exposure on pattern of host fruit acceptance by females, the combined evidence suggests the phenotypic differences we observed in host response pattern between hawthorn and apple origin flies may have an underlying genetic basis. Further tests showed that while larval progeny of flies of each origin survived better in naturally growing hawthorn fruit than in naturally growing apples, there was no differential effect of fly origin on larval survival ability in either host. We discuss our findings in relation to restriction in gene flow between sympatric populations of R. pomonella and in relation to current models of host shifts in insects.  相似文献   

10.
Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host‐related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)‐infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430‐km transect, where the host races co‐occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion‐associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North.  相似文献   

11.
True fruit flies belonging to theRhagoletis pomonella (Walsh) sibling species complex have been proposed to speciate sympatrically by shifting and adapting to new host plants. Here, we report the results from a series of ecological and genetic experiments conducted at a study site near Grant, Michigan, U.S.A., aimed at clarifying the relationship between host specialization and reproductive isolation for these flies. Our findings indicate that apple (Malus pumila) and hawthorn (Crataegus mollis) infesting populations ofR. pomonella are partially allochronically isolated. Differences in the timing of adult eclosion account for part of the allochronic divergence, as apple adults emerge approximately ten days earlier than hawthorn flies in the field. Genetic analyses across different life history stages of the fly show that adults do not randomly move between apple and hawthorn trees, but trend to attack the same species of plant that they infested as larvae. Estimates of interhost migration from the allozyme data suggest that from 2.8 to 10% of the apple population is of hawthorn origin and that over 20% of the hawthorn population is of apple origin. The length and quality of the growing season appear to affect the genetic composition of the host races, as allele frequencies in the hawthorn population are correlated with ambient temperature and rainfall during the spring of the preceding year. Finally, allele frequencies for six allozyme loci displaying host associated differentiation also show significant linear regressions with the timing of adult eclosion within both races. These regressions establish a link between allozyme loci displaying inter-host differentiation and a developmental trait (adult eclosion) responsible for partially isolating the races. The slopes of the regressions are paradoxical, however, as they suggest that apple adults should eclose later, not earlier, than hawthorn flies. We conclude by discussing potential resolutions to the eclosion time paradox.  相似文献   

12.
True fruit flies in the Rhagoletis pomonella sibling species group are at the center of a long-standing debate concerning modes of speciation. The allopatric separation of populations is widely thought to be a prerequisite for speciation in sexually reproducing animals. However, speciation in the R. pomonella group appears to have occurred sympatrically as a consequence of these flies shifting and adapting to new host plants. The sympatric shift of R. pomonella from its native host hawthorn to introduced domestic apple, which occurred approximately 150 years ago, provides a test of whether host specialization is sufficient to allow populations to differentiate in the absence of geographic barriers to gene flow. We report the results of a geographic study of allozyme variation for hawthorn and apple infesting populations of R. pomonella across the eastern United States and Canada. Six loci consistently show significant allele frequency differences at paired apple and hawthorn sites. These six loci map to three different regions of the genome, and linkage disequilibrium exists between non-allelic genes within each of these regions. Allele frequencies for five of the six loci displaying host associated differences also co-vary significantly with latitude. Inter-host divergence is, therefore, superimposed on north-south clinal patterns of intra-host variation such that the magnitude of genetic divergence between hawthorn and apple flies is a function of latitude. The findings suggest that partially reproductively isolated “host races” can evolve in sympatry as a consequence of R. pomonella infesting new host plants. Host recognition and host associated developmental traits are discussed as important factors differentiating apple and hawthorn flies.  相似文献   

13.
Five species of larval parasitoids were reared fromRhagoletis pomonella (Walsh) infested fruit of hawthorn,Crataegus, collected from several locations in southwest Washington over a four year period. A braconid,Biosteres melleus (Gahan), parasitized larvae infesting fruits of a native hawthorn species,Crataegus douglasii Lindl. Another braconid,Opius downesi Gahan, emerged exclusively fromR. pomonella pupae reared from fruits of an introduced species of hawthorn,Crataegus monogyna Jacq. A pteromalid,Pteromalus sp., and two eulophids,Tetrastichus spp., attackedR. pomonella larvae infesting fruits of both hawthorn species. No parasitoids emerged from a total of 4385 pupae reared from apple. Percent parasitism ofR. pomonella was higher inC. monogyna compared toC. douglasii fruits. The highest average levels of parasitism ofR. pomonella inC. monogyna andC. douglasii fruits were 90% and 23% respectively. The kinds of parasitoids, their relative abundances and timing of parasitization on the two hawthorns was related to differences in fruit ripening patterns and its effect on the development ofR. pomonella on these two hosts. Parasitization ofR. pomonella byTetrastichus spp. is a new host record. The detection of these species andPteromalus sp. in southwest Washington are the first records of ectoparasitoids attacking this tephritid.  相似文献   

14.
Rhagoletis pomonella Walsh (Diptera: Tephritidae) is a model species for sympatric speciation through host race formation on apple and hawthorn. The bacterial endosymbiont Wolbachia, a manipulator of arthropod reproduction, has been considered to contribute to speciation in several species. A potential role of Wolbachia in sympatric speciation of R. pomonella remains to be tested despite an earlier detection by PCR. In this study, we isolated Wolbachia from R. pomonella individuals from both host species using multi‐locus sequence typing (MLST) and the surface protein wsp. By cloning and sequencing of 311 plasmids, we found sequence types of at least four wPom strains. A complete MLST profile was obtained only for wPom1, whereas MLST loci of the other putative strains were difficult to assign because of multiple infections and low sample numbers. wPom1 occurs in both host races, whereas different sequence types were found at low frequencies only in apple‐infesting R. pomonella. This warrants further investigation as it cannot be excluded that Wolbachia plays a part in this model of sympatric speciation.  相似文献   

15.
Host plant-associated fitness trade-offs are central to models of sympatric speciation proposed for certain phytophagous insects. But empirical evidence for such trade-offs is scant, which has called into question the likelihood of nonallopatric speciation. Here, we report on the second in a series of studies testing for host-related selection on pupal life-history characteristics of apple- (Malus pumila L.) and hawthorn- (Crataegus mollis L. spp.) infesting races of the Tephritid fruit fly, Rhagoletis pomonella (Walsh). In particular, we examine the effects of winter length on the genetics of these flies. We have previously found that the earlier fruiting phenology of apple trees exposes apple-fly pupae to longer periods of warm weather preceding winter than hawthorn-fly pupae. Because R. pomonella has a facultative diapause, we hypothesized that this selects for pupae with more recalcitrant pupal diapauses (or slower metabolic/development rates) in the apple-fly race. A study in which we experimentally manipulated the length of the prewintering period for hawthorn-origin pupae supported this prediction. If the period preceding winter is important for apple- and hawthorn-fly pupae, then so too should be the length (duration) of winter; the rationale for this prediction is that “fast developing” pupae that break diapause too early will deplete their energy reserves and disproportionately die during long winters. To test this possibility, we chilled apple- and hawthorn-origin pupae collected from a field site near Grant, Michigan, in a refrigerator at 4°C for time periods ranging from one week to two years. Our a priori expectation was that longer periods of cold storage would select against allozyme markers that were associated with faster rates of development in our earlier study. Since these electromorphs are typically found at higher frequencies in hawthorn flies, extending the overwintering period should favor “apple-fly alleles” in both races. The results from this “overwinter” experiment supported the diapause hypothesis. The anticipated genetic response was observed in both apple and hawthorn races, as allele frequencies became significantly more “apple-fly-like” in eclosing adults surviving longer chilling periods. This indicates that it is the combination of environmental conditions before and during winter that selects on the host races. Many tests for trade-offs fail to adequately consider the interplay between insect development, host plant phenology, and local climatic conditions. Our findings suggest that such oversight may help to explain the paucity of reported fitness trade-offs.  相似文献   

16.
Standing variation can be critical for speciation. Here, we investigate the origins of fruit odor discrimination for Rhagoletis pomonella underlying the fly's sympatric shift in the northeastern United States from downy hawthorn (Crataegus mollis) to apple (Malus domestica). Because R. pomonella mate on host fruit, preferences for natal fruit volatiles generate prezygotic isolation. Apples emit volatiles that appear to be missing from gas chromatography/electroantennographic detection profiles for flies infesting downy hawthorns, raising the question of how R. pomonella evolved a preference for apple. In the southern United States, R. pomonella attacks several native hawthorns. Behaviorally active volatile blends for R. pomonella infesting southern hawthorns contain the missing apple volatiles, potentially explaining why downy hawthorn flies could have evolved to be sensitive to a blend of apple volatiles. Flight tunnel assays imply that southern hawthorn populations were not the antecedent of a preassembled apple race, as southern flies were not attracted to the apple volatile blend. Instead, behavioral evidence was found for southern host races on native hawthorns, complementing the story of the historical sympatric shift to introduced apple in the North and illustrating how R. pomonella may evolve novel combinations of agonist and antagonist responses to volatiles to use new fruit resources.  相似文献   

17.
Despite an increasing acceptance in the biological community for sympatric speciation as a mode of species formation, well documented examples of sympatrically evolved ‘incipient species’ remain rare. The sympatric host races of apple maggot, Rhagoletis pomonella (Walsh), represent one of the most prominent case studies for sympatric speciation via a host shift. The European cherry fruit fly, R. cerasi (L.), shows strong ecological similarities to R. pomonella: (1) infestation of two different host plants, Lonicera xylosteum L. and Prunus avium L., and (2) divergent phenological and behavioral adaptations of flies on different hosts. The population genetic study presented here addresses whether the host associated populations of R. cerasi also represent genetically differentiated true host races. Out of a total of 29 allozyme loci examined, six were polymorphic and used to analyze six sympatric pairs of R. cerasi populations on Lonicera and Prunus from Switzerland and Germany. A direct comparison of allele frequencies between sympatric sites showed no pattern indicative of host races in R. cerasi. However, the hierarchical F‐statistic for one locus, mannose 6‐phosphate isomerase (Mpi), showed significant population differentiation that was in accordance with host race differentiation. Mpi is one of several loci that are also diagnostic for host race differentiation in R. pomonella. Results from Mpi suggest the formation of sympatric host races in R. cerasi, but additional polymorphic markers are necessary.  相似文献   

18.
The recent shift of Rhagoletis pomonella from its native host hawthorn to introduced, domestic apple has been implicated as an example of sympatric speciation. Recent studies suggest that host volatile preference might play a fundamental role in host shifts and subsequent speciation in this group. Single sensillum electrophysiology was used to test a proposed hypothesis that differences in R. pomonella olfactory preference are due to changes in the number or odor specificity of olfactory receptor neurons. Individuals were analyzed from apple, hawthorn, and flowering dogwood-origin populations, as well as from the blueberry maggot, Rhagoletis mendax Curran (an outgroup). Eleven compounds were selected as biologically relevant stimuli from previous electroantennographic/behavioral studies of the three R. pomonella populations to host fruit volatiles. Cluster analysis of 99 neuron responses showed that cells from all tested populations could be grouped into the same five classes, ranging from those responding to one or two volatiles to those responding to several host volatiles. Topographical mapping also indicated that antennal neuron locations did not differ by class or fly taxa. Our results do not support the hypothesis that differences in host preference among Rhagoletis populations are a result of alterations in the number or class of receptor neurons responding to host volatiles.  相似文献   

19.
The recent shift of Rhagoletis pomonella Walsh (Diptera: Tephritidae) from its ancestral host hawthorn to apple is a model for incipient sympatric speciation in action. Previous studies have shown that changes in the over‐wintering pupal diapause are critical for differentially adapting R. pomonella flies to a difference in the fruiting times of apples vs. hawthorns, generating ecologically based reproductive isolation. Here, we exposed pupae of the hawthorn race to various combinations of pre‐ and over‐wintering rearing conditions and analyzed their effects on eclosion time and genetics. We report certain unexpected results in regards to a combination of brief pre‐winter and over‐wintering periods indicative of gene*environment interactions requiring a reassessment of our current understanding of R. pomonella diapause. We present a hypothesis that involves physiological factors related to stored energy reserves in pupae that influences the depth and duration of Rhagoletis diapause. This ‘pupal energy reserve’ hypothesis can account for our findings and help clarify the role host plant‐related life history adaptation plays in phytophage biodiversity.  相似文献   

20.
The Rhagoletis species complex has been a key player in the sympatric speciation debate for much of the last 50 years. Studies indicate that differences in olfactory preference for host fruit volatiles could be important in reproductively isolating flies infesting each type of fruit via premating barriers to gene flow. Single sensillum electrophysiology was used to compare the response characteristics of olfactory receptor neurons from apple, hawthorn, and flowering dogwood-origin populations of R. pomonella, as well as from the blueberry maggot, R. mendax (an outgroup). Eleven volatiles were selected as stimuli from behavioral/electroantennographic studies of the three R. pomonella host populations. Previously, we reported that differences in preference for host fruit volatile blends are not a function of alterations in the general class of receptor neurons tuned to key host volatiles. In the present study, population comparisons involving dose–response trials with the key volatiles revealed significant variability in olfactory receptor neuron sensitivity and temporal firing pattern both within and among Rhagoletis populations. It is concluded that such variability in peripheral sensitivity and temporal firing pattern could influence host preference and contribute to host fidelity and sympatric host shifts in the Rhagoletis complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号