首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chaenea teres has typical haptorid ultrastructure. The somatic monokinetid has two transverse microtubular ribbons, an overlapping postciliary microtubular ribbon, and a laterally directed kinetodesmal fiber. The evered cytopharynx forms a dome at the apical end of the cell. The base of the dome is surrounded by oral dikinetids. The left, anterior kinetosome of the oral pair is not ciliated and has a transverse microtubular ribbon, a nematodesmata and a single postciliary microtubule. The right, posterior kinetosome is ciliated and has only postciliary microtubules. The kinetosomes at the anterior ends of the somatic kinetics are close together and their transverse microtubules and nematodesmata contribute to the support of the cytopharynx. The transverse microtubules of these oralized somatic kinetosomes, together with those from the oral dikinetids, line the cytopharynx. Accessory or bulge microtubules arise perpendicular to the transverse microtubules. A dorsal brush of three kineties of clavate cilia is found on the cell surface just posterior to the oral region. Mucocysts and a single type of toxicyst are present. The toxicysts are confined to the oral region. There are multiple ovoid macronuclei that stain weakly. Micronuclei were not observed. Cladistic analysis indicates the Chaenea may be most closely related to Fuscheria and Acropisthium. The cladistic analysis also suggests that existing taxonomies of the subclass Haptoria need to be revised. We propose some modifications to Foissner & Foissner's classification that include transferring Helicoprorodon, Actinobolina, the buetschiliids, and the balantidiids to the order Haptorida and recognizing the close relationship between pleurostomes and spathidiids.  相似文献   

2.
This study examines previously undescribed general and cytopharyngeal features of the genus Entodinium. The cytopharynx contains three types of microtubular ribbons underlying the cytostomal membrane as well as a loose palisade of nematodesmata. A protoesophagus composed of microtubular bundles associated with a fibrous wall lies internally to one side of an extrusible peristome on which the adoral zone of syncilia (AZS) is mounted. Macronuclear structures are very similar to those of other ophryoscolecids. The micronucleus has chromatin bodies forming a compact mass but lacks the thick wall found in other species. A tubular spongiome surrounds the contractile vacuole and the cytoproct is relatively undifferentiated. Cortical structure follows the usual five-layered ophryoscolecid pattern with subcortical barren kinetosomes arranged into indistinct kineties. The infraciliature of the AZS has kinetosomes set upon a subkinetal rod and with associated bifurcated kinetodesmata and transverse microtubules, some of which extend into the cytopharynx. Components newly described for Entodinium are the one to three postciliary microtubules and the interkinetosomal centro-lateral strand, all of which are present in other species of ophryoscolecid ciliates. The infraciliature of the paralabial ciliary tuft shows similar components to that of the main AZS, but lacks the subkinetal rod. The microtubular components of the cytopharynx are discussed in relation to the “alimentary” structures in other ophryoscolecids, and a relationship of these structures to dietary differences is suggested.  相似文献   

3.
SYNOPSIS The membranes, epiplasm, and fiber systems are described in the somatic cortex of Glaucoma chattoni strain HZ-1. Kinetodesmal fibers, postciliary and transverse microtubular ribbons, basal microtubules, transverse fibers and transverse accessory material are associated with kinetosomes. Longitudinal microtubular ribbons and mitochondria occur interkinetally. In the buccal cortex, the membranes, epiplasm and fibers of the 3 membranelles, the paroral kinety, the ribbed wall, and the cytostome are described. Comparisons between G. chattoni and other ciliates reveal ultrastructural differences of possible systematic significance. In the somatic cortex of this and other tetrahymenines. Iongitudinal microtubular ribbons and basal microtubules occur concurrently. In the buccal cortex, alveoli are absent in tetrahymenine membranelles. A table is presented of the fiber systems associated with single somatic kinetosomes of various ciliates whose cortical ultrastructure has been studied to date.  相似文献   

4.
A small free‐living freshwater bacteriotrophic flagellate Neobodo borokensis n. sp. was investigated by electron microscopy and analysis of its SSU ribosomal RNA gene. This protist has paraxonemal rods of typical bodonid structure in the flagella, mastigonemes on the proximal part of the posterior flagellum, two nearly parallel basal bodies, a compact kinetoplast, and discoid mitochondrial cristae. The flagellar pocket is supported by three microtubular roots (R1, R2 and R3) originating from the kinetosome. The cytopharynx is supported by the root R2, a microtubular prism, cytopharynx associated additional microtubules (CMT) and cytostome associated microtubules (FAS) bands. Symbiotic bacteria and small glycosomes were found in the cytoplasm. Cysts have not been found. The flagellate prefers freshwater habitats, but tolerates salinity up to 3–4‰. The overall morphological and ultrastructural features confirm that N. borokensis represents a new species of the genus Neobodo. Phylogenetic analysis of SSU rRNA genes is congruent with the ultrastructure and strongly supports the close relationship of N. borokensis to Neobodo saliens, N. designis, Actuariola, and a misidentified sequence of “Bodo curvifilus” within the class Kinetoplastea.  相似文献   

5.
Climacostomum virens uses oral membranelles to drive suspended food particles into its buccal cavity. The cavity leads to a buccal tube which extends into the cell by as much as half a cell length. The inner end of this tube is delimited by a haplokinety (two rows of basal bodies). Internal to this zone is the cytostome and cytopharynx where food vacuoles form. The buccal tube is encircled by a ring of fibrous material, the cytostomal cord, in the region of the cytostome immediately below the haplokinety. Ribbons of postciliary microtubules extend from the kinetosomes of the haplokinety, attach to the cytopharyngeal membrane, and pass under the cytostomal cord. They become broader and expand into the cytoplasm. Cytopharyngeal vesicles pass between the microtubular ribbons and fuse with the cytopharyngeal membrane to generate membrane for forming food vacuoles. The cytopharyngeal vesicles contain a material which is secreted into the forming food vacuoles. Ciliates continue to feed after incubation in a medium containing cycloheximide, indicating that they draw on a pre-existing pool of membrane when forming the food vacuole.  相似文献   

6.
ABSTRACT. The ultrastructure of the oral region and the ultrastructural architecture of the basket of Prorodon aklitolophon and Prorodon teres are described. the oral region of Prorodon consists of: 1) A circumoral kinety at the anterior pole of the cell surrounding the typically slit-shaped cytostomial funnel. This kinety is composed of inversely oriented dikinetids in which both kinetosomes are ciliated and are associated with a very short postciliary microtubular ribbon and a few transverse microtubules; 2) Three brush rows aligned in parallel and extended meridionally in the anterior part of the cell. the individual brush rows consist of dikinetids, but in contrast to the dikinetids around the cytopharynx they are not inverted and only the anterior kinetosomes bear specialized short brush cilia and are associated with a divergent-tangential transverse microtubular ribbon. the posterior kinetosome is non-ciliated and bears a prominent convergent postciliary microtubular ribbon. Schematized dikinetid patterns of both oral regions of Prorodon are provided. In addition, a three-dimensional reconstruction of the basket of the genus Prorodon based on serial thin sections is presented. A phylogenetic tree, mainly based on stomatogenic data, is given to show the phylogenetic relationships of some prostomatid genera as well as the hypothesized sistergroup relationship of colpodid and prostomatid ciliates.  相似文献   

7.
Stomatogenesis during metamorphosis of the marine loricate ciliate, Eufolliculina uhligi, was observed by transmission electron microscopy. Kinetosome proliferation in the stomatogenic territory leads to the formation of an anarchic field. This separates into the left adoral and the right paroral primordia. Both primordia consist of pairs of kinetosomes. One kinetosome of a pair is associated with one transverse and two postciliary microtubules; the other has one transverse microtubule. The postciliary microtubules of the adoral kinetosomes become divergent; those of the paroral kinetosomes become convergent. The adoral kinetosomes arrange in promembranelles. Then a third row of kinetosomes is produced anteriorly to each promembranelle. This third row is short at the peristome but longer in the buccal area. The paroral kinetosomes form a stichodyad. The buccal part of the paroral primordium is resorbed during formation of the buccal cavity. Stomatogenesis ends with the development of a functioning cytostome. During this process, the postciliary microtubules of the buccal adoral membranelles elongate and become associated with cytopharyngeal vesicles. Fusion of these vesicles with the cytostome has been observed some time after the completion of the oral structures.  相似文献   

8.
对武昌六前鞭虫胞器的超微结构进行了观察,发现R鞭毛复合体的内下方有分散的微管,两根R鞭毛复合体之间和外方具少量的粗面内质网,而虫体周边分布较多.粗面内质同外周被发达的微管.生毛体与胞核之间有胞咽和小盾结构.胞质中有较多的食物泡,未见到线粒体、高尔基体和表膜下微管结构.另外对粗面内质网的结构、功能以及种的鉴定等方面也作了讨论.    相似文献   

9.
Epidinium caudatum has an anterior vestibulum containing the adoral zone syncilia (AZS) on an extrusible peristome. The cytopharyngeal structures include a funnel-shaped arrangement of nematodesmata, longitudinal and transversely oriented microtubular ribbons all of which are located in the peristome, a structure which also contains filamentous phagoplasm. The origins of the microtubular ribbons indicate affinities to the rhabdos type of cytopharynx. The peristomal base is continuous with the tubular esophagus, the region connecting the two being ensheathed by a fibrous layer and low density cytoplasm. The esophagus has a microtubular/microfilamentous wall. A distinct cytoproct with associated myonemal structures occurs posteriorly. The skeletal plates consist of a large number of interconnected, variably shaped platelets and may have dual skeletal and storage functions. The endoplasm is more vesicular than the ectoplasm, the two separated by a fibrous boundary layer. The five-layered cortex has an external glycocalyx, a plasma membrane with two subtending membranes, homogeneous, microtubular, and microfilamentous layers. The syncilia of the AZS are mounted in a U-shaped band on the peristome with transversely oriented kinetics consisting of kinetosomes linked by a sub-kinetosomal rod. There is a bifurcated kinetodesma, dense support material forming a lateral spur with associated transverse microtubules, and postciliary, interkinetal, and occasional basal microtubules, nematodesmata, and a subciliary reticulum. A barren, possibly vestigial, somatic infraciliature consists of non-ciliated kinetosomes and a basal striated fiber with associated basal and perpendicular (cortical) microtubules.  相似文献   

10.
The functional mouth of exuviotrophic apostome ciltates appears only after an elaborate metamorphosis that begins at the onset of the molting of their crustacean hosts. In the tomite. a non-feeding migratory stage, a mid-ventrai depression at the origin of kineties x, y and z has been misidentified as the cytostome. Studies of fine structure and morphogenesis identify the true but nonfunctional cytostome—the subapiral lateral canal —and the falciform and ogival fields as the adoral ciliature. The anterior row of barren kinetosomes that parallels on the right the anterior third of the lateral canal is actually the infraciliature of a paroral. 2 rows of barren staggered kinetosomes. The canal itself is a narrow tube, its walls partially lined with microtubules. It begins 2–3 μm from the apex of the body and passes between falciform field 9 and the ogival field to end near the end of the ogival field. The fine structure of the infraciliature of the falciform and ogival fields differs markedly from that of the somatic kineties. In the host's early pre-molt stages, the paroral migrates across the ventral surface of the encysted phoront and is accompanied by the microtubules of the lateral canal. The anterior end of falciform field 9 disorganizes into scattered kinetosomes, the trophont's anterior field of kinetosomes, but the posterior end migrates in an arc across the anterior ventral surface and remains as kinety a located near the angle where kinety 1 sharply par ra continues posteriad ind dorsad to the posterior limit of the extended cytostome. At the end of metamorphosis it sinks into The cytoplasm and disappears. The completion of the extended cytostome, the functional mouth, marks the termination of the microstome-macrostome transformation. The fine structure of the infraciliature and microtubular elements making up the macrostome and the evocation of the microstome-macrostome transformation in the presence of specific foods suggest that apostome ciliates any more properly be a suborder of Hymenostomatida rather than a subclass of Oligohymenophorea.  相似文献   

11.
The large cytopharyngeal pouch of the macrostomal form of Tetrahymena vorax, following the addition of calcium, can form a sealed, empty vacuole. The open cytostomal region of this cell, which averages about 16 μ in diameter, is closed by an upward (ventral) movement of the right and posterior ribbed walls, both of which project into the cytostomal cavity. At the same time, the anterior and left walls of the cytostome-cytopharyngeal complex move to the right, forming a diagonally (right to left) placed furrow in the floor of the buccal cavity as these walls meet. As a result of the movement, the edges of the single membrane-bounded cytopharyngeal pouch are brought together and fuse, producing the closed vacuole. Elements of the cytoskeleton appear to participate in the closure process. Three major groups of ribbed wall microtubules support the open cytostome. The anterior ribbed wall microtubules pass laterally along the anterior (dorsal) portion of the cytopharyngeal pouch to the left where they end in the specialized cytoplasm. Middle oral rib microtubules terminate at the right and posterior margin of the cytopharynx while microtubules from the most posterior region of the ribbed wall pass to the left terminating in the specialized cytoplasm. The fine filamentous reticulum, a striated reticulum that borders the right, posterior, and anterior margins of the cytostome-cytopharyngeal complex, is in an ideal position to participate in these movements. It is anchored anteriorly high up in the buccal cavity to the cross-connective between the third membranelle and the undulating membrane complex. It courses beneath the right and posterior ribbed walls and runs laterally along the anterior margin of the cytopharynx to the left side. Contraction or pulling of this reticulum would act to bring the microtubule-reinforced walls of the cytopharynx together permitting fusion of the cytopharyngeal pouch membranes to form a sealed vacuole.  相似文献   

12.
ABSTRACT. The cell surface of the synhymeniid ciliate, Zosterodasys agamalievi , consists of shallow kinetal grooves separated by low cortical ridges. Numerous electron-opaque bodies are located in the cortical ridges, inside the kinetal grooves, and are distributed in parallel rows between adjacent kineties. Well-developed alveoli are present beneath the cell surface membrane. Zosterodasys agamalievi has a single micronucleus and a homomerous macronucleus. The infraciliature of the somatic monokinetid consists of an anteriorly-directed kinetodesmal fiber, a well-developed divergent postciliary microtubular ribbon, radially-oriented transverse microtubules, and a short striated rootlet, which extends anteriorly from the base of the kinetosome into the cell. Zosterodasys agamalievi has a perioral band of paired cilia, the synhymenium, that winds obliquely across the ventral surface of the body, just posterior to the cytostome. The infraciliature of the anterior kinetosome of the synhymenium consists of two postciliary microtubules; a well-developed, divergent post-ciliary ribbon of microtubules and a short kinetodesmal fiber are associated with the posterior kinetosome. The cytopharynx is supported by 14-16 nematodesmata which are capped distally by a capitulum. The cytopharynx is bound proximally by a fibrous sheath and is lined by radially-arranged microtubular ribbons. No obvious oral ciliature is present.  相似文献   

13.
The anterior adoral zone of syncilia (AZS) of Eudiplodinium maggii is mounted on an extrusible peristome within a vestibulum. The peristome contains cytopharyngeal components derived from the infraciliature. These components include a crescent-shaped palisade of nematodesmata, two types of sub-membrane cytopharyngeal ribbons, and an ensheathing fibrous layer enclosing a phagoplasmic zone containing the other components. A convoluted esophagus is continuous with and extends from the posterior of the cytopharynx adjacent to the macronucleus. A posterior cytoproct has specialized cytoplasm around it and associated myoneme-like elements. The skeletal plate is composed of finely granular platelets and lies under the cortex ventral to the macronucleus. The endoplasm is separated from the ectoplasm by a fibrous boundary layer. The cortex has an external glycocalyx, a membranous layer, epiplasm, and microtubular and microfilament layers. The AZS infraciliature is of the usual cntodiniomorph type, kinetosomes linked by a sub-kinetosomal rod and with associated bifurcated kinetodesma, postciliary and transverse microtubules-the latter extending into the cytopharynx—nematodesmata, and a fibrous reticulum. A possible vestigial, somatic infraciliature consisting of short, barren kinetosomes with associated basal and cortex-directed microtubules and a periodic incomplete fiber, is found subcortically throughout the cell.  相似文献   

14.
SYNOPSIS. Morphogenesis, and the cortical structures of Brooklynella hostilis, a cyrtophorine gymnostome ciliate ectoparasitic on marine fishes, were studied from protargol silver-impregnated preparations and with the aid of electron microscopy. The pattern of morphogenesis of Brooklynella is close to that found in less differentiated species of the families Chlamydodontidae (e.g., in the genus Trithigmostoma) and Dysteriidae (e.g., in the genus Hartmanula). The full number of kineties in the opisthe is restored after division from a segment of the left one of the 3 kinetics producing the oral rows. The oral rows consist of a double row of kinetosomes arranged in a zig-zag pattern; only the outer row is ciliated, the inner one being barren. However, the positions of the postciliary and transverse fibers indicate that the oral rows are not homologs of an undulating membrane but are akin to a membranelle. In association with the ventral somatic kinetosomes there are 4 postciliary fibers; a rather aberrant, transversally oriented kinetodesma; 2 microtubular, transverse fibers plus a transverse fibrousspur; and one to several ribbons of subkinetal microtubular fibers. Not directly associated with the kinetosomes are fibrous strands running subpellicularly between the kinetosomes and also deep into the cytoplasm. The cortical structures of Brooklynella are compared with those of some other groups of ciliates of about the same phylogenetic level in which the subkinetal microtubules can also be found– rhynchodine, suctorian, and chonotrich ciliates. The nasse consists of 6–8 nematodesmata not closely associated with the microtubular cytopharyngeal tube. The former have a distinctly developed densely fibrous capitulum containing barren kinetosomes which originally produced the nematodesma during stomatogenesis; the capitulum is connected by a fibrous link to the microtubular shaft. Extending from the oral rows to the capitula are fibrous structures strongly reminiscent of filamentous reticulum in hymenostome and peritrich ciliates. The structure of the posterio-ventral glandular organelle is also described and discussed.  相似文献   

15.
New cellular structures, bifurcated oral tentacles, were observed in many specimens of the photosynthetic ciliate Mesodinium rubrum from the northern Baltic Sea. Cross-sections of tentacles revealed rings (cylinders) of 14 microtubules with spokes. The number of microtubules per ring decreased from 14 to 12 or 11 inside the cell but no true kinetosomes were detected. These "micro-rings" were often associated with extrusomes and the tentacle tips consisted of extrusomes. A nucleus of a symbiotic alga was present, surrounded by algal cytoplasm containing plastids and delimited from the ciliate cytoplasm by two membranes. Each plastid was bounded by four membranes and was associated with one nucleomorph, suggesting a symbiotic origin as a cryptophyte. The unique symbiotic organization and the organelles of 14 microtubules make Mesodinium rubrum an organism of unusual evolutionary interest.  相似文献   

16.
Special ultrastructural characteristics of the haptorid soil ciliate Enchelydium polynucleatum Foissner, 1984 are the restriction of the parasomal sacs to the area of the “brush” and finger-like projections of the food vacuole membrane into the lumen of the vacuole. The general organization of the infraciliature is similar to that of Spathidium and some buetschliids because the anterior ends of the somatic kineties are condensed and obliquely bent. Enchelydium is similar to haptorids and buetschliids in possessing monokinetid somatic fibrillar structures with the classical fibrillar associates: 1) a short kinetodesmal fiber; 2) two transverse microtubular ribbons; 3) a long postciliary microtubular ribbon; and 4) a system of overlapping subkinetal microtubules, which seems to be absent in the buetschliids. Unlike Spathidium and all other haptorids so far investigated ultrastructurally, serial sections show that there are no oral dikinetids, as in the endocommensal buetschliids and balantidiids. Instead, three to six anterior kinetids in each ciliary row have nematodesmal bundles extending into the cytoplasm and surrounding the cytopharynx. These kinetids lack cilia and all fibrillar associates except enlarged transverse ribbons, which extend anteriorly and inwards to support the cytopharynx. Other similarities between the buetschliids and Enchelydium are the conspicuous rough endoplasmic reticulum and abundant sausage-like vesicles in the oral region. As in other haptorids, Enchelydium has two types of toxicysts and one type of mucocyst. These observations strongly suggest that Enchelydium belongs to the ancestral stock of both the Haptorida and the Archistomatida. The similarities in the somatic and oral infraciliature and ultrastructure of the Haptorida and the Archistomatida suggest that they belong to the same subclass, Haptoria Corliss, 1974.  相似文献   

17.
The cortical development during cell division and the interphase ultrastructure of the marine interstitial hypotrich Certesia quadrinucleata is described using light microscopy and both scanning and transmission electron microscopy. Membranelles are paramembranelles; postciliary microtubules from rightmost membranellar kinetosomes line the buccal cavity and separate parallel arrays of pharyngeal discs that border the cytopharynx. A large paroral membrane is present; an endoral membrane is absent. Alveolar plates lie within alveolar membranes except in regions where organelles and organellar complexes (cirri, the condylopallium, dorsal bristles, membranelles, and the paroral membrane) emerge from the cortex. Muciferous-like bodies attach to the plasma membrane in these regions. Dorsal bristles possess transverse and postciliary microtubules as well as kinetodesmal fiber like those of other hypotrichs. Lasiosomes are present. A unique bulbous structure—the condylopallium—protrudes from the anterior right of the cell. The morphogenetic pattern is euplotine in that cortical development begins in one latitudinal zone, and the oral primordium of the opisthe develops within a subsurface pouch apart from the frontal primordia. Microtubular bundles appear beside (later attached to) developing frontal anlagen; they disappear after cirri are in final interphase locations. Although possessing unique characters, Certesia shares a close phylogenetic relationship with Euplotes.  相似文献   

18.
ABSTRACT. This study describes the ultrastructure of the somatic cortex of Prorodon aklitolophon and Prorodon teres. the meridionally arranged somatic kineties of both species can be separated into two parts: a short anterior part, which consists of a few somatic dikinetids (in which both kinetosomes are ciliated), and a longer posterior consisting of monokinetids. the somatic monokinetids are associated with a convergent postciliary microtubular ribbon, a transverse microtubular ribbon flatly inserted in front of the kinetosome, a short and steeply extending kinetodesmal fibre attached to kinetosomal triplet 5 and 7, and a desmose anterior to triplet 3. From this desmose, two to five prekinetosomal microtubules originate and extend anteriorly. the posterior kinetosome of the somatic dikinetids is associated with the same microfibrillar and microtubular structures as the somatic monokinetid, except that no prekinetosomal microtubules originate from the desmose. the anterior kinetosome has a single postciliary microtubule and a tangentially oriented transverse microtubular ribbon. the permanent collecting canals of the unique contractile vacuole system extend parallel and adjacent to the somatic kinetics of Prorodon . the collecting canals are supported by the prekinetosomal microtubules. A similarly organized contractile vacuole system is not yet known from any other ciliate group. One of the most surprising results of this investigation was finding a significant similarity between the somatic dikinetid pattern of Prorodon and the colpodid dikinetid pattern. A hypothesis is presented to illustrate the evolution of the somatic kinetid patterns in colpodid and prostomatid ciliates.  相似文献   

19.
SYNOPSIS. Cortical ultrastructure of the scuticociliates Dexiotricha media and Dexiotricha colpidiopsis was investigated. The following elements of the somatic cortex were studied: the cell membrane, alveolar membranes and the epiplasm, kinetodesmal fibers, postciliary and transverse microtubular ribbons, and transverse fibers associated with single and paired kinetosomes; mitochondria and single microtubules located in interkinetal ridges; mature and early extrusion stages of mucocysts: the expulsion vacuole pore and tube, the nephridioplasm and the cytoproct. In the buccal cortex, the paroral kinety-ribbed wall complex, the 3 polykineties, and the cytostome-cytopharynx were investigated. Comparative survey of ciliate ultrastructure indicates 2 principal orientation patterns for kinetodesmal and postciliary fibers, recognition of which leads to reevaluation of the theory of paroral kinety formation and the ideas of homology based on this theory. Ultrastructurally, the scuticociliates are not distinct from tetrahymenines and peniculines; the 3 groups appear to be 1 assemblage.  相似文献   

20.
The ultrastructure of the feeding apparatus in Ploeotia costata Farmer and Triemer was determined and compared to other euglenoid feeding apparatuses. The feeding apparatus opened subapically onto the ventral surface and extended nearly the entire length of the cell. It consisted of four parts at the anterior surface: a comb, cytostome/pocket, vanes, and supporting rods. The comb was a multilayered structure of three horizontal microtubular rows encased in cement and formed the dorsal lip of the apparatus. The cytostome/pocket was located between the comb and the supporting rods, tapered into the cell as the cytopharynx and was surrounded by five vanes. The electron-opaque vanes extended the entire length of the feeding apparatus and were lined with microtubules for most of their length. Finally, two cement supporting rods that were joined by a crosspiece at the anterior end formed the ventral lip. The rods separated briefly before merging with the vanes. As the merged rods and vanes descended into the cell, they gradually narrowed and terminated. Comparisons of the feeding apparatus with Ploeotia vitrea, Diplonema ambulator, Lentomonas applanatum, and other euglenoids have led to the conclusion that the Type II feeding apparatus is found only in Ploeotia species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号