首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Trees present herbivorous insects with the greatest diversity of resources of any plant growth form. Both ontogeny and shading can alter suitability for arboreal insect herbivores. 2. We conducted a longitudinal study of tagged ‘mature’ (>12 months old) Eucalyptus camaldulensis leaves to compare the suitability of understorey and canopy trees for the leaf senescence-inducing psyllid, Cardiaspina albitextura. We quantified sugars and tannins as possible predictors of nymphal abundance. 3. Canopy leaves hosted double the number of nymphs as understorey leaves. Variation among individual trees (understorey and canopy) was the most important source of heterogeneity explaining psyllid abundance, although relative leaf age significantly influenced oviposition on canopy leaves. The diversity of foliar sugars was higher among canopy leaves than among understorey leaves. There was significant between-tree diversity in total hydrolysable tannins (HTs) and total condensed tannins (CTs) among understorey trees but not among canopy trees. Heterogeneity among understorey and canopy trees was explained by greater diversity of ellagitannins (HTs) than of CTs. 4. Shading is detrimental to the survival of nymphs on both host types, but sugars are unlikely to explain variation in suitability. Vescalagin (an ellagitannin) was negatively correlated with the abundance of nymphs on both host types.  相似文献   

2.
Frequency and severity of insect outbreaks in forest ecosystems are predicted to increase with climate change. How this will impact canopy leaf area in future climates is rarely tested. Here, we document function of insect outbreaks that fortuitously and rapidly occurred in an ecosystem under free‐air CO2 enrichment. Over the first 2 years of CO2 fumigation of a naturally established mature Eucalyptus woodland, we continuously assessed population responses of three sap‐feeding insect species of the psyllid genera Cardiaspina, Glycaspis and Spondyliaspis for up to ten consecutive generations. Concurrently, we quantified changes in the canopy leaf area index (LAI). Large and rapid shifts in psyllid community composition were recorded between species with either flush (Glycaspis) or senescence‐inducing (Cardiaspina, Spondyliaspis) feeding strategies. Within the second year, two psyllid species experienced significant and rapid population build‐up resulting in two consecutive outbreaks: first, rainfall stimulated Eucalyptus leaf production increasing LAI, which supported population growth of flush‐feeding Glycaspis without impacting LAI. Glycaspis numbers then crashed and were followed by the outbreak of senescence‐feeding Cardiaspina fiscella that led to significant defoliation and reduction in LAI. For all three psyllid species, the abundance of lerps, protective coverings excreted by the sessile nymphs, decreased at e[CO2]. Higher lerp weight at e[CO2] for Glycaspis but not the other psyllid species provided evidence for compensatory feeding by the flush feeder but not the two senescence feeders. Our study demonstrates that rainfall drives leaf phenology, facilitating the rapid boom‐and‐bust succession of psyllid species, eventually leading to significant defoliation due to the second but not the first outbreaking psyllid species. In contrast, e[CO2] may impact psyllid abundance and feeding behaviour, with psyllid species‐specific outcomes for defoliation severity, nutrient transfer and trophic cascades. Psyllid populations feeding on Eucalyptus experience rapid boom‐and‐bust cycles depending on availability of suitable foliage driven by rainfall patterns and leaf phenology.  相似文献   

3.
Abstract

In this study, the effects of using three different sampling methods (yellow sticky traps, beating tray, organdy bags) on estimating the distribution through the canopy of the summer‐form adults of the pistachio psyllid (Agonoscena targionii (Licht.)) was investigated throughout the vegetative period. The traps or bags were hung at two heights in the tree canopy, 3.5 m above ground and 2 m above ground. Psyllids were counted weekly, and their sex determined. Adult abundance varied during the study, but all three sampling methods indicated that densities were higher in the upper canopy than the lower canopy. The percentage of females having mature eggs was lowest in late May, and highest in June and September. Sex ratios were highly variable among sampling dates and among sampling methods, at both canopy heights. Sex ratios in bags tended to be more female‐biased in the lower canopy than in the upper canopy. Sticky trap counts were significantly male biased, more so in the upper canopy than in the lower canopy. Mean sex ratios differed significantly between bag and sticky trap samples at both heights, but did not differ significantly between tray and bag samples at either height. In addition, for a given tray or bag count, sticky trap catch of males was larger than catch of females, and was larger in the upper canopy than in the lower canopy. Bag counts (psyllids per leaflet) strongly increased with tray count.

Of the three sampling methods described here, the bag samples provided direct estimates of psyllid numbers per leaflet, but this method is extremely time consuming. Bag counts (psyllids per leaflet) increased with tray count, suggesting that beat trays can be used to estimate absolute densities.  相似文献   

4.
Abstract The impacts of potato psyllid (Bactericera cockerelli) feeding on potato foliage on the free amino acids (FAAs) composition in potato leaf and tubers were determined under greenhouse conditions. The free amino acids in plant extracts were separated by high‐performance liquid chromatography, and in both leaf and tuber samples, at least 17 FAAs were detected. Psyllid feeding significantly changed the levels of several FAAs in both leaf and tuber samples. The concentration of leucine increased 1.5‐fold, whereas that of serine and proline increased 2‐ and 3‐fold, respectively. In contrast, the concentrations of glutamic acid, aspartic acid and lyscine were significantly reduced by 42.0%, 52.1% and 27.5%, respectively. There were also significant changes in the levels of FAAs in the Zebra chip (ZC) infected tubers compared with the healthy tubers, and the levels of six of the FAAs increased, and the levels of nine of the FAAs decreased. The results from this study indicate that potato psyllid causes major changes in free amino acid composition of plant tissues, and this change in plant metabolism may contribute to the plant stress as indicated by increased levels of proline in the leaves and hence promoting the development of plant diseases such as ZC disease.  相似文献   

5.
An invasive new biotype of the tomato/potato psyllid (Bactericera [Paratrioza] cockerelli [Sulc.]) (Homoptera: Psyllidae) recently has caused losses exceeding 50% on fresh market tomatoes in western North America. Despite these extensive losses, little is known regarding the threshold levels at which populations must be suppressed in order to prevent economic losses. A series of experiments were therefore designed using combinations of two common tomato cultivars (QualiT 21 and Yellow Pear), five pest-densities (0, 20, 30, 40 and 50 nymphs/plant), and three feeding-duration (5 days, 10 days, and lifetime) treatments to test the relative importance of pest density, feeding period, and cumulative psyllid-days to establish economic threshold levels for psyllids. The cultivars differed considerably in their response to the toxin injected by the psyllid nymphs. ‘Yellow Pear' plants could recover from feeding by up to 40 nymphs for as long as 10 d, whereas ‘QualiT 21' plants were irreparably damaged by densities of 20 nymphs feeding for only 5 days. On ‘Yellow Pear', all plant measurements such as the number of yellow leaves and plant height were significantly better correlated with cumulative psyUid-days than with either pest density or feeding duration. On ‘QualiT 21 ', all plant measurements other than the number of yellow leaflets and leaves were significantly better correlated with pest density than with feeding duration or cumulative psyUid-days, and pest density was a better predictor of psyUid damage. Potential reasons for the variable responses between cultivars and the implications for psyllid sampling and integrated pest management are discussed.  相似文献   

6.
Overwintered adult carrot psyllids [Trioza apicalis Förster (Homoptera: Psylloidea: Triozidae)] damage carrot [(Daucus carota ssp. sativum L.) (Apiaceae)] seedlings by phloem feeding on the leaves. The aim of this study was to investigate the carrot root and shoot growth in relation to carrot psyllid density during early growth stages. One, two, or three carrot psyllids were allowed to feed on carrot seedlings for 3 days. Leaf damage was measured at the 8‐leaf stage, and root, leaf fresh weight, and number of true leaves were measured at harvest. Both the age of the carrot seedling at infestation and the psyllid density had a significant effect on leaf damage at the 8‐leaf stage: seedlings damaged at the cotyledon stage exhibited more leaf damage than seedlings damaged at the 1‐leaf stage. A higher psyllid density significantly reduced the carrot root weight at harvest. The significant interaction of psyllid density with seedling age indicates that differently aged carrot seedlings responded differently to feeding: one psyllid feeding for 3 days at the cotyledon stage caused a significant yield loss, whereas three psyllids were needed to cause the same impact at the 1‐leaf stage. Carrot leaf weight at harvest was not reduced by carrot psyllid feeding: leaves recovered from the damage but roots did not. Our results confirm the farmers’ observations that a trap replacement period of 1 week for carrot psyllid monitoring is too long, especially at the cotyledon stage. Severe leaf discolouration on damaged carrots was observed at harvest. The possible reasons for this discolouration, such as toxin excreted in psyllid saliva or plant pathogenic mycoplasma infection, are discussed.  相似文献   

7.
Carrot psyllid, Trioza apicalis, is a serious pest of carrot in Northern Europe, as it can significantly damage young carrot seedlings in a period as short as 3 days. This study was conducted to investigate effects of carrot psyllid feeding at different plant growth stages on carrot yield and to assess changes in content of sugars, phenolics and related compounds in carrot roots resulting from the psyllid feeding. In addition, reflectance of carrot leaves was measured to assess the intensity of discolouration in damaged leaves. Results showed that carrot yield was significantly reduced by a 3‐day carrot psyllid feeding period when the seedlings were exposed to psyllids at 1‐ or 2‐leaf stage. However, at 4‐leaf stage feeding by one carrot psyllid did not reduce yield. Sucrose concentration in the damaged roots was significantly decreased, whereas concentrations of some phenolic compounds were significantly increased. The reflectance of leaves of damaged carrots differed significantly from those of undamaged control leaves. These observations indicate that carrot psyllid damage has potential to lower not only the carrot yield, but also the carrot crop quality. No phytoplasma was detected in the carrots exposed to psyllids, but recently, T. apicalis has been associated with ‘Candidatus Liberibacter solanacearum’. The role of carrot psyllid feeding and the psyllid‐associated bacterium in the damage formation are discussed.  相似文献   

8.
Light is considered a non‐limiting factor for vascular epiphytes. Nevertheless, an epiphyte's access to light may be limited by phorophyte shading and the spatio‐temporal environmental patchiness characteristic of epiphytic habitats. We assessed the extent to which potential light interception in Rodriguezia granadensis, an epiphytic orchid, is determined by individual factors (plant size traits and leaf traits), or environmental heterogeneity (light patchiness) within the crown of the phorophyte, or both. We studied 104 adult plants growing on Psidium guajava trees in two habitats with contrasting canopy cover: a dry tropical forest edge, and isolated trees in a pasture. We recorded the number of leaves and the leaf area, the leaf position angles, and the potential exposure of the leaf surface to direct irradiance (silhouette area of the leaf blade), and the potential irradiance incident on each plant. We found the epiphytes experience a highly heterogeneous light environment in the crowns of P. guajava. Nonetheless, R. granadensis plants displayed a common light interception strategy typical of low‐light environments, resembling terrestrial, forest understory plants. Potential exposure of the total leaf surface to direct irradiance correlated positively with plant size and within‐plant variation in leaf orientation. In many‐leaved individuals, within‐plant variation in leaf angles produced complementary leaf positions that enhanced potential light interception. This light interception strategy suggests that, in contrast to current wisdom, enhancing light capture is important for vascular epiphytes in canopies with high spatio‐temporal heterogeneity in light environments.  相似文献   

9.
A binomial sampling method for the potato aphid, Macrosiphum euphorbiae (Thomas), on processing tomato plants, Lycopersicon esculentum (Mill), is proposed. Relationships between mean number of M. euphorbiae per leaf and proportion of leaves infested [P(I)] with M. euphorbiae for both upper and interior leaves of the processing tomato varieties 'Alta' and 'Halley' are presented. A split-plot design was used with variety, position in the plant canopy, and block as the factors examined through linear regression and analysis of variance (ANOVA). Results supported the hypotheses that M. euphorbiae densities on upper canopy leaves are predictive of densities on inner canopy leaves and that proportion of M. euphorbiae infested leaves are predictive of mean densities per leaf. Mean M. euphorbiae density was greater on 'Alta' than 'Halley' tomato plants, supporting the assumption that 'Alta' is the more susceptible variety. Taylor's Power Law coefficients, a and b, were similar for proportion of M. euphorbiae-infested upper and inner leaves of both 'Alta' and 'Halley'. Taylor's b coefficients ranged from 1.57 to 1.74, indicating a highly clumped distribution for M. euphorbiae.  相似文献   

10.
Successful transmission of plant pathogens by insects depends on the vector inoculation efficiency and how rapidly the insect can effectively transmit the pathogen to the host plant. The potato psyllid, Bactericera cockerelli (Sulc), has recently been found to transmit "Candidatus Liberibacter solanacearum," a bacterium associated with zebra chip (ZC), an emerging and economically important disease of potato in several parts of the world. Currently, little is known about the epidemiology of ZC and its vector's inoculation capabilities. Studies were conducted in the field and laboratory to 1) assess transmission efficiency of potato psyllid nymphs and adults; 2) determine whether psyllid inoculation access period affects ZC incidence, severity, and potato yield; and 3) determine how fast the psyllid can transmit liberibacter to potato, leading to ZC development. Results showed that adult potato psyllids were highly efficient vectors of liberibacter that causes ZC and that nymphs were less efficient than adults at transmitting this bacterium. It was also determined that inoculation access period had little influence on overall ZC disease incidence, severity, and resulting yield loss. Moreover, results showed that exposure of a plant to 20 adult potato psyllids for a period as short as 1 h resulted in ZC symptom development. Furthermore, it was shown that a single adult potato psyllid was capable of inoculating liberibacter to potato within a period as short as 6 h, thereby inducing development of ZC. This information will help in developing effective management strategies for this serious potato disease.  相似文献   

11.
Abstract 1 The herbivorous bug Heteropsylla cubana Crawford (Homoptera: Psyllidae) is a pest of the cattle fodder crop Leucaena (Leguminosae: Mimosoideae). The interaction between the psyllid and three varieties of its Leucaena host plant was investigated in relation to the apparent resistance of some Leucaena varieties (Leucaena leucocephala, Leucaena pallida and their hybrids) to attack. 2 Field trials demonstrated that adult psyllids distinguished among the different varieties of Leucaena over a distance, and were attracted to L. leucocephala in significantly higher numbers than to L. pallida or to the hybrid. Pesticide treatment increased the attractiveness of Leucaena plants, even of those deemed to be psyllid resistant. Numbers of psyllid eggs and nymphs, sampled in the field, reflect the arrival rates of adults at the three plant varieties. 3 Wavelength reflectance data of the three Leucaena varieties were not significantly different from one another, suggesting that psyllids cannot discriminate among the three plants using brightness or wavelength cues. There was a differential release of caryophyllene among the three varieties. Release of caryophyllene in L. leucocephala and the hybrid appeared to be influenced by environmental conditions. 4 Experiments demonstrated that caryophyllene (at least on its own) did not influence the behaviour of leucaena psyllids in relation to leucaena plants. 5 The results suggest that host plant volatiles cannot be dismissed as significant in the interaction between the leucaena psyllid and its Leucaena host plants. Further avenues for investigation are recommended and these are related to novel ways of understanding resistance in insect plant inter‐relationships.  相似文献   

12.
We conducted three experiments for management of Bemisia tabaci (Gennadius) biotype ‘B’ on tomatoes under greenhouse conditions: (i) vertically placing yellow sticky cards either parallel or perpendicular to tomato rows at a rate of 1 per 3‐m row; (ii) releasing Eretmocerus sp. nr. rajasthanicus once at 30 adults/m2 in the high whitefly density greenhouses (> 10 adults/plant), or twice at 15 adults/m2 at a 5‐day interval in the low whitefly density greenhouses (< 10 adults/plant); and (iii) using combinations of yellow sticky cards that were placed vertically parallel to tomato rows and parasitoids released once at 30/m2 in high whitefly density greenhouses or twice at 15/m2 at a 5‐day interval in low whitefly density greenhouses. Our data show that yellow sticky cards trapped B. tabaci adults and significantly reduced whitefly populations on tomato. The yellow sticky cards that were placed parallel to tomato rows caught significantly more whitefly adults than those placed perpendicular to tomato rows on every sampling date. In the treatment where parasitoids were released once at 30/m2 in high whitefly density greenhouses, the number of live whitefly nymphs were reduced from 4.6/leaf to 2.9/leaf in 40 days as compared with those on untreated plants on which live whitefly nymphs increased from 4.4/leaf to 8.9/leaf. In the treatment where parasitoids were released twice at 15/m2 in low whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.1/leaf to 1.7/leaf in 20 days as compared with those on untreated plants on which numbers of live nymphs of B. tabaci increased from 2.2/leaf to 4.5/leaf. In the treatment of yellow sticky cards and parasitoid release once at 30/m2 in high whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 7.2/leaf to 1.9/leaf, and in the treatment of yellow sticky cards and parasitoid release twice at 15/m2 at a 5‐day interval at low whitefly density, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.5/leaf to 0.8/leaf; whereas the numbers of live nymphs of B. tabaci on untreated plants increased from 4.4/leaf to 8.9/leaf. An integrated program for management of B. tabaci on greenhouse vegetables by using yellow sticky cards, parasitoids and biorational insecticides is discussed.  相似文献   

13.
Heat wave frequency, duration, and intensity are predicted to increase with global warming, but the potential impacts of short‐term high temperature events on forest functioning remain virtually unstudied. We examined canopy processes in a forest in Central Ontario following 3 days of record‐setting high temperatures (31–33 °C) that coincided with the peak in leaf expansion of dominant trees in late May 2010. Leaf area dynamics, leaf morphology, and leaf‐level gas‐exchange were compared to data from prior years of sampling (2002–2008) at the same site, focusing on Acer saccharum Marsh., the dominant tree in the region. Extensive shedding of partially expanded leaves was observed immediately following high temperature days, with A. saccharum losing ca. 25% of total leaf production but subsequently producing an unusual second flush of neoformed leaves. Both leaf losses and subsequent reflushing were highest in the upper canopy; however, retained preformed leaves and neoformed leaves showed reduced size, resulting in an overall decline in end‐of‐season leaf area index of 64% in A. saccharum, and 16% in the entire forest. Saplings showed lower leaf losses, but also a lower capacity to reflush relative to mature trees. Both surviving preformed and neoformed leaves had severely depressed photosynthetic capacity early in the summer of 2010, but largely regained photosynthetic competence by the end of the growing season. These results indicate that even short‐term heat waves can have severe impacts in northern forests, and suggest a particular vulnerability to high temperatures during the spring period of leaf expansion in temperate deciduous forests.  相似文献   

14.
Carrot cultivation in Europe is suffering from infections with “Candidatus Liberibacter solanacearum” (CLso), a psyllid‐transmitted bacterial pathogen. In this study, field experiments were carried out in Finland to separately measure the effects of psyllid feeding damage and CLso infection on the carrot root growth and to reveal the dynamics of the spreading of CLso within the field. Most of the experiments were carried out during the summers 2016 and 2017, and a follow‐up sampling was performed in 2018. Carrot psyllid (Trioza apicalis) flight activity was monitored and carrots were sampled at 25 points within the field. Early in the season a clear spatial correlation was found between the sampling sites showing the psyllid feeding damage, that is, leaf‐curling, up to the range of 40–60 m, indicating aggregation behaviour of the psyllids. No CLso infections were detected in the first sampling, which was performed before the psyllid flight peak in both years. Later, a positive correlation between the psyllid feeding damage and the CLso titre was observed. An increase in the CLso titre occurred approximately a month after the psyllid flight peak, and this increase correlated with the accumulating effective temperature sum. In 2016, both the psyllid feeding damage and CLso infection had a significant effect on the carrot root weight. The effect of CLso titre on root weight was nonlinear, that is, it intensified rapidly at the highest bacterial titres. During the colder summer of 2017 the CLso titres did not reach high enough levels in the plants to cause substantial visible symptoms and root growth reduction. Thus, it seems that in the Nordic conditions the effect of CLso infection on carrot yield is strongly dependent on the weather conditions during the growing season.  相似文献   

15.
The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), is a serious pest of potatoes that can cause yield loss by direct feeding and by transmitting a bacterial pathogen, Candidatus Liberibacter psyllaurous (also known as Candidatus L. solanacearum), which is associated with zebra chip disease of this crop. Current pest management practices rely on the use of insecticides for control of potato psyllid to lower disease incidences and increase yields. Imidacloprid is typically applied at potato planting, and it remains unknown if imidacloprid has any effect on potato psyllid feeding behavior. Thus, our specific objectives of this study were to determine and characterize the effects of imidacloprid treatment (0.11 ml l?1) to potato plants on adult potato psyllid feeding behavior 1, 2, and 4 weeks post‐application. Electrical penetration graph (EPG) recordings of potato psyllid feeding revealed six EPG waveforms, which include non‐probing (NP), intercellular stylet penetration (C), initial contact with phloem tissue (D), salivation into phloem sieve elements (E1), phloem sap ingestion (E2), and ingestion of xylem sap (G). The number of NP events and the duration of individual NP events significantly increased on plants treated with imidacloprid compared with untreated controls. Potato psyllids exhibited significant decreases in the number of phloem salivation events on plants treated with imidacloprid. Waveform durations and waveform durations per event for E2 and G were significantly decreased for psyllids on plants treated with imidacloprid compared with untreated controls. These data suggest that the effective use of imidacloprid to reduce transmission of Ca. Liberibacter psyllaurous is related to the negative effects of imidacloprid on psyllid feeding.  相似文献   

16.
Tree health is often negatively linked with the localized abundance of parasitic invertebrates. One group, the sap‐sucking psyllid insects (Homoptera: Psyllidae) are well known for their negative impact upon vegetation, an impact that often culminates in the defoliation and even death of hosts. In Australia, psyllid‐infested forest in poor health is also frequently occupied by a native honeyeater, the bell miner (Manorina melanophrys; Meliphagidae), so much so that the phenomenon has been dubbed ‘bell miner‐associated dieback’ (BMAD). Bell miners are thought to be the causative agent behind BMAD, in part because the species may selectively forage only upon the outer covering (lerp) exuded by psyllid nymphs, leaving the insect underneath to continue parasitizing hosts. As bell miners also aggressively exclude all other avian psyllid predators from occupied areas, these behavioural traits may favour increases in psyllid populations. We examined bell miner foraging behaviour to determine if non‐lethal foraging upon psyllid nymphs occurred more often than in a congener, the noisy miner (M. melanocephala; Meliphagidae). This was indeed the case, with bell miners significantly more likely to remove only the lerp covering during feeding, leaving the insect intact underneath. This arose from bell miners using their tongue to pry off the lerp cases, whereas noisy miners used their mandibles to snap at both the lerp and insect underneath. Furthermore, psyllids left behind following a bell miner foraging event were significantly more likely to be viable and regrow a lerp covering than those exposed by noisy miners. Together, this behaviour supports the theory that non‐lethal foraging behaviour of bell miners may contribute to high psyllid abundance, consistent with the mechanisms by which BMAD is thought to develop.  相似文献   

17.
The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae), and its associated pathogen "Candidatus Liberibacter solanacearum" (Ca. L. solanacearum), the putative causal agent of zebra chip (ZC) disease in potatoes (Solanum tuberosum L.), were sampled in commercial potato fields and untreated control plots for 3 yr in multiple locations in Texas, Kansas, Nebraska, and Colorado. Populations of the potato psyllid varied across years and across potato growing regions. However, the percentage of potato psyllids infected with Ca. L. solanacearum although variable across years, was consistently highest in the Lower Rio Grande Valley of Texas (LRGV), the reported overwintering location for this pest. The numbers of Ca. L. solanacearum-infected psyllids collected on field traps and large nymphs counted on leaf samples were both positively correlated with the final percentage of ZC in tubers. In the LRGV, where vector and disease pressure is the highest, population levels of immature life stages of the psyllid and percentage of ZC differed greatly between commercial and untreated fields. These results show that the pest management program that was used can be effective at controlling development of the psyllid and ultimately reducing the incidence of ZC.  相似文献   

18.
Coteries of the meliphagid bird Manorina melanophrys are associated with a form of eucalypt defoliation and recovery called bell miner‐associated dieback (BMAD). Through their defence of cooperative colony boundaries against other insectivorous birds, bell miners may foster greater abundances of lerp‐forming psyllids (Hemiptera: Aphalaridae), some of which reduce the lifespan of leaves. Trophic cascades in BMAD forests need to be understood to have a complete picture of regulatory processes. We studied relationships between leaf quality, psyllid and Psyllaephagus parasitoid/hyperparasitoid abundances within the Gondwana Rainforest World Heritage Area, NSW, Australia; our focal tree species were Eucalyptus propinqua and E. biturbinata. Eucalyptus biturbinata had tougher leaves than E. propinqua; leaf toughness of both species varied with site and tree. We found a statistically significant, negative relationship between toughness (surrogate for leaf age) and foliar nitrogen content; younger leaves had higher nitrogen contents. Both bell miner abundance and foliar nitrogen were positively correlated with psyllid abundance. The abundance of Glycaspis species (the psyllid that produces lerps with the highest sugar content) was more closely correlated with foliar nitrogen content than was the abundance of all five psyllid genera combined. We identified 14 Psyllaephagus spp./morphospecies, comprising 11 primary parasitoids and three hyperparasitoids. The abundance of all Psyllaephagus combined was positively correlated with the abundance of lerps. However, psyllid parasitism was not correlated with the abundance of lerps. The abundance of the three hyperparasitoids was positively correlated with the abundance of Psyllaephagus hosts. The availability of epicormic foliage (young, morphologically juvenile leaves produced following defoliation) is likely to alter the nutritional ecology underpinning the diversity and abundance of psyllid populations. Higher quality epicormic foliage should favour populations of Glycaspis species (by enhancing nymphal survival) creating lerp hotspots that induce residency by opportunistic bell miners. The positive contribution of induced amelioration, interacting with feedbacks from parasitoids and hyperparasitoids, to BMAD requires longitudinal investigation.  相似文献   

19.
1. Female eugenia psyllids Trioza eugeniae oviposit on the margins of expanding young Syzygium paniculatum leaves. The developing nymphs, feeding within pit‐shaped galls on the leaves, cause the leaves to become curled and deformed. The degree of leaf curling was correlated positively with densities of T. eugeniae nymphs. 2. High relative humidity increased persistence of nymphs on leaves at low insect densities, but persistence did not differ between high or low relative humidity conditions when nymphal densities were high and leaves were greatly curled. 3. Direct insolation increased nymphal mortality. Nymphs on the abaxial leaf surface in the direct sun had lower mortality than similarly exposed nymphs on the adaxial leaf surface. 4. Field populations showed high preference for abaxial leaf surfaces and a stronger preference for shaded adaxial surfaces than for exposed adaxial surfaces. 5. Adverse environmental conditions of direct insolation and low relative humidity may be mitigated by leaf curl associated with moderate populations, however competition at high nymphal density supersedes any potential benefit arising from leaf curling and has a negative effect on nymphal survival.  相似文献   

20.
Zebra chip disease is an emerging, serious disease of solanaceous crops and the causal agent is a bacterium “Candidatus Liberibacter solanacearum” (CLs), also known as “Candidatus Liberibacter psyllaurous”, which is transmitted by the potato psyllid, Bactericera cockerelli (Šulc). We performed bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) of the 16S rDNA genes to determine the bacterial microbiota in adult insects from CLs-uninfected and CLs-infected strains of B. cockerelli and potato leaf samples. We obtained sequences from five bacterial species among the two psyllid strains, including “Candidatus Carsonella ruddii”, Wolbachia, CLs, and two transient bacteria, Acinetobacter and Methylibium. We did not detect any common bacteria between psyllids and potato leaf samples using pyrosequencing. We performed PCR analysis using species-specific 16S rDNA primers to confirm pyrosequencing results in individual psyllids including eggs, early-instars, late-instars, and adults of both sexes from both CLs-uninfected and CLs-infected psyllid strains. The primary endosymbiont, “Candidatus Carsonella ruddii” and Wolbachia were detected in all life-stages and sexes of both strains using PCR analyses. The percentage of CLs-infected individuals increased from early-instar (0%), late-instar (40%) until adulthood (60%) in the CLs-infected strain. We believe that CLs levels in early-instars are probably too low to be detected by standard PCR. Using PCR analyses, we confirmed the presence of Acinetobacter in CLs-uninfected and CLs-infected adults (75 and 25%, respectively) but not Methylibium. Further, we detected Acinetobacter in potato leaves using PCR indicating that the psyllids may have acquired this bacterium via feeding on the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号