首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether spruce seed moth, Cydia strobilella L. (Lepidoptera: Tortricidae, Grapholitini), one of the most damaging seed predators on Norway spruce, Picea abies (L.) H. Karst (Pinaceae), uses olfactory cues during host search. Analyses with coupled gas chromatography and electroantennography revealed that antennae of both sexes of moths responded consistently to three compounds in the headspace from female spruce flowers, i.e., α‐pinene, β‐pinene, and myrcene, but not to limonene as has been previously reported for this species. The amounts of these active volatiles released from flowers and cones of P. abies were quantified, and their diurnal and seasonal variation was monitored. The total release of the active volatiles correlated well with the diurnal and seasonal flight activity of C. strobilella as revealed by catches of males in pheromone‐baited traps. In field trapping experiments, where baits were loaded with proportions and enantiomeric ratios of α‐pinene, β‐pinene, and myrcene matching those of the female P. abies floral headspace, substantial catches of male C. strobilella were achieved, whereas few females were captured. These surprising results suggest that male C. strobilella make use of host volatiles to aid them in their search for females.  相似文献   

2.
We examined the responses of oriental fruit flies, Bactrocera dorsalis Hendel, to the odors of different stages and types of fruit presented on potted trees in a field cage. Females were most attracted to odors of soft, ripe fruit. Odors of common guava were more attractive to females than papaya and starfruit, and equally as attractive as strawberry guava, orange, and mango. In field tests, McPhail traps baited with mango, common guava, and orange captured equal numbers of females. Traps baited with mango were compared with 2 commercially available fruit fly traps. McPhail traps baited with mango captured more females than visual fruit-mimicking sticky traps (Ladd traps) and equal numbers of females as McPhail traps baited with protein odors. Results from this study indicate that host fruit volatiles could be used as lures for capturing oriental fruit flies in orchards.  相似文献   

3.
Monochamus alternatus is a destructive stem‐boring herbivore of Pinus massoniana, and the principal vector of pine wood nematode. To investigate the impacts of boring by M. alternatus larvae on the emission of volatile organic compounds (VOCs) from their host trees, the VOCs from uninfested and M. alternatus larvae infested P. massoniana trees were observed using a gas chromatograph–mass spectrometer. We detected 12, 9, 18 and 14 volatile organic compounds from infested xylem, infested phloem, uninfested xylem and uninfested phloem, respectively. In P. massoniana xylem, the boring of M. alternatus larvae induced cyclosativene, and inhibited 4‐carene, humulene, styrene, α‐phellandrene, β‐myrcene, β‐phellandrene and γ‐terpinene. The relative amounts of camphene, copacamphene, longicyclene, longifolene, tricyclene and α‐longipinene were significantly increased, and the relative amounts of α‐pinene and β‐pinene were significantly decreased by the boring behaviors of M. alternatus larvae. In P. massoniana phloem, the boring of M. alternatus larvae induced 2‐bornanone, copacamphene, longicyclene and α‐longipinene, and inhibited 2‐carene, 4‐carene, styrene, α‐phellandrene, β‐myrcene, β‐phellandrene, β‐pinene, γ‐terpinene and ο‐cymene. The relative amounts of camphene, caryophyllene and longifolene were significantly increased by the boring behaviors of M. alternatus larvae. The results indicate that the boring behaviors of M. alternatus larvae changed both the sorts and contents of the VOCs from P. massoniana trees.  相似文献   

4.
The behavioral and electrophysiological responses of nonirradiated male and female Anastrepha ludens (Loew) (Diptera: Tephritidae), to white sapote, Casimiroa edulis Oerst. (Rutaceae), volatiles were investigated. Females flew upwind and landed more often on fruit than on artificial fruit in wind tunnel bioassays. Males flew upwind (but not landed) more frequently on fruit than on artificial fruit. Porapak Q volatile extracts of white sapote also elicited upwind flight and landing on artificial fruit for both sexes. Gas chromatography-electroantennographic detection analysis of white sapote extracts revealed that antennae of both sexes responded to eight compounds. Two peaks were unidentified because they did not separate from the solvent. Subsequent peaks were identified by gas chromatography-mass spectrometry as styrene, myrcene, 1,2,4-trimethylbenzene, 1,8-cineole, and linalool in a proportion of 50: 21: 0.5: 27: 1.5, respectively. Eight peaks were tentatively identified as beta-trans-ocimene. The number of A. ludens captured in multilure traps baited with the synthetic white sapote blend was higher than the flies captured by the multilure unbaited traps (control) in field cages. However, the number of flies captured by traps baited with the white sapote blend was not different from that of flies captured by traps baited with hydrolyzed protein. Using standard chemical ecology techniques, we found potential attractants from wild sapote fruit for monitoring and management of A. ludens population.  相似文献   

5.
The behavioral responses of virgin and mated female Anastrepha striata Schiner (Diptera: Tephritidae) to guava (Psidium guajava L.) or sweet orange (Citrus sinensis L.) were evaluated separately using multilure traps in two‐choice tests in field cages. The results showed that flies were more attracted to guava and sweet orange volatiles than to control (unbaited trap). The physiological state (virgin or mated) of females did not affect their attraction to the fruit volatiles. Combined analysis of gas chromatography coupled with electroantennography (GC‐EAD) of volatile extracts of both fruits showed that 1 and 6 compounds from orange and guava, respectively elicited repeatable antennal responses from mated females. The EAD active compounds in guava volatile extracts were identified by gas chromatography‐mass spectrometry (GC‐MS) as ethyl butyrate, (Z)‐3‐hexenol, hexanol, ethyl hexanoate, hexyl acetate, and ethyl octanoate. Linalool was identified as the only antennal active compound in sweet orange extracts. In field cage tests, there were no significant differences between the number of mated flies captured by the traps baited with guava extracts and the number caught by traps baited with the 6‐component blend that was formulated according to the relative proportions in the guava extracts. Similar results occurred when synthetic linalool was evaluated against orange extracts. From a practical point of view, the compounds identified in this study could be used for monitoring A. striata populations.  相似文献   

6.
Experiments were conducted in North and South America during 2012–2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPVs) and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck), and codling moth, Cydia pomonella (L.), in pome and stone fruit orchards treated with sex pheromones. The combination of the sex pheromone of both species (PH combo lure) significantly increased G. molesta and marginally decreased C. pomonella captures as compared with captures of each species with either of their sex pheromones alone. The addition of a HPV combination lure [(E,Z)‐2,4‐ethyl decadienoate plus (E)‐β‐ocimene] or acetic acid used alone or together did not significantly increase the catch of either species in traps with the PH combo lure. The Ajar trap baited with terpinyl acetate and brown sugar (TAS bait) caught significantly more G. molesta than the delta trap baited with PH combo plus acetic acid in California during 2012. The addition of a PH combo lure to an Ajar trap significantly increased catches of G. molesta compared to the use of the TAS bait or PH combo lure alone in 2013. Female G. molesta were caught in TAS‐baited Ajar traps at similar levels with or without the use of additional lures. Ajar traps baited with the TAS bait alone or with (E)‐β‐ocimene and/or PH combo lures caught significantly fewer C. pomonella than delta traps with sex pheromone alone. Ajar traps with 6.4‐mm screened flaps caught similar numbers of total and female G. molesta as similarly baited open Ajar traps, and with a significant reduction in the catch of non‐targets. Broader testing of HPV and PH combo lures for G. molesta in either delta or screened or open Ajar traps is warranted.  相似文献   

7.
This study aimed to develop a semiochemical‐baited trapping system to monitor the populations of small banded pine weevil, Pissodes castaneus, a serious pest in Pinus sylvestris young stands that are weakened by biotic and abiotic factors. The scope of the work included the development of a dispenser for compounds (ethanol and α‐pinene) emitted by P. sylvestris and the pheromones of P. castaneus: grandisol and grandisal. Additionally, the effectiveness of beetle catches in different types of traps (unitrap, cross‐unitrap and long and short pipe traps) baited with a dispenser was assessed. The olfactometric studies showed that most of the newly hatched beetles that had not fed were attracted by a mixture of grandisol and grandisal. However, in the group of feeding beetles, half were attracted by a mixture of ethanol and α‐pinene. These results indicated that both pheromones and α‐pinene plus ethanol should be useful for capturing P. castaneus beetles. In the field trials, the highest efficiency was found in baited unitraps that caught up to several hundred P. castaneus beetles, while the baited cross‐unitraps caught up to a few dozen beetles. No insects were found in either type of baited pipe trap or in any of the unbaited control traps. The baited unitraps and cross‐unitraps also collected, with varied intensity, Hylobius abietis beetles, a serious pest of reforestations. These results indicate the possibility of using a unitrap baited with a 4‐component attractant for monitoring P. castaneus in integrated pest management for the protection of young forests.  相似文献   

8.
Studies in Oregon, California, Pennsylvania and Italy evaluated the relative performance of the Ajar trap compared with several other traps for the capture of Grapholita molesta (Busck), in pome and stone fruit orchards treated with sex pheromone dispensers for mating disruption. The Ajar is a delta‐shaped trap with a screened jar filled with an aqueous terpinyl acetate plus brown sugar bait solution (TAS) that opens inside the trap and is surrounded by a sticky liner. The TAS‐baited Ajar trap was evaluated with and without the addition of a sex pheromone lure and compared with a delta trap baited with a sex pheromone lure and a bucket trap filled with the TAS bait. Although the Ajar trap had a 90% lower evaporation of the TAS bait than the bucket trap, both of them caught similar numbers in the majority of the field tests of both sexes of G. molesta. The addition of the sex pheromone lure did not increase moth catches by the TAS‐baited Ajar trap. The TAS‐baited Ajar trap caught significantly greater numbers of moths than the sex pheromone‐baited delta trap in 18 of the 20 orchards. Few hymenopterans were caught in orange TAS‐baited Ajar traps, but the catch of flies and other moths relative to the target pest remained high. Flight tunnel and field tests evaluated the effect of several screen designs on the catches of G. molesta and non‐target species. All exclusion devices significantly reduced the catch of larger moths. However, designs that did not reduce the catch of male G. molesta did not reduce the catch of muscid flies. Exclusion devices with openings <7.0 mm significantly reduced the catch of female G. molesta. The addition of (E)‐β‐farnesene, (E)‐β‐ocimene or butyl hexanoate septa lures to TAS‐baited Ajar traps significantly increased total moth catch. The addition of (E)‐β‐ocimene also significantly increased female moth catch.  相似文献   

9.
10.
The search for effective female attractants emanating from the host or body of fruit flies has been an area of intensive research for over three decades. In the present study, bodies of male Mediterranean fruit flies, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), were extracted with diethyl ether or methanol and subjected to gas chromatography–mass spectrometry. Analysis revealed substantial qualitative and quantitative differences between males from a laboratory culture and wild males captured alive in an orchard. Most notably, the hydrocarbon sesquiterpene (±)‐α‐copaene, which is known to be involved in the sexual behaviour of the species, was found in substantial amounts in wild males, but was not detected in laboratory males. In laboratory tests, 15 laboratory or wild male equivalents of diethyl ether extracts or combined diethyl ether and methanol extracts, or, to a lesser extent, methanol extracts alone, were found to attract virgin females. In a citrus orchard, traps baited with combined diethyl ether and methanol extracts of wild males attracted significantly more virgin females than traps baited with various doses of pyranone or blends of other compounds identified in the extracts or reported in the literature, such as ethyl acetate, ethyl‐(E)‐3‐octenoate, and 1‐pyrroline. Traps baited with blends of compounds, however, displayed substantial attractiveness compared to control (non‐baited) traps. These results are important for better understanding the mating system of C. capitata as well as for further improving existing monitoring and control systems.  相似文献   

11.
Monochamus (Coleoptera: Cerambycidae) species are longhorn pine sawyers that serve as insect vectors of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae), which are responsible for debilitating pine wilt disease. An aggregation pheromone, 2‐(1‐undecyloxy)‐1‐ethanol (hereafter referred to as monochamol), was shown to be effective at attracting Monochamus species. However, attraction of the pine sawyers to aggregation pheromones varied depending on semiochemicals, including host plant volatiles and kairomones. In this study, we investigated the abilities of monochamol and the host‐plant volatiles α‐pinene and ethanol to attract M. saltuarius in a pine forest in Cheongsong, Gyeongsangbuk‐do, Korea. A total of 91 M. saltuarius (28 males and 63 females) were captured. The combination of monochamol (700 mg) with α‐pinene and ethanol exhibited a synergistic effect on attracting M. saltuarius (11.0 beetles per trap), whereas monochamol alone and a mixture of α‐pinene and ethanol resulted in the capture of 3.2 beetles and 3.6 beetles per trap, respectively. Our results suggest that multi‐funnel traps baited with a blend of monochamol, α‐pinene and ethanol are highly effective for monitoring M. saltuarius and M. alternatus in pine forests.  相似文献   

12.
Abstract 1 The pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), is an exotic pest of pine, Pinus spp., and was first discovered in North America in 1992. 2 Although primary attraction to host volatiles has been clearly demonstrated for T. piniperda, the existence and role of secondary attraction to insect‐produced pheromones have been widely debated. 3 Currently, commercial lures for T. piniperda include only the host volatiles α‐pinene in North America and α‐pinene, terpinolene and (+)‐3‐carene in Europe. Several potential pheromone candidates have been identified for T. piniperda. 4 We tested various combinations of host volatiles and pheromone candidates in Michigan, U.S.A., and Ontario, Canada, to determine an optimal blend. 5 Attraction of T. piniperda was significantly increased when trans‐verbenol (95% pure, 3.2%cis‐verbenol content) was added with or without myrtenol to α‐pinene or to blends of α‐pinene and other kairomones and pheromone candidates. 6 Our results, together with other research demonstrating that trans‐verbenol is produced by T. piniperda, support the designation of trans‐verbenol as a pheromone for T. piniperda. A simple operational lure consisting of α‐pinene and trans‐verbenol is recommended for optimal attraction of T. piniperda.  相似文献   

13.
The southern pine beetle (Dendroctonus frontalis) and western pine beetle (Dendroctonus brevicomis) cause significant mortality to pines in the southern and western United States. The effectiveness of commercial lures at capturing these bark beetles in Arizona has not been tested and may vary from other regions of their distribution. We conducted experiments using baited Lindgren funnel traps to investigate (i) if D. frontalis is more attracted to the standard commercial lure for D. brevicomis (frontalin + exo‐brevicomin + myrcene) than the D. frontalis lure (frontalin + terpene blend), (ii) whether replacement of myrcene with α‐pinene changes trap catches of Dendroctonus and associated insects, and (iii) whether the attraction to these lures varies across the geographical range of ponderosa pine forests throughout Arizona. In 2005, we tested various combinations of frontalin, exo‐brevicomin, myrcene and α‐pinene to D. frontalis, D. brevicomis and associated species. Dendroctonus frontalis, D. brevicomis and the predator Temnochila chlorodia were most attracted to lures with exo‐brevicomin. The replacement of the myrcene component with α‐pinene in the D. brevicomis lure resulted in the capture of twice as many bark beetles and Elacatis beetles. However, T. chlorodia did not differentiate between monoterpenes. In 2006, traps were set up in 11 locations around Arizona to test the relative attraction of lure combinations. In 9 out 11 locations, the D. brevicomis lure with α‐pinene was more attractive than the lure with myrcene or a terpene blend. These results suggest that the D. brevicomis lure with α‐pinene rather than myrcene is more effective lure to capture D. brevicomis and D. frontalis in Arizona. However, geographical variation in attractiveness to lures is evident even within this region of the beetles’ distributions. Differential attraction of Dendroctonus and their predators to these lures suggests potential use in field trapping and control programmes.  相似文献   

14.
Captures of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), in Jackson traps baited with trimedlure were compared with captures in cylindrical open-bottom dry traps baited with a food-based synthetic attractant (ammonium acetate, putrescine, and trimethylamine). Tests were conducted in Guatemala during a sterile male release program in an area where wild flies were present in low numbers. More wild and sterile females were captured in food-based traps, and more wild and sterile males were captured in trimedlure traps. The food-based traps captured almost twice as many total (male plus female) wild flies as the trimedlure traps, but the difference was not significant. Females made up approximately 60% of the wild flies caught in the food-based attractant traps; the trimedlure traps caught no females. The ratio of capture of males in trimedlure traps to food-based traps was 6.5:1 for sterile and 1.7:1 for wild flies. Because fewer sterile males are captured in the food-based traps, there is a reduction in the labor-intensive process of examining flies for sterility. The results indicate that traps baited with food-based attractants could be used in place of the Jackson/trimedlure traps for C. capitata sterile release programs because they can monitor distributions of sterile releases and detect wild fly populations effectively; both critical components of fruit fly eradication programs by using the sterile insect technique.  相似文献   

15.
Host seeking by the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is mainly guided by volatile chemicals present in human odours. The skin microbiota plays an important role in the production of these volatiles, and skin bacteria grown on agar plates attract An. gambiae s.s. in the laboratory. In this study, the attractiveness of volatiles produced by human skin bacteria to An. gambiae s.s. was tested in laboratory, semi‐field, and field experiments to assess these effects in increasing environmental complexity. A synthetic blend of 10 compounds identified in the headspace of skin bacteria was also tested for its attractiveness. Carbon dioxide significantly increased mosquito catches of traps baited with microbial volatiles in the semi‐field experiments and was therefore added to the field traps. Traps baited with skin bacteria caught significantly more An. gambiae s.s. than control traps, both in the laboratory and semi‐field experiments. Traps baited with the synthetic blend caught more mosquitoes than control traps in the laboratory experiments, but not in the semi‐field experiments. Although bacterial volatiles increased mosquito catches in the field study, trapping several mosquito vector species, these effects were not significant for An. gambiae s.l. It is concluded that volatiles from skin bacteria affect mosquito behaviour under laboratory and semi‐field conditions and, after fine tuning, have the potential to be developed as odour baits for mosquitoes.  相似文献   

16.
The response of whitespotted sawyer beetle, Monochamus s. scutellatus, to pheromones of the bark beetles, Dendroctonus rufipennis, Ips pini, Ips perturbatus and Ips latidens, and α‐pinene was investigated with field‐trapping experiments. Traps baited with ipsenol caught significantly more M. s. scutellatus than unbaited traps, whereas the other compounds (ipsdienol, ipsdienol plus lanierone, ipsdienol plus cis‐verbenol or frontalin) did not. Combining α‐pinene with ipsdienol, ipsdienol plus lanierone, ipsdienol plus cis‐verbenol or with frontalin did not increase captures of M. s. scutellatus above those of α‐pinene alone, whereas the combination of α‐pinene with ipsenol did. When α‐pinene was combined with ipsdienol or frontalin, trap captures of Monochamus mutator were significantly higher than unbaited traps or traps baited with frontalin but were not higher than traps baited with α‐pinene. The combination of ipsenol and α‐pinene was significantly more attractive to Monochamus notatus than unbaited traps; however, traps containing either ipsenol or α‐pinene were as attractive as the combination. None of the species of Buprestidae (Buprestis maculativentris and Chalcophora virginiensis) responded significantly to any of the treatments.  相似文献   

17.
1 A lodgepole pine seed orchard at the Prince George Tree Improvement Station (PGTIS), with up to 60% of grafted trees attacked by the Warren root collar weevil Hylobius warreni was investigated to determine whether relative monoterpene composition or scion : rootstock interactions of grafts affected susceptibility to attack. 2 There was a significant relationship between relative levels of α‐pinene, β‐thujene, β‐pinene, δ‐3‐carene and limonene in scion and rootstock in unattacked trees, indicating a potential effect of the scion monoterpene composition on their composition in the rootstock. 3 Relative content of δ‐3‐carene and β‐phellandrene differed significantly in root stocks of attacked and unattacked trees but, for individual clones, a significant difference was only detected for β‐phellandrene in one clone. δ‐3‐Carene levels may have been too low in the examined trees to exert a strong effect. 4 Interestingly, attack status was significantly associated with two scion monoterpenes: α‐thujene and α‐terpinolene, both of which had higher levels in unattacked than in attacked trees. 5 Warren root collar weevils appear largely unaffected by monoterpene content, but further study is required to determine whether high levels of δ‐3‐carene imparts some level of resistance to attack, and to verify whether the observed effects of scion monoterpenes are real or artefacts of the analysis. 6 Hylobius warreni‐attacked trees had smaller scion : rootstock diameter ratio (i.e. a large rootstock diameter relative to the scion diameter) than unattacked trees. This effect was consistent among clones, and was not due to the absolute diameter of the rootstock or the scion. Trees with increased diameter‐growth at the root collar (e.g. some grafted trees) may have increased susceptibility to attack by H. warreni, or diameter‐growth at the root collar is affected by the attack.  相似文献   

18.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) were trapped in the field using colored plastic sphere traps coated with insect Tangle‐trap. Red and black spheres captured significantly more D. suzukii than white spheres. Translucent deli‐cup traps deployed in cherry orchards and baited with yeast, the Alpha Scents lure, or the Scentry lure captured significantly more flies than the Trécé lure and Suzukii bait; all attractants had poor selectivity for D. suzukii. No‐choice evaluations of attractants conducted in field cages corroborated the cherry orchard field study, though translucent deli‐cup traps provisioned with the yeast bait captured significantly more flies than those baited with the Alpha Scents lure. Red sphere traps baited with the Scentry lure captured 3–6× more flies than the deli‐cup trap baited with the same lure, and 3–4× more flies than the deli‐cup trap baited with yeast bait, demonstrating that a trap integrating both visual and olfactory cues is a superior tool for monitoring D. suzukii. Moreover, this simple sticky, dry trap design requires far less labor and maintenance than does a liquid‐based deli‐cup trap.  相似文献   

19.
Abstract The tea green leafhopper, Empoasca vitis Göthe, is one of the most serious insect pests of tea plantations in mainland China. Over the past decades, this pest has been controlled mainly by spraying pesticides. Insecticide applications not only have become less effective in controlling damage, but even more seriously, have caused high levels of toxic residues in teas, which ultimately threatens human health. Therefore, we should seek a safer biological control approach. In the present study, key components of tea shoot volatiles were identified and behaviorally tested as potential leafhopper attractants. The following 13 volatile compounds were identified from aeration samples of tea shoots using gas chromatography‐mass spectrometry (GC‐MS): (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexenyl acetate, 2‐ethyl‐1‐hexanol, (E)‐ocimene, linalool, nonanol, (Z)‐butanoic acid, 3‐hexenyl ester, decanal, tetradecane, β‐caryophyllene, geraniol and hexadecane. In Y‐tube olfactometer tests, the following individual compounds were identified: (E)‐2‐hexenal, (E)‐ocimene, (Z)‐3‐hexenyl acetate and linalool, as well as two synthetic mixtures (called blend 1 and blend 2) elicited significant taxis, with blend 2 being the most attractive. Blend 1 included linalool, (Z)‐3‐hexen‐1‐ol and (E)‐2‐hexenal at a 1 : 1 : 1 ratio, whereas blend 2 was a mixture of eight compounds at the same loading ratio: (E)‐2‐hexenal, (Z)‐3‐hexen‐1‐ol, (Z)‐3‐hexenyl acetate, 2‐penten‐1‐ol, (E)‐2‐pentenal, pentanol, hexanol and 1‐penten‐3‐ol. In tea fields, the bud‐green sticky board traps baited with blend 2, (E)‐2‐hexenal or hexane captured adults and nymphs of the leafhoppers, with blend 2 being the most attractive, followed by (E)‐2‐hexenal and hexane. Placing sticky traps baited with blend 2 or (E)‐2‐hexenal in the tea fields significantly reduced leafhopper populations. Our results indicate that the bud‐green sticky traps baited with tea shoot volatiles can provide a new tool for monitoring and managing the tea leafhopper.  相似文献   

20.
Experiments were conducted in different locations to investigate responses of adult Stegobium paniceum and Lasioderma serricorne (Col., Anobiidae) to different commercially available or prototype fabrications of their female‐produced sex pheromones. The results showed that the number of S. paniceum captured in traps baited with the commercially available lures was significantly higher than those captured in traps baited with the prototype stegobinone lures. The three commercially available brands of serricornin lures investigated were equally effective in capturing L. serricorne. In a related study, we conducted a 9‐week trapping experiment to determine if responses of L. serricorne to serricornin can be enhanced by the presence of host plant odours. Traps were baited with serricornin alone, serricornin plus dried red chilli (Capsicum frutescens L.) or red chilli alone. The results showed that the number of beetles captured in traps baited with a combination of serricornin and chilli volatiles were significantly higher than in traps baited with pheromone or chilli volatiles alone, indicating that potential exist for improved monitoring or mass trapping of L. serricorne by combining pheromone with plant‐derived volatiles present in Capsicum spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号