首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Phylogenetic relationships among the Tyrannides were assessed using over 4000 base pairs of nuclear recombination activating 1 (RAG-1) and 2 (RAG-2) DNA sequence data from about 93% of all described genera, which represents the most complete assessment of relationships for this diverse New World radiation to date. With this sampling we propose a significantly expanded interpretation of higher-level relationships within the group. The Tyrannides are shown to be comprised of six major lineages, all of which represent traditional family-level taxa ( sensu Fitzpatrick, 2004a and Snow, 2004a,b ; del Hoyo et al., 2004 ): (i) manakins (Pipridae); (ii) cotingas (Cotingidae); (iii) the sharpbill ( Oxyruncus ) + onychorhynchine flycatchers (Onychorhynchini); (iv) tityrines (Tityridae); (v) rhynchocycline flycatchers (Rhynchocyclidae); and (vi) the tyrant flycatchers (Tyrannidae). In addition, the RAG data recovered isolated lineages with uncertain relationships, including Neopipo , Platyrinchus , Piprites , and Tachuris . The Pipridae are the sister-group to all the other Tyrannides. Within the latter, the clade ((Oxyruncidae + Tityridae) + Cotingidae) is the sister-group of the Tyrannoidea. Within the Tyrannoidea, the Rhynchocyclidae and their allies are sisters to Neopipo  + Tyrannidae. Using our phylogenetic hypothesis, we propose the first comprehensive phylogenetic classification that attempts to achieve isometry between the tree and a classification scheme using subordination and phyletic sequencing. This study thus provides a phylogenetic framework for understanding the evolution of this diverse New World assemblage, and identifies many avenues for further systematic study.
 © The Willi Hennig Society 2009.  相似文献   

2.
Most zoological systematics studies are currently based on morphological features, molecular traits or a combination of both to reconstruct animals’ phylogenetic history. Increasingly, morphological studies of museum specimens are using X‐ray computed tomography to visualize internal morphology, because of its ‘non‐destructive’ nature. However, it is not known whether CT can fragment the size of DNA extracted from museum specimens, as has been demonstrated to occur in living cells. This question is of paramount importance for collections based research because X‐rays may reduce the amount of data obtainable from specimens. In our study, we tested whether exposure of museum bird skins to typical CT X‐ray energies (for visualization of the skeleton) increased DNA strand fragmentation, a key factor for the success of downstream molecular applications. For the present study, we extracted DNA from shavings of 24 prepared and dried bird skins (100+ years) footpads before and after CT scanning. The pre‐ and post‐CT fragmentation profiles were assessed using a capillary electrophoresis high‐precision instrument (Agilent Bioanalyzer). Comparison of the most common strand length in each DNA sample (relative mass) revealed no significant difference unexposed and exposed tissue (paired t‐test p = 0.463). In conclusion, we found no further quantifiable degradation of DNA strand length under standard X‐ray exposure obtained from our bird skins sample. Differences in museum preservation techniques probably had a greater effect on variation of pre‐CT DNA fragmentation.  相似文献   

3.
Polyphyletic arrangements in DNA phylogenies are often indicators of cryptic species diversity masked by erroneous taxonomic treatments that are frequently based on morphological data. Although mitochondrial (mt)DNA polyphyly is detected relatively rarely in phylogenetic studies, it has recently been found in a variety of tyrant‐flycatcher (Tyrannidae) groups. In the present study, we provide a DNA phylogeny for a mitochondrial and a nuclear locus with a complete species sampling in Zimmerius flycatchers, showing that the genus is characterized by multiple mtDNA polyphyly. Based on phylogenetic and life‐history information, we suggest the elevation of a number of taxa to species status, leading to a doubling of Zimmerius species‐level diversity compared to taxonomic treatments conducted before 2001. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ●●, ●●–●●.  相似文献   

4.
Flycatchers of the genus Empidonax are readily misidentified in the field, in the hand, and even in museum collections. We describe a novel plumage feature that can be used to distinguish Yellow‐bellied Flycatchers (E. flaviventris) from the two species that comprise the Western Flycatcher complex, Cordilleran Flycatchers (E. occidentalis) and Pacific‐slope Flycatchers (E. difficilis). The length of the buffy fringing on the anterior edge of each secondary feather, visible on the folded wing, is significantly shorter in Yellow‐bellied Flycatchers than in Western flycatchers, with minimal overlap. A definitive identification can be made using a simple formula that includes measurements of wing chord and the length of the buffy fringing along the outer edge of the first secondary (S1). This method provides definitive in‐hand identification, and the difference in length of the buffy fringing on the secondaries is also a useful field mark for visual identification. Testing our method with 113 museum specimens that had been identified a priori based on locality, we correctly identified 112 specimens. The exception was a specimen from Illinois that had been assumed to be a Yellow‐bellied Flycatcher. However, based on our formula, it was a Western flycatcher and analysis of its mtDNA sequence confirmed this result, proving the utility of our method.  相似文献   

5.
Cyclocephaline scarabs, the second largest tribe of rhinoceros beetles, are important pollinators of early‐diverging angiosperm families in the tropics. The evolutionary history of cyclocephaline genera is poorly resolved and several genera are thought to be nonmonophyletic. We assess the monophyly of Mimeoma Casey, a group of Neotropical palm‐feeding scarabs, and its relationship to Cyclocephala with a phylogenetic analysis of 2899 bp of DNA sequence data and 18 morphological characters. All five species of Mimeoma were included in analyses along with species of Cyclocephala Dejean, Dyscinetus Harold and Tomarus Erichson as outgroup taxa. Nearly complete 28S, 12S and CO1 data were collected from 26 of 29 specimens, of which 16 samples were pinned, museum specimens. 28S data strongly support a nonmonophyletic Mimeoma; mitochondrial data (CO1 and 12S) suggest that Mimeoma species are nested within an apical clade of other Cyclocephala species; combined molecular and morphological data identify two strongly supported clades of Mimeoma species but do not support their sister relationship. Combined data show that Mimeoma species are nested within Cyclocephala, thus rendering Cyclocephala paraphyletic. Mimeoma is synonymized within Cyclocephala resulting in the following new combinations: Cyclocephala acuta Arrow n.comb ., Cyclocephala englemani (Ratcliffe) n.comb ., Cyclocephala maculata Burmeister n.comb ., Cyclocephala nigra (Endrödi) n.comb . and Cyclocephala signatoides Höhne n.comb . Our results demonstrate that pinned, museum specimens can be used to obtain DNA sequence data (particularly high‐copy gene regions) for evolutionary studies, and provide the first empirical support that host‐plant associations within cyclocephaline scarab clades are conserved at the plant family‐level.  相似文献   

6.
Despite increased understanding of higher-level relationships in passerine birds in the last 15 years, the taxonomic boundaries and phylogenetic interrelationships of the major groups of the Tyrannida (including the cotingas, manakins, tityrines, and tyrant flycatchers) remain unclear. Here, we present an analysis of DNA sequence data obtained from two nuclear exons, three introns, and one mitochondrial gene for 26 genera of Tyrannida and 6 tracheophone outgroups. The analysis resulted in well-supported hypotheses about the earliest evolution within Tyrannida. The Cotingidae, Pipridae, Tityrinae (sensu) [Prum, R.O., Rice, N.H., Mobley, J.A., Dimmick, W.W., 2000. A preliminary phylogenetic hypothesis for the cotingas (Cotingidae) based on mitochondrial DNA. Auk 117, 236-241], Tyrannidae, and the tyrannid subfamiles Tyranninae and Pipromorphinae (sensu) [Sibley, C.G., Monroe, B. L. Jr., 1990. Distribution and Taxonomy of Birds of the World. Yale University Press, New Haven, CT] were all found to be reciprocally monophyletic (given the present taxon sampling). The Cotingidae and Pipridae form a clade that is the sister group to a well-supported clade including Oxyruncus, the Tityrinae, Piprites, and the Tyrannidae. Oxyruncus is the sister group to the Tityrinae, and Piprites is placed as the sister group to the Tyrannidae. The tyrannid subfamilies Tyranninae and Pipromorphinae are monophyletic sister taxa, but the relationships of Platyrinchus mystaceus to these two clades remains ambiguous. The presence of medial (=internal) cartilages in the syrinx is a synapomorphy for the Oxyruncus-Tityrinae-Piprites-Tyrannidae clade. Although morphological synapomorphies currently support the monophyly of both the Pipridae and the Cotingidae, convergences and/or reversals in morphological character states are common in Tyrannida. The relationship between Oxyruncus and the Tityrinae is congruent with additional syringeal synapomorphies and allozyme distance data. Accordingly, we propose the recognition the family Tityridae within the Tyrannida to include the genera Schiffornis, Laniisoma, Laniocera, Iodopleura, Xenopsaris, Pachyramphus, Tityra, and Oxyruncus.  相似文献   

7.
DNA preserved in degraded beetle (Coleoptera) specimens, including those derived from dry‐stored museum and ancient permafrost‐preserved environments, could provide a valuable resource for researchers interested in species and population histories over timescales from decades to millenia. However, the potential of these samples as genetic resources is currently unassessed. Here, using Sanger and Illumina shotgun sequence data, we explored DNA preservation in specimens of the ground beetle Amara alpina, from both museum and ancient environments. Nearly all museum specimens had amplifiable DNA, with the maximum amplifiable fragment length decreasing with age. Amplification of DNA was only possible in 45% of ancient specimens. Preserved mitochondrial DNA fragments were significantly longer than those of nuclear DNA in both museum and ancient specimens. Metagenomic characterization of extracted DNA demonstrated that parasite‐derived sequences, including Wolbachia and Spiroplasma, are recoverable from museum beetle specimens. Ancient DNA extracts contained beetle DNA in amounts comparable to museum specimens. Overall, our data demonstrate that there is great potential for both museum and ancient specimens of beetles in future genetic studies, and we see no reason why this would not be the case for other orders of insect.  相似文献   

8.
Tyrant flycatchers constitute a substantial component of the land bird fauna in all South American habitats. Past interpretations of the morphological and ecological evolution in the group have been hampered by the lack of a well‐resolved hypothesis of their phylogenetic interrelationships. Here, we present a well‐resolved phylogeny based on DNA sequences from three nuclear introns for 128 taxa. Our results confirm much of the overall picture of Tyrannidae relationships, and also identify several novel relationships. The genera Onychorhynchus, Myiobius and Terenotriccus are placed outside Tyrannidae and may be more closely related to Tityridae. Tyrannidae consists of two main lineages. An expanded pipromorphine clade includes flatbills, tody‐tyrants and antpipits, and also Phylloscartes and Pogonotriccus. The spadebills, Neopipo and Tachuris are their closest relatives. The remainder of the tyrant flycatchers forms a well‐supported clade, subdivided in two large subclades, which differ consistently in foraging behaviour, the perch‐gleaning elaeniines and the sallying myiarchines, tyrannines and fluvicolines. A third clade is formed by the genera Myiotriccus, Pyrrhomyias, Hirundinea and three species currently placed in Myiophobus. Ancestral habitat reconstruction and divergence date estimation suggest that early divergence events in Tyrannida took place in a humid forest environment during the Oligocene. Large‐scale diversification in open habitats is confined to the clade consisting of the elaeniines, myiarchines, tyrannines and fluvicolines. This radiation correlates in time to the expansion of semi‐open and open habitats from the mid‐Miocene (c. 15 Mya) onwards. The pipromorphine, elaeniine and myiarchine–tyrannine–fluvicoline clades each employ distinct foraging strategies (upward striking, perch‐gleaning and sallying, respectively), but the degree of diversity in morphology and microhabitat exploitation is markedly different between these clades. While the pipromorphines and elaeniines each are remarkably homogenous in morphology and exploit a restricted range of microhabitats, the myiarchine–tyrannine–fluvicoline clade is more diverse in these respects. This greater ecological diversity, especially as manifested in their success in colonizing a wider spectrum of open habitats, appears to be connected to a greater adaptive flexibility of the search‐and‐sally foraging behaviour.  相似文献   

9.
Natural history collections play a crucial role in biodiversity research, and museum specimens are increasingly being incorporated into modern genetics‐based studies. Sequence capture methods have proven incredibly useful for phylogenomics, providing the additional ability to sequence historical museum specimens with highly degraded DNA, which until recently have been deemed less valuable for genetic work. The successful sequencing of ultraconserved elements (UCEs) from historical museum specimens has been demonstrated on multiple tissue types including dried bird skins, formalin‐fixed squamates and pinned insects. However, no study has thoroughly demonstrated this approach for historical ethanol‐preserved museum specimens. Alongside sequencing of “fresh” specimens preserved in >95% ethanol and stored at ?80°C, we used extraction techniques specifically designed for degraded DNA coupled with sequence capture protocols to sequence UCEs from historical museum specimens preserved in 70%–80% ethanol and stored at room temperature, the standard for such ethanol‐preserved museum collections. Across 35 fresh and 15 historical museum samples of the arachnid order Opiliones, an average of 345 UCE loci were included in phylogenomic matrices, with museum samples ranging from six to 495 loci. We successfully demonstrate the inclusion of historical ethanol‐preserved museum specimens in modern sequence capture phylogenomic studies, show a high frequency of variant bases at the species and population levels, and from off‐target reads successfully recover multiple loci traditionally sequenced in multilocus studies including mitochondrial loci and nuclear rRNA loci. The methods detailed in this study will allow researchers to potentially acquire genetic data from millions of ethanol‐preserved museum specimens held in collections worldwide.  相似文献   

10.
Although Tropicoperdix has been considered to be either a full genus or a species complex within the Phasianid genus Arborophila (hill partridges), there is long‐standing uncertainty regarding the degree of difference that warrants generic separation, including reported anatomical cranial differences. In addition, the intra‐generic taxonomy remains under dispute. Most studies hypothesize that Tropicoperdix comprises three species, while others postulate from one to four species. However, no molecular study has been performed to clarify the systematic and taxonomic uncertainties surrounding Tropicoperdix. In the present study, we performed a series of molecular phylogenetic analyses of Tropicoperdix and Arborophila taxa based on two mitochondrial genes and five nuclear introns. All the results are consistent with the finding that Tropicoperdix and Arborophila are phylogenetically distinct and distant genera, although the precise phylogenetic position of Tropicoperdix remains undetermined. Retrospective examination of external characteristics also supports the generic separation, as well as providing evidence of remarkable multiple character convergence. We propose that Tropicoperdix comprises at least two full species based on mitochondrial data obtained from museum specimens by using a next‐generation sequencing method. © 2015 The Linnean Society of London  相似文献   

11.
The molecular phylogeny of flat‐footed flies is inferred from analysis of DNA sequence data from the five mitochondrial genes 12S, 16S, COI, COII and CytB, and the nuclear gene 28S and discussed with the recent systematics based on morphological features. The Bayesian inference, maximum likelihood and maximum parsimony analyses included 42 species of 18 genera, representing all four extant subfamilies (Microsaniinae, Melanderomyiinae, Callomyiinae and Platypezinae) and all known genera except one (Metaclythia). Representatives of the brachycerous taxa Lonchopteridae, Phoridae, Sciadocerinae (Phoridae) and Opetiidae are used as outgroups, and Lonchoptera was used to root the trees. Our results show Platypezidae consisting of two well‐supported clades, the first with the subfamilies Melanderomyiinae + Callomyiinae and the second formed by subfamily Platypezinae. Genus Microsania was resolved as a separate lineage distant from Platypezidae which clustered with Opetiidae as its sister group, both together forming a sister group to Platypezidae. At the generic level, the genus Agathomyia proved not to be monophyletic in any of the analyses. The species Chydaeopeza tibialis is sister to Agathomyia sexmaculata, and consequently, the genus Chydaeopeza Shatalkin, 1992 is a new junior synonym of Agathomyia Verrall, 1901. Bifurcated setae on legs of adult Platypezidae are documented as a new synapomorphy of the family, exclusive of Microsania. Outstretched wings and only a small overlap of their surfaces at resting position are considered a new synapomorphy for the subfamily Platypezinae. Other phylogenetically important characters defining main clades are documented, and their relevance/validity in phylogenetic studies is discussed. The current systematic concept of Platypezidae is discussed, and new phylogenetic hypotheses are proposed.  相似文献   

12.
The phylogenetic relationships of members of Cotingidae were investigated using >2100 bp of sequence data from two nuclear introns (myoglobin intron 2 and G3PDH intron 11) and one protein-coding mitochondrial gene (cytochrome b). Strong support was found for a monophyletic clade including 23 traditional cotingid genera, corresponding to the Cotingidae sensu [Remsen, J.V. Jr., Jaramillo, A., Nores, M., Pacheco, J.F., Robbins, M.B., Schulenberg, T.S., Stiles, F.G., da Silva, J.M.C., Stotz, D.F., Zimmer, K.J., 2005. Version 2005-11-15. A classification of the bird species of South America. American Ornithologists' Union. ]. Neither Oxyruncus nor any of the genera in Tityrinae sensu [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] are members of Cotingidae. Within Cotingidae a polytomy of four well-supported clades was recovered: (1) the fruiteaters Pipreola and Ampelioides; (2) the Ampelion group, including Phytotoma; (3) Rupicola and Phoenicircus; and (4) the 'core cotingas' consisting of the remainder of the Cotingas (e.g. fruitcrows, Cotinga, Procnias, Lipaugus, and Carpodectes), with Snowornis in a basal position. The separation of Snowornis from Lipaugus [Prum, R.O, Lanyon, W.E., 1989. Monophyly and phylogeny of the Schiffornis group (Tyrannoidea). Condor 91, 444-461.] was strongly supported, as were the close relationships between Gymnoderus and Conioptilon, and between Tijuca and Lipaugus. However, basal relationships among 'core cotinga' clades were not resolved.  相似文献   

13.
Based on fifteen Archaeognatha (=Microcoryphia) specimens from Myanmar (Burmese) amber, including males, females and immatures, two new genera and four species, Cretaceomachilis longa sp.n ., Unimeinertellus abundus gen. et sp.n. , U. bellus sp.n. and Nullmeinertellus wenxuani gen. et sp.n. , are described. Phylogenetic analyses of taxa in Archaeognatha were conducted using Maximum parsimony and Bayesian inference based on morphological characters and DNA sequence data. Our results confirm the phylogenetic position of the new genera, clarify the monophyly of Meinertellidae and indicate that the ‘paleo‐types’ excluding Ditrigoniophthalmus are nested within the Machilidae group, but suggest that the three subfamilies within Machilidae may be artificial. The diversity of meinertellids with derived characters found from the Cretaceous indicate that the divergence time of Machilidae and Meinertellidae is much earlier than the Cretaceous. We propose the possibility that Meinertellidae might have originated on Gondwana.  相似文献   

14.
Species concept and delimitation are fundamental to taxonomic and evolutionary studies. Both inadequate informative sites in the molecular data and limited taxon sampling have often led to poor phylogenetic resolution and incorrect species delineation. Recently, the whole chloroplast genome sequences from extensive herbarium specimen samples have been shown to be effective to amend the problem. Stachyuraceae are a small family consisting of only one genus Stachyurus of six to 16 species. However, species delimitation in Stachyurus has been highly controversial because of few and generally unstable morphological characters used for classification. In this study, we sampled 69 individuals of seven species (each with at least three individuals) covering the entire taxonomic diversity, geographic range, and morphological variation of Stachyurus from herbarium specimens for genome‐wide plastid gene sequencing to address species delineation in the genus. We obtained high‐quality DNAs from specimens using a recently developed DNA reconstruction technique. We first assembled four whole chloroplast genome sequences. Based on the chloroplast genome and one nuclear ribosomal DNA sequence of Stachyurus, we designed primers for multiplex polymerase chain reaction and high throughput sequencing of 44 plastid loci for species of Stachyurus. Data of these chloroplast DNA and nuclear ribosomal DNA internal transcribed spacer sequences were used for phylogenetic analyses. The phylogenetic results showed that the Japanese species Stachyurus praecox Siebold & Zucc. was sister to the rest in mainland China, which indicated a typical Sino‐Japanese distribution pattern. Based on diagnostic morphological characters, distinct distributional range, and monophyly of each clade, we redefined seven species for Stachyurus following an integrative species concept, and revised the taxonomy of the family based on previous reports and specimens, in particular the type specimens. Furthermore, our divergence time estimation results suggested that Stachyuraceae split from its sister group Crossosomataceae from the New World at ca. 54.29 Mya, but extant species of Stachyuraceae started their diversification only recently at ca. 6.85 Mya. Diversification time of Stachyurus in mainland China was estimated to be ca. 4.45 Mya. This research has provided an example of using the herbarium specimen‐based phylogenomic approach in resolving species boundaries in a taxonomically difficult genus.  相似文献   

15.
The genus Elminia has had a jumbled taxonomic history, being placed among ‘old world flycatchers’ or ‘monarch flycatchers’, where it was for a long time lumped with Trochocercus. It was recently suggested that it might represent a deep clade in the large sylvioid radiation. Using one mitochondrial protein‐coding gene (ND2, 1041 bp) and one nuclear intron (myoglobin intron 2, 700 bp) DNA sequences, we obtained robust evidence for the phylogenetic placement of Elminia in the new family Stenostiridae, which is strongly supported by a synapomorphic insertion of one base in the nuclear myoglobin intron 2 sequence. Our analyses confirm the monophyly of Elminia and resolve relationships within this genus, but cannot confidently identify its sister‐taxon within the stenostirid clade. Two clades were strongly supported within the genus Elminia: one with the two fairy blue flycatchers and another with the three white‐tailed crested‐flycatchers. Within the first clade, Elminia longicauda appears non‐monophyletic but remains strongly related to E. albicauda. In the second clade, E. albiventris is sister to E. albonotata while the Dusky Crested Flycatcher (E. nigromitrata) appears in a basal position within this clade. According to our molecular dating, several geological events in western Africa and the Albertine Rift area seem to be related to the historical distribution of Elminia. Thus, the differentiation between E. albonotata and E. albiventris could be directly related to the tectonic history of these two regions. According to our molecular dating, at least one intercontinental dispersal event involving Culicicapa took place within the Stenostiridae clade at a time when the Middle East was forested.  相似文献   

16.
17.
The first comprehensive overview of intra‐ and interspecific variation within the genus Corvus as well as first insights into the phylogenetic relationships of its species is presented. DNA sequences of the mitochondrial control region were obtained from 34 of the 40 described species (including subspecies: 56 taxa). As the study was based mainly on museum material, several specimens did not yield the full length marker sequence. In these cases, only a short section of the control region could be analysed. Nevertheless, even these individuals could be assigned tentatively to clades established on the full length marker sequence. Inclusion of sequences of other corvid genera as available in GenBank clearly confirmed the monophyly of the genus Corvus. Within the Corvus clade several distinct subclades can be distinguished. Some represent lineages of single species or species pairs while other clades are composed of many species. In general, the composition of the clades reflects geographical contiguousness and confirms earlier assumptions of a Palearctic origin of the genus Corvus with several independent colonizations of the Nearctic and the Aethiopis. The Australasian radiation seems to be derived from a single lineage. The distribution of plumage colour in the phylogenetic tree indicates that the pale markings evolved several times independently. The white/grey plumage colour pattern – which is found also in other genera of the family Corvidae, for example, in Pica– occurs already in the species pair representing the first split within the genus Corvus (Corvus monedula, Corvus dauuricus). Thus, reversal to full black colour seems to have occurred as well. The use of colour traits as a phylogenetic marker within Corvus should be considered with severe caution.  相似文献   

18.
A partial sequence of the cytb gene (382 bp) was amplified and sequenced from 35 individuals (mainly museum specimens) of the genus Pernis representing all valid taxa (10) and two taxa (P. p. gurneyi, P. p. japonicus) with questionable validity as well as representatives of the Old World Perninae, namely Henicopernis and Aviceda, to assess their relationships to the genus Pernis. Furthermore, Gypaetus barbatus, Neophron percnopterus, and Buteo buteo were included as outgroup taxa. In the trees derived from the sequence data, Aviceda represents the sister group of the genus Pernis. The genus Henicopernis and the Old World vultures Gypaetus andNeophron appear rather distantly related to Pernis. Within the genus Pernis, two of the described species (Pernis apivorus, Pernis ptilorhyncus) form monophyletic groups, whereas the relationships of the two clades representing three subspecies of Pernis celebensis are still uncertain. Although this study is based on comparatively short DNA‐sections, the trees deduced from these sequences can be considered as a first approach for inferring the phylogenetic relationships of the genus Pernis and related genera and for addressing questions concerning the evolutionary history, biogeography, and systematics of this group.  相似文献   

19.
The phylogenetic position and generic composition of the moss family Plagiotheciaceae were explored using DNA sequence data from three genomes: plastid trnL‐F and rps4, mitochondrial nad5 intron and nuclear ITS1‐5.8S‐ITS2. Our phylogenetic analyses included 35 terminals from Plagiotheciaceae and 71 outgroup taxa from a representative set of hypnalean moss families. The family Plagiotheciaceae is resolved in the early‐diverging Hypnales grade, together with Fontinalaceae, Habrodontaceae and several genera which are mainly distributed in the area of the former Gondwanan supercontinent. However, monophyly of the family can only be attained if the three Southern Hemisphere genera, Acrocladium, Catagonium and Rhizofabronia, are excluded. Ancestral state reconstruction for eight morphological characters reveals that many characters used to delimit the family, such as a lack of pseudoparaphyllia and rhizoids inserted in the leaf axils, were already present in the ancestor of Hypnales. Dispersal–vicariance analysis suggests that Plagiotheciaceae and Fontinalaceae have their ancestral distributions in the area of the former Laurasian supercontinent. As the analyses also reveal a Gondwanan distribution for the ancestor of Hypnales in general, Plagiotheciaceae and Fontinalaceae represent the first diverging Laurasian lineages in the order. © 2013 The Linnean Society of London  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号