首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Coral larvae acquire populations of the symbiotic dinoflagellate Symbiodinium from the external environment (horizontal acquisition) or inherit their symbionts from the parent colony (maternal or vertical acquisition). The effect of the symbiont acquisition strategy on Symbiodinium-host associations has not been fully resolved. Previous studies have provided mixed results, probably due to factors such as low sample replication of Symbiodinium from a single coral host, biogeographic differences in Symbiodinium diversity, and the presence of some apparently host-specific symbiont lineages in coral with either symbiont acquisition strategies. This study set out to assess the effect of the symbiont acquisition strategy by sampling Symbiodinium from 10 coral species (five with a horizontal and five with a vertical symbiont acquisition strategy) across two adjacent reefs in the southern Great Barrier Reef. Symbiodinium diversity was assessed using single-stranded conformational polymorphism of partial nuclear large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region. The Symbiodinium population in hosts with a vertical symbiont acquisition strategy partitioned according to coral species, while hosts with a horizontal symbiont acquisition strategy shared a common symbiont type across the two reef environments. Comparative analysis of existing data from the southern Great Barrier Reef found that the majority of corals with a vertical symbiont acquisition strategy associated with distinct species- or genus-specific Symbiodinium lineages, but some could also associate with symbiont types that were more commonly found in hosts with a horizontal symbiont acquisition strategy.  相似文献   

2.
Reef‐building corals are at risk of extinction from ocean warming. While some corals can enhance their thermal limits by associating with dinoflagellate photosymbionts of superior stress tolerance, the extent to which symbiont communities will reorganize under increased warming pressure remains unclear. Here we show that corals in the hottest reefs in the world in the Persian Gulf maintain associations with the same symbionts across 1.5 years despite extreme seasonal warming and acute heat stress (≥35°C). Persian Gulf corals predominantly associated with Cladocopium (clade C) and most also hosted Symbiodinium (clade A) and/or Durusdinium (clade D). This is in contrast to the neighbouring and milder Oman Sea, where corals associated with Durusdinium and only a minority hosted background levels of Cladocopium. During acute heat stress, the higher prevalence of Symbiodinium and Durusdinium in bleached versus nonbleached Persian Gulf corals indicates that genotypes of these background genera did not confer bleaching resistance. Within symbiont genera, the majority of ITS2 rDNA type profiles were unique to their respective coral species, confirming the existence of host‐specific symbiont lineages. Notably, further differentiation among Persian Gulf sites demonstrates that symbiont populations are either isolated or specialized over tens to hundreds of kilometres. Thermal tolerance across coral species was associated with the prevalence of a single ITS2 intragenomic sequence variant (C3gulf), definitive of the Cladocopium thermophilum group. The abundance of C3gulf was highest in bleaching‐resistant corals and at warmer sites, potentially indicating a specific symbiont genotype (or set of genotypes) that may play a role in thermal tolerance that warrants further investigation. Together, our findings indicate that co‐evolution of host–Symbiodiniaceae partnerships favours fidelity rather than flexibility in extreme environments and under future warming.  相似文献   

3.
While one-to-one specificity between reef-dwelling hosts and symbiotic dinoflagellates of the genus Symbiodinium may occur, detailed examination of some hosts reveals that they contain multiple symbiont types. Individuals of the foraminifer Amphisorus hemprichii living in Papua New Guinea contained mixed communities of Symbiodinium dominated by symbiont types in clades C and F. Moreover, the types showed a distinct pattern in their distribution across the radius of the foraminifer, with clade F Symbiodinium more prevalent in the center of the host cell. The mixed community of symbionts and their pattern of distribution within the foraminifer is likely the result of processes happening both inside the foraminifer and in its external environment. Persistent mixed symbiont communities in foraminifera may be stabilized through benefits conferred by maintaining multiple symbiont lineages for symbiont shuffling. Alternatively they may be stabilized through a heterogeneous internal host environment, partitioning of symbiont functional roles or limitation of symbiont reproduction by the host. Six factors generally determine the presence of any particular symbiont type within a foraminifer: mode of transmission, availability from the environment, recognition by the host, regulation by the host, competition between lineages, and fitness of the holobiont. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Scleractinian corals have demonstrated the ability to shuffle their endosymbiotic dinoflagellate communities (genus Symbiodinium) during periods of acute environmental stress. This has been proposed as a mechanism of acclimation, which would be increased by a diverse and flexible association with Symbiodinium. Conventional molecular techniques used to evaluate Symbiodinium diversity are unable to identify genetic lineages present at background levels below 10%. Next generation sequencing (NGS) offers a solution to this problem and can resolve microorganism diversity at much finer scales. Here we apply NGS to evaluate Symbiodinium diversity and host specificity in Acropora corals from contrasting regions of Western Australia. The application of 454 pyrosequencing allowed for detection of Symbiodinium operational taxonomic units (OTUs) occurring at frequencies as low as 0.001%, offering a 10 000‐fold increase in sensitivity compared to traditional methods. All coral species from both regions were overwhelmingly dominated by a single clade C OTU (accounting for 98% of all recovered sequences). Only 8.5% of colonies associated with multiple clades (clades C and D, or C and G), suggesting a high level of symbiont specificity in Acropora assemblages in Western Australia. While only 40% of the OTUs were shared between regions, the dominance of a single OTU resulted in no significant difference in Symbiodinium community structure, demonstrating that the coral‐algal symbiosis can remain stable across more than 15° of latitude and a range of sea surface temperature profiles. This study validates the use of NGS platforms as tools for providing fine‐scale estimates of Symbiodinium diversity and can offer critical insight into the flexibility of the coral‐algal symbiosis.  相似文献   

5.
6.
Corals in the genus Pocillopora are the primary framework builders of eastern tropical Pacific (ETP) reefs. These corals typically associate with algal symbionts (genus Symbiodinium) in clade C and/or D, with clade D associations having greater thermal tolerance and resistance to bleaching. Recently, cryptic "species" delineations within both Pocillopora and Symbiodinium have been suggested, with host–symbiont specificity used as a supporting taxonomic character in both genera. In particular, it has been suggested that three lineages of Pocillopora (types 1–3) exist in the ETP, of which type 1 is the exclusive host of heat-tolerant Symbiodinium D1. This host specificity has been used to support the species name "Symbiodinium glynni" for this symbiont. To validate these host–symbiont relationships and their taxonomic utility, we identified Pocillopora types and their associated Symbiodinium at three sites in the ETP. We found greater flexibility in host–symbiont combinations than previously reported, with both Pocillopora types 1 and 3 able to host and be dominated by Symbiodinium in clade C or D. The prevalence of certain combinations did vary among sites, showing that a gradient of specificity exists which may be mediated by evolutionary relationships and environmental disturbance history. However, these results limit the utility of apparent host–symbiont specificity (which may have been a result of undersampling) in defining species boundaries in either corals or Symbiodinium. They also suggest that a greater diversity of corals may benefit from the thermal tolerance of clade D symbionts, affirming the need to conserve Pocillopora across its entire geographic and environmental range.  相似文献   

7.
The broad range in physiological variation displayed by Symbiodinium spp. has proven imperative during periods of environmental change and contribute to the survival of their coral host. Characterizing how host and Symbiodinium community assemblages differ across environmentally distinct habitats provides useful information to predict how corals will respond to major environmental change. Despite the extensive characterizations of Symbiodinium diversity found amongst reef cnidarians on the Great Barrier Reef (GBR) substantial biogeographic gaps exist, especially across inshore habitats. Here, we investigate Symbiodinium community patterns in invertebrates from inshore and mid‐shelf reefs on the southern GBR, Australia. Dominant Symbiodinium types were characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Twenty one genetically distinct Symbiodinium types including four novel types were identified from 321 reef‐invertebrate samples comprising three sub‐generic clades (A, C, and D). A range of host genera harbored C22a, which is normally rare or absent from inshore or low latitude reefs in the GBR. Multivariate analysis showed that host identity and sea surface temperature best explained the variation in symbiont communities across sites. Patterns of changes in Symbiodinium community assemblage over small geographic distances (100s of kilometers or less) indicate the likelihood that shifts in Symbiodinium distributions and associated host populations, may occur in response to future climate change impacting the GBR.  相似文献   

8.
Despite recent advances in identifying the causative agents of disease in corals and understanding the impact of epizootics on reef communities, little is known regarding the interactions among diseases, corals, and their dinoflagellate endosymbionts (Symbiodinium spp.). Since the genotypes of both corals and their resident Symbiodinium contribute to colony-level phenotypes, such as thermotolerance, symbiont genotypes might also contribute to the resistance or susceptibility of coral colonies to disease. To explore this, Symbiodinium were identified using the internal transcribed spacer-2 region of ribosomal DNA from diseased and healthy tissues within individual coral colonies infected with black band disease (BB), dark spot syndrome (DSS), white plague disease (WP), or yellow blotch disease (YB) in the Florida Keys (USA) and the US Virgin Islands. Most of the diseased colonies sampled contained B1, B5a, or C1 (depending on host species), while apparently healthy colonies of the same coral species frequently hosted these types and/or additional symbiont diversity. No potentially “parasitic” Symbiodinium types, uniquely associated with diseased coral tissue, were detected. Within most individual colonies, the same dominant Symbiodinium type was detected in diseased and visually healthy tissues. These data indicate that specific Symbiodinium types are not correlated with the infected tissues of diseased colonies and that DSS and WP onset do not trigger symbiont shuffling within infected tissues. However, few diseased colonies contained clade D symbionts suggesting a negative correlation between hosting Symbiodinium clade D and disease incidence in scleractinian corals. Understanding the influence of Symbiodinium diversity on colony phenotypes may play a critical role in predicting disease resistance and susceptibility in scleractinian corals.  相似文献   

9.
Dinoflagellates in the genus Symbiodinium associate with a broad array of metazoan and protistian hosts. Symbiodinium‐based symbioses involving bioeroding sponge hosts have received less attention than those involving popular scleractinian hosts. Certain species of common Cliona harbor high densities of an ecologically restricted group of Symbiodinium, referred to as Clade G. Clade G Symbiodinium are also known to form stable and functionally important associations with Foraminifera and black corals (Antipatharia) Analyses of genetic evidence indicate that Clade G likely comprises several distinct species. Here, we use nucleotide sequence data in combination with ecological and geographic attributes to formally describe Symbiodinium endoclionum sp. nov. obtained from the Pacific boring sponge Cliona orientalis and Symbiodinium spongiolum sp. nov. from the congeneric western Atlantic sponge Cliona varians. These species appear to be part of an adaptive radiation comprising lineages of Clade G specialized to the metazoan phyla Porifera and Cnidaria, which began prior to the separation of the Pacific and Atlantic Oceans.  相似文献   

10.
The mutualistic symbioses between reef‐building corals and micro‐algae form the basis of coral reef ecosystems, yet recent environmental changes threaten their survival. Diversity in host‐symbiont pairings on the sub‐species level could be an unrecognized source of functional variation in response to stress. The Caribbean elkhorn coral, Acropora palmata, associates predominantly with one symbiont species (Symbiodiniumfitti’), facilitating investigations of individual‐level (genotype) interactions. Individual genotypes of both host and symbiont were resolved across the entire species’ range. Most colonies of a particular animal genotype were dominated by one symbiont genotype (or strain) that may persist in the host for decades or more. While Symbiodinium are primarily clonal, the occurrence of recombinant genotypes indicates sexual recombination is the source of this genetic variation, and some evidence suggests this happens within the host. When these data are examined at spatial scales spanning the entire distribution of A. palmata, gene flow among animal populations was an order of magnitude greater than among populations of the symbiont. This suggests that independent micro‐evolutionary processes created dissimilar population genetic structures between host and symbiont. The lower effective dispersal exhibited by the dinoflagellate raises questions regarding the extent to which populations of host and symbiont can co‐evolve during times of rapid and substantial climate change. However, these findings also support a growing body of evidence, suggesting that genotype‐by‐genotype interactions may provide significant physiological variation, influencing the adaptive potential of symbiotic reef corals to severe selection.  相似文献   

11.
Symbiodinium reside intracellularly in a complex symbiosome (host and symbiont‐derived) within cnidarian hosts in a specific host‐symbiont association. Symbiodinium is a diverse genus with variation greater than other dinoflagellate orders. In this paper, our investigation into specificity examines antigenic variation in the algal mucilage secretions at the host‐symbiont interface. Cultured Symbiodinium from a variety of clades were labeled with one of two antibodies to symbiont mucilage (PC3, developed using a clade B alga cultured from Aiptasia pallida; BF10, developed using a clade F alga cultured from Briareum sp.). The labeling was visualized with a fluorescent marker and examined with epifluorescence and confocal microscopy. PC3 antigen was found in cultured Symbiodinium from clades A and B, but not clades C, D, E and F. The correlation between labeling and clade may account for some of the specificity between host and symbiont in the field. Within clades A and B there was variation in the amount of label present. BF10 antigen was more specific and only found in cultures of the same cp23S‐rDNA strain the antibody was created against. These results indicate that the mucilage secretions do vary both qualitatively and quantitatively amongst Symbiodinium strains. Since the mucilage forms the host‐symbiont interface, variation in its molecular composition is likely to be the source of any signals involved in recognition and specificity.  相似文献   

12.
Shallow water anthozoans, the major builders of modern coral reefs, enhance their metabolic and calcification rates with algal symbionts. Controversy exists over whether these anthozoan–algae associations are flexible over the lifetimes of individual hosts, promoting acclimative plasticity, or are closely linked, such that hosts and symbionts co‐evolve across generations. Given the diversity of algal symbionts and the morphological plasticity of many host species, cryptic variation within either partner could potentially confound studies of anthozoan‐algal associations. Here, we used ribosomal, organelle and nuclear sequences, along with microsatellite variation, to study the relationship between lineages of a common Caribbean gorgonian and its algal symbionts. The gorgonian Eunicea flexuosa is a broadcast spawner, composed of two recently diverged, genetically distinct lineages largely segregated by depth. We sampled colonies of the two lineages across depth gradients at three Caribbean locations. We find that each host lineage is associated with a unique Symbiodinium B1/184 phylotype. This relationship between host and symbiont is maintained when host colonies are reciprocally transplanted, although cases of within phylotype switching were also observed. Even when the phylotypes of both partners are present at intermediate depths, the specificity between host and symbiont lineages remained absolute. Unrecognized cryptic diversity may mask host‐symbiont specificity and change the inference of evolutionary processes in mutualistic associations. Symbiotic specificity thus likely contributes to the ecological divergence of the two partners, generating species diversity within coral reefs.  相似文献   

13.
Physiologically distinct lines of dinoflagellate symbionts, Symbiodinium spp., may confer distinct thermal tolerance thresholds on their host corals. Therefore, if a coral can alternately host distinct symbionts, changes in their Symbiodinium communities might allow corals to better tolerate increasing environmental temperatures. However, researchers are currently debating how commonly coral species can host different symbiont types. We sequenced chloroplast 23 s rDNA from the Symbiodinium communities of nine reef-building coral species across two thermally distinct lagoon pools separated by ~500 m. The hotter of these pools reaches 35°C in the summer months, while the other pool’s maximum temperature is 1.5°C cooler. Across 217 samples from nine species, we found a single haplotype in both Symbiodinium clades A and D, but four haplotypes in Symbiodinium clade C. Eight of nine species hosted a putatively thermally resistant member of clade D Symbiodinium at least once, one of which hosted this clade D symbiont exclusively. Of the remaining seven that hosted multiple Symbiodinium types, six species showed higher proportions of the clade D symbiont in the hotter pool. Average percentage rise in the frequency of the clade D symbiont from the hotter to cooler pool was 52% across these six species. Even though corals hosted members of both the genetically divergent clades D and C Symbiodinium, some showed patterns of host–symbiont specificity within clade C. Both Acropora species that hosted clade C exclusively hosted a member of sub-clade C2, while all three Pocillopora species hosted a member of sub-clade C1 (sensu van Oppen et al. 2001). Our results suggest that coral–algal symbioses often conform to particular temperature environments through changes in the identity of the algal symbiont.  相似文献   

14.
Spatially intimate symbioses, such as those between scleractinian corals and unicellular algae belonging to the genus Symbiodinium, can potentially adapt to changes in the environment by altering the taxonomic composition of their endosymbiont communities. We quantified the spatial relationship between the cumulative frequency of thermal stress anomalies (TSAs) and the taxonomic composition of Symbiodinium in the corals Montipora capitata, Porites lobata, and Porites compressa across the Hawaiian archipelago. Specifically, we investigated whether thermally tolerant clade D Symbiodinium was in greater abundance in corals from sites with high frequencies of TSAs. We recovered 2305 Symbiodinium ITS2 sequences from 242 coral colonies in lagoonal reef habitats at Pearl and Hermes Atoll, French Frigate Shoals, and Kaneohe Bay, Oahu in 2007. Sequences were grouped into 26 operational taxonomic units (OTUs) with 12 OTUs associated with Montipora and 21 with Porites. Both coral genera associated with Symbiodinium in clade C, and these co‐occurred with clade D in M. capitata and clade G in P. lobata. The latter represents the first report of clade G Symbiodinium in P. lobata. In M. capitata (but not Porites spp.), there was a significant correlation between the presence of Symbiodinium in clade D and a thermal history characterized by high cumulative frequency of TSAs. The endogenous community composition of Symbiodinium and an association with clade D symbionts after long‐term thermal disturbance appear strongly dependent on the taxa of the coral host.  相似文献   

15.
Recent molecular studies of symbiotic dinoflagellates (genus Symbiodinium) from a wide array of invertebrate hosts have revealed exceptional fine-scale symbiont diversity whose distribution among hosts, regions and environments exhibits significant biogeographic, ecological and evolutionary patterns. Here, similar molecular approaches using the internal transcribed spacer-2 (ITS-2) region were applied to investigate cryptic diversity in Symbiodinium inhabiting soritid foraminifera. Approximately 1,000 soritid specimens were collected and examined during a 12-month period over a 40 m depth gradient from a single reef in Guam, Micronesia. Out of 61 ITS-2 types distinguished, 46 were novel. Most types found are specific for soritid hosts, except for three types (C1, C15 and C19) that are common in metazoan hosts. The distribution of these symbionts was compared with the phylotype of their foraminiferal hosts, based on soritid small subunit ribosomal DNA sequences, and three new phylotypes of soritid hosts were identified based on these sequences. Phylogenetic analyses of 645 host-symbiont pairings revealed that most Symbiodinium types associated specifically with a particular foraminiferal host genus or species, and that the genetic diversity of these symbiont types was positively correlated with the genetic diversity found within each of the three host genera. Compared to previous molecular studies of Symbiodinium from other locations worldwide, the diversity reported here is exceptional and suggests that Micronesian coral reefs are home to a remarkably large Symbiodinium assemblage.  相似文献   

16.
Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral–algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to ‘bleaching’ (stress‐induced symbiosis breakdown), but stress‐tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress‐sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress‐tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3‐dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post‐bleaching resulted from symbiont community composition changes, not prior heat exposure. Moreover, initially undetectable D1a symbionts became dominant only after bleaching, and were critical to corals' resilience after stress and resistance to future stress.  相似文献   

17.
Coral reefs are highly dependent on the mutualistic symbiosis between reef-building corals and dinoflagellates from the genus Symbiodinium. These dinoflagellates spend part of their life cycle outside the coral host and in the majority of the cases have to re-infect corals each generation. While considerable insight has been gained about Symbiodinium in corals, little is known about the ecology and biology of Symbiodinium in other reef microhabitats. This study documents Symbiodinium associating with benthic macroalgae on the southern Great Barrier Reef, including some Symbiodinium that are genetically close to the symbiotic strains from reef-building corals. It is possible that some of these Symbiodinium were in hospite, associated to soritid foraminifera or ciliates; nevertheless, the presence of Symbiodinium C3 and C15 in macroalgal microhabitats may also suggest a potential link between communities of Symbiodinium associating with both coral hosts and macroalgae.  相似文献   

18.
The endosymbiotic relationship between cnidarians and Symbiodinium is critical for the survival of coral reefs. In this study, we developed a protocol to rapidly and freshly separate Symbiodinium from corals and sea anemones. Furthermore, we compared these freshly‐isolated Symbiodinium with cultured Symbiodinium to investigate host and Symbiodinium interaction. Clade B Symbiodinium had higher starch content and lower lipid content than those of clades C and D in both freshly isolated and cultured forms. Clade C had the highest lipid content, particularly when associated with corals. Moreover, the coral‐associated Symbiodinium had higher protein content than did cultured and sea anemone‐associated Symbiodinium. Regarding fatty acid composition, cultured Symbiodinium and clades B, C, and D shared similar patterns, whereas sea anemone‐associated Symbiodinium had a distinct pattern compared coral‐associated Symbiodinium. Specifically, the levels of monounsaturated fatty acids were lower than those of the saturated fatty acids, and the level of polyunsaturated fatty acids (PUFAs) were the highest in all examined Symbiodinium. Furthermore, PUFAs levels were higher in coral‐associated Symbiodinium than in cultured Symbiodinium. These results altogether indicated that different Symbiodinium clades used different energy storage strategies, which might be modified by hosts.  相似文献   

19.
Endosymbiotic dinoflagellates belonging to the genus Symbiodinium associate with a diverse range of marine invertebrate hosts and also exist free-living in the ocean. The genus is divided into eight lineages (clades A–H), which contain multiple subclade types that show geographic and host specificity. It is commonly known that free-living dinoflagellates can and have been introduced to new geographic locations, primarily through shipping ballast water. In this study we sequenced the ITS2 region of Symbiodinium found in symbiosis with the coral Acropora cytherea in the Northwestern Hawaiian Islands Marine National Monument and from shipping ballast water. Identification of an unusual symbiont in Acropora cytherea and an analysis of the distribution of this symbiont suggests an introduction to Hawaii vectored by the scyphozoan host, Cassiopea sp. Symbiodinium were also detected in shipping ballast water. This work confirms that marine invertebrate endosymbionts can be introduced to new geographic locations vectored by animal hosts or the ballast water of ships.  相似文献   

20.
Algal endosymbionts of the genus Symbiodinium play a key role in the nutrition of reef building corals and strongly affect the thermal tolerance and growth rate of the animal host. This study reports that 14C photosynthate incorporation into juvenile coral tissues was doubled in Acropora millepora harbouring Symbiodinium C1 compared with juveniles from common parentage harbouring Symbiodinium D in a laboratory experiment. Rapid light curves performed on the same corals revealed that the relative electron transport rate of photosystem II (rETRMAX) was 87% greater in Symbiodinium C1 than in Symbiodinium D in hospite. The greater relative electron transport through photosystem II of Symbiodinium C1 is positively correlated with increased carbon delivery to the host under the applied experimental conditions (r 2 = 0.91). This may translate into a competitive advantage for juveniles harbouring Symbiodinium C1 under certain field conditions, since rapid early growth typically limits mortality. Both symbiont types exhibited severe reductions in 14C incorporation during a 10-h exposure to the electron transport blocking herbicide diuron (DCMU), confirming the link between electron transport through PSII and photosynthate incorporation within the host tissue. These findings advance the current understanding of symbiotic relationships between corals and their symbionts, providing evidence that enhanced growth rates of juvenile corals may result from greater translocation of photosynthates from Symbiodinium C1. Communicated by Biology Editor Dr. Ruth Gates  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号