首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Cadmium forms neutral, lipophilic CdL20 complexes with diethyldithiocarbamate (L = DDC) and with ethylxanthate (L = XANT). In a synthetic solution and in the absence of natural dissolved organic matter (DOM), for a given total Cd concentration, uptake of these complexes by unicellular algae is much faster than the uptake of the free Cd2+ cation. The objective of the present study was to determine how this enhanced uptake of the lipophilic CdL20 complexes was affected by the presence of natural DOM (Suwannee River humic acid, SRHA). Experiments were performed with Cd(DDC)20 and Cd(XANT)20 at two pH values (7.0 and 5.5) and with the three chlorophytes [Chlamydomonas reinhardtii P. A. Dang., Pseudokirchneriella subcapitata (Korshikov) Hindák, Chlorella fusca var. vacuolata Shihira et R. W. Krauss]. Short‐term uptake (30–40 min) of the CdL20 complexes was followed in the absence and presence of SRHA (6.5 mg C · L?1). Acidification from pH 7.0 to 5.5 decreased CdL20 uptake by the three algae, in the presence or absence of humic acid (HA). The dominant effect of the HA was to decrease Cd uptake, due to its interaction with the CdL20 complexes in solution. However, if uptake of the free CdL20 complexes was compared in the presence and absence of HA, in four of eight cases initial uptake rate constants (ki) were significantly higher (P < 0.05) in the presence of the HA, suggesting the operation of an interfacial effect of the HA at the algal cell membrane, favoring uptake of CdL20. Overall, the experimental results suggest that neutral metal complexes will be less bioavailable in natural waters than they are in synthetic laboratory media in the absence of natural DOM.  相似文献   

2.
The effects of humic substances and low pH on short‐term Cd uptake by Pseudokirchneriella subcapitata (Korshikov) Hindak and Chlamydomonas reinhardtii Dang were investigated under defined exposure conditions. The uptake experiments were run in the presence of either a synthetic organic ligand (nitrilotriacetate) or natural organic ligands (Suwannee River fulvic or humic acid). An ion‐exchange method was used to measure the free Cd2+ concentrations in the exposure solutions. At pH 5, measured free Cd2+ concentrations agreed with estimations made using the geochemical equilibrium model WHAM, but at pH 7 the model overestimated complexation by both Suwannee River fulvic and humic acids compared with the ion‐exchange measurements. Consistent with the metal internalization step being rate limiting for overall short‐term uptake, intracellular Cd uptake was linear for exposure times less than 20 min at pH 5 or pH 7 for both algal species. After taking into account complexation of Cd in solution, Suwannee River humic substances had no additional effects on cadmium uptake at pH 7, as would be predicted by the free ion model. This absence of effects other than complexation persisted at pH 5, where the tendency of humic substances to adsorb to the algal cell surface is favored. Changes in pH strongly influenced Cd uptake, with the intracellular flux of Cd being at least 20 times lower at pH 5 than at pH 7 for P. subcapitata. Our results support models such as the free ion model or the biotic ligand model, in which humic substances act indirectly on Cd uptake by reducing the bioavailability of Cd by complexation in solution.  相似文献   

3.
Red blooms of snow algae consisting almost exclusively of large spherical red cells of Chlamydomonas nivalis (Bauer) Wille are widespread during the summer in the Beartooth Mountains in Montana and Wyoming. Field studies designed to examine the effects of temperature, light, and water potential on algal activity were performed with natural populations using photosynthetic 14C-HCO3- or 14CO2 incorporation as a measure of activity. The algae photo-synthesized optimally at 5.4 × 104 lx, but were not inhibited by increased light intensity up to 8.6 × 104 lx, the maximum observed in the field. Photosynthesis was sensitive to a reduction in water potential, and since low water potentials develop in snow at temperatures below 0 C, it is unlikely that significant algal activity occurs at the sub-0 temperatures which occur throughout winter. Photosynthesis was much lower following melting of the snow, but this was probably due to decreased diffusion of CO2. The optimal temperatures varied considerably among the different algal populations. Most samples photo-synthesized optimally at 10 or 20 C but retained substantial activity at temperatures as low as 0 or -3 C. Exceptional samples photosynthesized optimally at 0 or -3 C. It is proposed that the varied temperature responses reflect the presence of different temperature strains. Taken together, the data suggest that development of the snow algae can occur only during the summer months.  相似文献   

4.
The ability of a wild strain of Scenedesmus obliquus, isolated from a heavy metal-contaminated environment, to remove Cd2+ from aqueous solutions was studied at several initial concentrations. Viable biomass removed metal to a maximum extent of 11.4 mgCd/g at 1 mgCd/l, with most Cd2+ being adsorbed onto the cell surface. A commercially available strain (ACOI 598) of the same microalga species was also exposed to the same Cd concentrations, and similar results were obtained for the maximum extent of metal removal. Heat-inactivated cells removed a maximum of 6.04 mgCd/g at 0.5 mgCd/l. The highest extent of metal removal, analyzed at various pH values, was 0.09 mgCd/g at pH 7.0. Both strains of the microalga tested have proven effective in removing a toxic heavy metal from aqueous solutions, hence supporting their choice for bioremediation strategies of industrial effluents.  相似文献   

5.
Screening of algal strains for metal removal capabilities   总被引:1,自引:0,他引:1  
Eight algal species were tested for their ability to remove five toxic metalsduring 30-min exposures to single-metal (1 mg L-1) solutions at pH7. Efficacy of metal bioremoval varied according to algal species and metal. Al+3 was best removed by the thermophilic blue-green alga(cyanobacterium) Mastigocladus laminosus, Hg+2 and Zn+2 by the thermophilic and acidophilic red alga Cyanidiumcaldarium, and Cd+2 by C. caldarium and the green alga Scenedesmus quadricauda. All of these alga/metal combinations resultedin >90% metal removal. However, none of the eight algal speciesremoved more than 10% of Cr+6. Results indicate that some toxicmetals are more readily removed than others are by algae and that selectionof appropriate strains could potentially enhance bioremoval of specificmetals from wastewater at neutral pH.  相似文献   

6.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

7.
Four axenic strains of snow algae were examined for optimum pH under laboratory conditions using M-1 growth medium. Growth was measured using cell counts, cell measurements and absorbance readings at 440 nm. Strains C204 and C479A of Chloromonas sp. from the Adirondack Mountains, New York, grew optimally at pH 4.0 to 5.0. Strains C381F and C381G, Chloromonas polyptera (Fritsch) Hoh., Mull. & Roem. from the White Mountains, Arizona, grew optimally at pH 4.5 to 5.0. Growth was significantly higher at pH 4.0 in the northeastern species (Chloromonas sp.), but no significant difference was observed in final growth at pH 4.5, 5.0 and 5.5 between species. It is postulated that the more acidic precipitation in the northeastern United States may be selecting for strains of snow algae with greater tolerance to acidity than in strains from the southwestern United States or that the different pH optima reported are simply species differences. New York strain C204 was also grown in heavily buffered AM medium where it had an optimum pH of 5.0, but cells became irregularly shaped and tended to clump at pH 6.0 to 7.0. Growth of C204 in AM medium was significantly lower than in M-1 medium for snow algae. These findings justify the use of M-1 medium for this type of experimentation.  相似文献   

8.
The prawn Macrobrachium sintangense is likely to be subjected to occasional exposure to combined metal and saline stressors in its natural environment. This research evaluated the acute toxicity (96?h LC50) of cadmium (Cd) on the prawn M. sintangense, with respect to the osmoregulatory capacity (OC) of prawns and to document histological changes in the gills after exposure to sublethal Cd concentrations at different salinities. The 96?h LC50 of Cd to M. sintangense decreased with increasing salinity. The 96?h LC50 values were 89.12 (72.53–109.50), 681.26 (554.20–837.46) and 825.37 (676.99–1006.27) μg CdL?1 at 0, 10 and 20 ppt, respectively. The OC of prawns exposed to 30?μg?CdL?1 at 0 ppt and to 300?μg?CdL?1 at10 ppt decreased significantly compared with that of control prawns exposed to 0 and 10 ppt respectively. Swelling, hyperplasia and necrosis of gill lamellae resulting in the loss of marginal canals were observed in the gills of prawns exposed to 30?μg?CdL?1 at 0 ppt and to 300?μg?CdL?1 at 10 ppt for 7?days.  相似文献   

9.
Three fresh water microalgal isolates [Phormidium ambiguum (Cyanobacterium), Pseudochlorococcum typicum and Scenedesmus quadricauda var quadrispina (Chlorophyta)] were tested for tolerance and removal of mercury (Hg2+), lead (Pb2+) and cadmium (Cd2+) in aqueous solutions as a single metal species at conc. 5–100 mg / L under controled laboratory conditions. The obtained results showed that Hg2+ was the most toxic of the three metal ions to the test algae even at low concentration (< 20 mg/L). While lower concentration of Pb2+ and Cd2+ (5–20 mg / L) enhanced the algal growth (chlorophyll a and protein), elevated concentrations (40–100 mg / L) were inhibitory to the growth. The results also revealed that Ph. ambiguum was the most sensitive alga to the three metal ions even at lower concentrations (5 and 10 mg / L) while P. typicum and S. quadricauda were more tolerant to high metal concentrations up to 100 mg / L. The bioremoval of heavy metal ions (Hg2+, Pb2+ and Cd2+) by P. typicum from aqueous solution showed that the highest percentage of metal bioremoval occurred in the first 30 min of contact recording 97% (Hg2+), 86% (Cd2+) and 70% (Pb2+). Transmission electron microscopy (TEM) was used to study the interaction between heavy metal ions and P. typicum cells. At ultrastructural level, an electron dense layers were detected on the algal cell surfaces when exposed to Cd, Hg and Pb. At the same time, dark spherical electron dense bodies were accumulated in the vacuoles of the algal cells exposed to Pb. Excessive accumulation of starch around the pyrenoids were recorded as well as deteriorations of the algal cell organelles exposed to the three metal ions.  相似文献   

10.
This study investigated the effects of pH and nitrogen form and concentration on cadmium (Cd) uptake by potato (Solanum tuberosum L.) grown in hydroponic culture. Potato plants grown in a pH-buffered nutrient solution for 10 d were exposed for 24 h to 25 nM CdCl2 labelled with 109Cd. Plants showed a significantly higher Cd uptake and accumulation at pH 6.5 than at pH 4.5 and 5.5. Nitrogen supplied as nitrate (NO3 ?) generally resulted in a higher Cd uptake and accumulation than N supplied as ammonium (NH4 +). This effect was most pronounced at pH 6.5. The N concentration increasing from 6.5 to 26 mM resulted in a decreased Cd influx when either NO3 ? or NH4 + was used. Cd translocation to the shoot was increased when NO3 ? was used as the sole N source. In conclusion, pH had a strong influence on Cd uptake by roots and N form is especially important for Cd translocation within the potato plant.  相似文献   

11.
Marine planktonic algae are frequently exposed to metallic contaminants. Because heavy metals can be assimilated and accumulated by algal cells, they can then be transferred to higher trophic levels of food chains. We studied the effects of cadmium on protein production and the growth of the marine prasinophyte Tetraselmis gracilis (Kylin) Butcher. By means of toxicological assays, we estimated the LC50 of cadmium as 3.2 ppm and 1.8 ppm after 48 h and 96 h of exposure to this heavy metal, respectively. The growth curves and survival percentages of cell cultures in the presence of cadmium were determined, and a proportional reduction of both parameters with increasing metal concentrations was found. When chronically exposed to sublethal concentrations of cadmium, T. gracilis contained high levels of superoxide dismutase (SOD) activity, one of the main enzymes of the cell's antioxidant defense mechanism. Under these growth conditions, total SOD activity in crude extracts was increased by 41% (at 1.5 ppm) and 107% (at 3.0 ppm). Assays of SOD activity in nondenaturing polyacrylamide gels also showed a similar induction by cadmium. These results show that cadmium has potentially toxic properties since it significantly inhibited the growth of T. gracilis at low concentrations and promoted the induction of SOD activity, suggestive of an oxidative stress state. Besides being the first report of SOD in T. gracilis, this work describes experimental evidence of SOD induction by cadmium in this species.  相似文献   

12.
The inhibition of growth by different concentrations of CdCl2 in the range 4,5 × 10?7 to 5.6 × 10?7M was studied in the green alga Coelastrum proboscideum Bohlin in inorganic media at pH 4.3, 5.3 and 6.2. The factorial destgn of the experiments was evaluated as an analysis of 22 factors. Below pH 4.0 and above pH 6.5 growth was depressed without adding Cd. Cd concentrations exceeding 5.6 × 10?8M reduced algal growth significantly with a 50% inhibition at 5.6 × 10?7M Cd. The Cd concentration of 5.6 × 10?7M was less toxic at pH 6.2 than at pH 5.3 and 4.3, thus revealing a negative interaction between protons and Cd.  相似文献   

13.
Influence of different pH solutions (5.0 and 7.0) on Cu2+ and Cd2+ absorption and distribution in root cells as well as effects of these metals on nitrate reductase activity (NR) in roots of cucumber seedlings were estimated. The absorption of Cu and Cd by roots measured as metal depletion in uptake solution was similar, both metal absorption was independent of the pH of solution. However, after rinsing of roots in distilled water (30 minutes), more Cu than Cd was found in protoplasts of root cells. More Cu was measured in all cell fractions when Cu was uptaken from pH 5.0 than from 7.0. The nitrate reductase activity after one hour of metal treatments was drastically decreased by Cu. The strongest reduction of enzyme activity was observed in roots treated with Cu in buffer with pH 5.0. Influence of Cd on the enzyme activity was weaker and was independent of the pH of solution. Lower concentration of Cd in solution (20 μM) increased NR activity. The data obtained prove the higher mobility of Cu than Cd into the cells of root. The mobility of Cu depends on pH of solution. Cu ions, but not Cd, influenced membrane permeability (K leakage). Cu acted more drasticly than Cd on NR activity.  相似文献   

14.
The Effects of pH on a Periphyton Community in an Acidic Wetland, USA   总被引:1,自引:0,他引:1  
Despite the importance of peatlands, the algal ecology of peatlands and the periphyton communities which are abundant in these habitats are relatively understudied. We performed an in situ manipulation of pH in an intermediate fen in northern lower Michigan in order to examine how hydrogen ion concentrations structure an epiphytic algal community. Levels of pH were manipulated in enclosures from the control level (pH = 5) to an acid treatment (pH = 4) by adding H2SO4 and a neutral treatment (pH = 7) by adding NaOH. Algal communities growing on sections of Chamaedaphne calyculata (L.) Moench stems were examined after 22 days of colonization. Chlorophyll a concentration was significantly greater only in the acid treatment (~5.5 mg m−2) relative to the control (~3.5 mg m−2). Taxa richness was lower in the acid treatment. The algal assemblages were dominated by filamentous green algae and a filamentous taxon, Mougeotia spp., was significantly greater in the acid treatment relative to the control. Increases in Zygnemataceae and Oedogonium spp. most likely account for the higher chlorophyll a in the acid treatment. Most treatment differences were detected in the neutral treatment, including increased abundances of Closterium polystichum Nygaard, Cosmarium sp., Peridinium inconspicuum Lemmermann, and Synedra acus Kütz. Unexpectedly, there was no strong response of the desmid community. These data can be informative in the development of algal monitoring programs in peatlands when assessment of acidification is desired.  相似文献   

15.
Cadmium and copper inhibition of nutrient uptake by the green alga Scenedesmus quadricauda is highly pH dependent in an inorganic medium; both metals are less toxic at low pH. The alga was grown in chemostats with both N and P approaching limiting levels; it was then possible to study metal toxicity to the nitrate, ammonium, and phosphate uptake systems of algae in an identical physiological state. When the logarithm of the Cd concentration causing 25% inhibition of nitrate, ammonium, and phosphate uptake was regressed against pH almost perfect linear relationships were obtained. This was also true at the 50% inhibition level, except for a smaller than predicted increase in Cd toxicity to ammonium uptake at pH 8, which may be due to the beginning of Cd precipitation at this pH. Cu2+ toxicity was linearly related to pH for ammonium and phosphate uptake and although, its toxicity for nitrate uptake also increased with pH, the increase was not perfectly linear. The toxicity of total Cu showed no linear relationship to pH. Cd2+ and Cu2+ toxicity increased by up to four orders of magnitude from pH 5 to 8. Competition between free metal and hydrogen ions for uptake sites on the cell surface is suggested as a mechanism increasing the toxicity of free metal, ions as the hydrogen ion content decreases (i.e. at higher pH).  相似文献   

16.
Flocculation of algae using chitosan   总被引:9,自引:0,他引:9  
Flocculation of three freshwater algae, Spirulina,Oscillatoria and Chlorella, and onebrackish alga, Synechocystis, using chitosan was studiedinthe pH range 4 to 9, and chlorophyll-a concentrations inthe range 80 to 800 mg m–3, which produces aturbidity of 10 to 100 nephelometric turbidity units (NTU) in water. Chitosanreduced the algal content effectively by flocculation and settling. Theflocculation efficiency is very sensitive to pH, and reached a maximum at pH7.0for the freshwater species, but lower for the marine species. The optimalchitosan concentration that is required to effect maximum flocculation dependedon the concentration of alga. Flocculation and settling were faster whenconcentrations of chitosan higher than optimal are used. The settled algalcellsare intact and live, but will not be redispersed by mechanical agitation. Thede-algated water may be reused to produce fresh cultures of algae.  相似文献   

17.
Chlorella saccharophila (Krüger) Nadson takes up mannitol and sorbitol in the light and the dark. The rate of uptake is concentration dependent. is not affected by pH in the range pH 6.0 to 8.0 and ii not stimulated by light. Uptake is inhibited by the respiration inhibitor sodium azide (10-2 M) but not by 3-(3,4-dichlorophenyl)-1,1-di-methyl urea (10-6 M), an inhibitor of photosynthesis. Sorbitol. but not mannitol, stimulates the rate of dark respiration but both support the heterotrophic growth of the alga. Both compounds permeate the cells of C. miniata. and two strains of C. pyrenoidosa but do not support the heterotrophic growth of these algae. The cells of C. vulgaris are impermeable to both compounds.  相似文献   

18.
Biosorption of Heavy Metals by Marine Algae   总被引:7,自引:0,他引:7  
The ability of four different algae (three brown and one red) that have not been previously studied to adsorb Cr3+, Co2+, Ni2+, Cu2+, and Cd2+ ions was investigated. The metal uptake was dependent on the type of biosorbent, with different accumulation affinities towards the tested elements. The HCl-treated biomass decreased the metal biosorptive capacity particularly in the case of Cr3 adsorption with Laurencia obtusa. The extent of uptake of the different metals with the tested algae was assessed under different conditions such as pH, time of algal residence in solution with the metal, and concentration of algal biomass. The rate of uptake of the different metals was very fast in the first 2 h; thereafter the increase in metal uptake was insignificant. The amount of the metal uptake (5–15 mg range) increased steeply by increasing the weight of the biomass. An exception was L. obtusa, where a parallel increase of the uptake of different metals was observed on increasing the algal mass from 5 to 50 mg. Received: 21 December 1999 / Accepted: 24 April 2000  相似文献   

19.
Filamentous algae in eutrophic carp ponds in South Bohemia (Central Europe) were studied from 1988 to 1990. High biomass (490 g DW m-2) was attained by Cladophora fracta (O. F. Müll. ex Vahl) Kütz. after two months of growth. This marked growth depleted inorganic carbon in the water, but did not decrease the concentration of tissue nutrients. Laboratory measurements of final pH indicate that all the filamentous algae studied, except for Tribonema, are very efficient HCO3 - users. An extremely high pH of 11.6 and oxygen concentration of 32 mg l-1 were measured in the algal mats. High pH resulted in CaCO3 precipitation, visible as white incrustations on algal filaments. The amount of precipitated CaCO3 reached 134 kg ha-1. After reaching peak biomass, 90% of the Cladophora decomposed over the next 95 days.The highest net photosynthetic rate in C. fracta was measured between pH range 8.5–10.0 and oxygen concentrations of 7–12 mg l-1. Optimum temperature for photosynthesis was between 17–22°C.  相似文献   

20.
Groundwaters at nuclear sites can be characterized by low pH and high nitrate concentrations (10–100 mM). These conditions are challenging for bioremediation, often inhibiting microbial Fe(III)-reduction which can limit radionuclide migration. Here, sediment microcosms representative of the UK Sellafield site were used to study the influence of variable pH and nitrate concentrations on microbially-mediated TEAP (terminal electron accepting processes) progression. The rate of reduction through the terminal electron accepting cascade NO? 3 > NO? 2 > Mn(IV)/Fe(III) > SO2? 4 at low pH (~5.5) was slower than that in bicarbonate buffered systems (pH ~ 7.0), but in the low pH systems, denitrification and associated pH buffering resulted in conditioning of the sediments for subsequent Fe(III) and sulfate-reduction. Under very high nitrate conditions (100 mM), bicarbonate buffering (pH ~ 7.0) was necessary for TEAP progression beyond denitrification and the reduction of 100 mM nitrate created alkaline conditions (pH 9.5). 16S rRNA gene analysis showed that close relatives of known nitrate reducers Bacillus niacini and Ochrobactrum grignonense dominated the microbial communities in this reduced sediment. In Fe(III)-reducing enrichment cultures from the 100 mM nitrate system, close relatives of the Fe(III)-reducing species Alkaliphilus crotonatoxidans and Serratia liquifaciens were observed. These results highlight that under certain conditions and contrary to expectations, denitrification may support bioreduction via pH conditioning for optimal metal reduction and radionuclide immobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号