首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major pest of strawberry, Fragaria × ananassa Duchesne (Rosaceae). Spinosad is highly efficacious against F. occidentalis, and spinosad is believed to be compatible in an integrated pest management program. This study determined whether F. occidentalis could be controlled with predatory mites [Typhlodromips montdorensis (Schicha), Neoseiulus cucumeris (Oudemans) (both Acari: Phytoseiidae), and Hypoaspis miles (Berlese) (Acari: Laelapidae)] and spinosad in strawberry. In the glasshouse, three strawberry cultivars (Camarosa, Camino Real, and Albion) were sprayed once with spinosad at the recommended rate (80 ml 100 l?1 rate, 0.096 g a.i. l?1) or with water (control). Thrips adults were released onto plants 24 h after spraying and predatory mites released 6 days later. Spinosad significantly reduced thrips numbers compared with water. All three mite species reduced F. occidentalis numbers, and spinosad had no effect on predatory mites. Though H. miles could not be counted, the numbers of thrips in treatments with H. miles were lower than those in treatments without the mite. Thrips numbers were lowest on Camino Real and highest on Camarosa. These results suggest that the use of Camino Real with spinosad applications followed by releases of predatory mites can significantly reduce thrips numbers.  相似文献   

2.
The life cycle of the Western Flower Thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), one of the most important glasshouse pests, includes a soil passage composed of three instars that deserve more attention in terms of biocontrol strategies. It has been repeatedly reported that two polyphagous predatory mites, Stratiolaelaps miles (Berlese) and Hypoaspis (Geolaelaps) aculeifer (Canestrini) (Acari: Laelapidae), also prey on these thrips stages, in addition to several other soil inhabiting prey species. However, the potential thrips consumption rates have never been quantified for these predatory mites. Therefore, an arena experiment was carried out to investigate the potential predation rates of the two mites on second instar larvae, prepupae, and pupae of F. occidentalis. In addition, the fecundity on the thrips diet was assessed and compared to oviposition rate on a nematode prey. All thrips instars were accepted as prey by each mite species. Females of H. aculeifer preyed on 3.5 (± 0.5) thrips instars and laid 2.5 (± 0.87) eggs per day, whereas females of S. miles preyed on 1.64 (± 0.3) thrips and laid 0.8 (± 0.53) eggs. Males of both species killed 0.6 (± 0.3) thrips per day. The fitness of the two predatory mites on F. occidentalis as prey and their suitability as biocontrol agents are elucidated. Reasons for reduced thrips control in the soil environment, in contrast to the results obtained in arena assays are discussed.  相似文献   

3.
The recent unexpected local establishment of a non‐native predatory mite, Neoseiulus californicus (McGregor) (Acari: Phytoseiidae), in the UK prompted us to undertake this study, which investigated the thermal biology of an alien species Typhlodromips montdorensis (Schicha) (Acari: Phytoseiidae). Laboratory and field experiments on its cold tolerance were used to assess its establishment potential outside of glasshouse environments in the UK. Currently, T. montdorensis is being tested as a glasshouse biological control agent against thrips and spider mites, but is not yet licensed for release in the UK. Typhlodromips montdorensis has a developmental threshold of between 10.3 and 10.7 °C, and a thermal budget of between 108.7 and 105.3 degree‐days when estimated by weighted and simple linear regression, respectively. Under outdoor conditions, T. montdorensis could theoretically complete up to six generations a year. The supercooling points of female and larval T. montdorensis were ?22 to ?24 °C with 100% pre‐freeze mortality apparent in both acute and chronic low temperature exposures. Typhlodromips montdorensis were unable to enter diapause under a selected laboratory regime. No reproduction occurred in the field from November to March, with 100% mortality within 7–14 days of release during this period. It is concluded that T. montdorensis would be a ‘safe candidate’ for introduction as a glasshouse biological control agent in the UK.  相似文献   

4.
The occurrence and strength of interactions among natural enemies and herbivores depend on their foraging decisions, and several of these decisions are based on odours. To investigate interactions among arthropods in a greenhouse cropping system, we studied the behavioural response of the predatory bug Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) towards cucumber plants infested either with thrips (Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)) or with spider mites (Tetranychus urticae Koch (Acari: Tetranychidae)). In greenhouse release-recapture experiments, the predatory bug showed a significant preference for both thrips-infested plants and spider mite-infested plants over clean plants. Predatory bugs preferred plants infested with spider mites to plants with thrips. Experience with spider mites on cucumber leaves prior to their release in the greenhouse had no effect on the preference of the predatory bugs. However, this experience did increase the percentage of predators recaptured. Y-tube olfactometer experiments showed that O. laevigatus was more attracted to odours from plants infested with spider mites than to odours from clean plants. Thus, O. laevigatus is able to perceive odours and may use them to find plants with prey in more natural conditions. The consequences of the searching behaviour for pest control are discussed.  相似文献   

5.
《Biological Control》2006,36(2):203-215
Western flower thrips, Frankliniella occidentalis (Pergande), is the principal insect pest of spring flower crops grown in the northeastern United States for use as bedding plants. Neoseiulus (=Amblyseius) cucumeris (Oudemans) is a predacious mite reared commercially that is recommended for control of western flower thrips in various vegetable and flower crops at a rate of ca 53 mites/m2/week. Efficacy on spring flower crops, however, is not well demonstrated, reports being either from other crops or extension demonstration trials. In two trials (each replicated), we compared suppression of western flower thrips in spring bedding plants provided by (1) N. cucumeris at the recommended rate, (2) spinosad (at the labeled rate), the most widely used thrips-control pesticide, and (3) both combined. Trial No. 1 was run in mixed bedding plants in commercial greenhouses and Trial No. 2 in impatiens monocultures in University greenhouses. We found that in commercial greenhouses, variation in species composition of crops and movement of plants during crop production made it difficult to detect any significant effects. In an impatiens monoculture (Trial No. 2), we found better evidence of partial suppression of thrips larvae and adults by treatments. Spinosad alone provided the best control, with mites alone usually providing control intermediate to that of spinosad alone and the untreated control. Control from spinosad plus mites was not significantly different from that of spinosad alone (all treatments evaluated as counts of thrips per plant, in flowers). In another University-based trial (Trial No. 3), we compared the commercially recommended rate of N. cucumeris (53 mites/m2/week) to a 3- to 4-fold higher rate (190 mites/m2/week) in impatiens monocultures. This trial was replicated twice in the fall of 2004 and once in spring of 2005 in Amherst, Massachusetts. We found that the higher release rate, while not resulting in statistically significantly more mites per plant (in flowers) than the standard rate, did suppress thrips larvae per plant (in flowers) by 50–75%, a higher level than that achieved by the recommended standard rate. No reductions, however, were found in counts of adult thrips, either as numbers per plant (in flowers) or as numbers caught per yellow sticky card, except for one replication in which thrips counts were lowered compared to controls by mites (at both release rates). We conclude that N. cucumeris, especially at the higher rate, provides partial control of western flower thrips in impatiens bedding plants, but that control from spinosad is better. Biological control of western flower thrips with this predator is not a complete thrips IPM program, but may be used together with spinosad or other materials to prevent development of pesticide resistance. This approach is most likely to be of value in crops grown as continuous relay plantings or a series of different, but thrips-susceptible, crop species.  相似文献   

6.
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), are competitors with twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), for plant resources and potential predators on spider mites when the opportunity arises. Which interaction predominates may depend on relative population densities and individual species’ responses to the plants on which they co‐occur. We examined interactions between populations of thrips and spider mites on several cultivars of two bedding plants: impatiens (Impatiens wallerana Hook.f) cultivars ‘Impulse Orange’ and ‘Cajun Carmine’, and ivy geranium [Pelargonium peltatum (L.) L’Her ex Aiton] cultivars ‘Sybil Holmes’ and ‘Amethyst 96’. Four combinations of thrips and mite numbers were studied: thrips alone, mites alone, and two densities of thrips and mites together. We compared population numbers after 4 weeks. Overall, mite numbers increased more rapidly than thrips did, but both species increased more rapidly on impatiens than on ivy geraniums. Between impatiens cultivars, thrips and mites increased more slowly on ‘Cajun Carmine’ (i.e., it was more resistant) than on ‘Impulse Orange’. On ivy geraniums, spider mites increased more slowly on ‘Sybil Holmes’ than on ‘Amethyst 96’ but the reverse was the case for thrips. Regardless of plant species or cultivar, thrips had a strong negative effect on spider mites whenever they co‐occurred, suppressing mite population growth by around 50% compared to when mites were alone. However, the effect of spider mites on western flower thrips depended on the quality of the plant species. On impatiens, thrips co‐occurring with spider mites increased slightly more than thrips alone did, while on ivy geranium mites had a small negative effect on thrips. Contrary to expectations, thrips had a larger negative impact on spider mites on plants that were more susceptible to thrips than they did on plants more resistant to thrips. We suggest that host plants mediate the interaction between an omnivore and its herbivorous prey not only by altering individual diet choice but by changing the relative population dynamics of each species.  相似文献   

7.
The predatory mite Neoseiulus cucumeris (Oudemans) (Acarina: Phytoseiidae) successfully controlled the broad mite Polyphagotarsonemus latus (Banks) (Acarina: Tarsonemidae) on two varieties of greenhouse-grown sweet peppers (Capsicum annuum L.). A survey of pre-plant seedlings showed that nurseries were a source of infestation for the broad mite. The predatory mites were released twice (on day 1 and 5, or 15 days later) on each plant, every second plant or every fourth plant. Broad mite populations were evaluated by sampling young leaves from the top of the plant. The effect of the broad mite on plant height, dry mass and yield was evaluated. Additionally, since N. cucumeris is known to control thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), blue sticky traps and flower sampling were used to evaluate changes in thrips populations. All three release rates of N. cucumeris significantly (P<0.05) controlled broad mite populations, but when the predatory mites were released only on every fourth plant, the overall height and yield of the plants were adversely affected by broad mites. Releasing N. cucumeris on each or every second plant was as efficacious in controlling broad mites as sulfur treatments in terms of plant height, dry mass and yield. Plants treated with sulfur, however, had significantly higher thrips populations and fruit damage.  相似文献   

8.
In Europe and North America the western flower thrips,Frankliniella occidentalis, is an important pest in various greenhouse crops, such as sweet pepper and cucumber. Two species of predatory mite are commercially applied for biological control of this pest:Amblyseius cucumeris andA. barkeri. Thrips control is generally successful from March onwards. During winter, however, thrips control by these predatory mites is less effective. An important reason for this is that the commercially applied strains of both mite species enter reproductive diapause under short-day photoperiods, whereas the western flower thrips does not enter diapause. In this paper we report on selection experiments for non-diapause in strains of both mite species, aimed at obtaining predators that do not enter diapause under light- and temperature conditions prevailing in winter. Additional experiments were done to estimate the potential of the selected lines as control agents ofF. occidentalis. Selection for non-diapause proved highly successful in both predatory mite species. In a New Zealand strain ofA. cucumeris diapause incidence decreased from 41% to 0% in about ten generations; in a Dutch strain ofA. barkeri diapause incidence decreased from 67% to 0% in about six generations. Furthermore, selection for non-diapause had no influence on predator performance, measured as predation rate and oviposition rate on a diet of first instar thirps larvae. Rates of predation and oviposition were the same for selected and unselected lines in both species; rates of predation and oviposition were higher forA. cucumeris than forA. barkeri. After 18 months under non-diapause conditions, no less than 92% of a sample of the selected non-diapause line ofA. cucumeris did not enter diapause when tested under diapause-inducing conditions. This indicates that ‘non-diapause’ is a stable trait in these predatory mites. Finally, a small-scale greenhouse experiment in a sweet pepper crop showed that the selected non-diapause line ofA. cucumeris established successfully under diapause-inducing short-day conditions.  相似文献   

9.
Abstract 1. Predatory arthropods lay their eggs such that their offspring have sufficient prey at their disposal and run a low risk of being eaten by conspecific and heterospecific predators, but what happens if the prey attacks eggs of the predator? 2. The egg distribution and time allocation of adult female predatory mites Iphiseius degenerans as affected by predation of their eggs by prey, the western flower thrips Frankliniella occidentalis, were studied on sweet pepper plants. The predatory mites attack the first instar of thrips but all active stages of thrips are capable of killing the eggs of the predator; however the predatory mite is used for biological control of thrips. 3. The majority of predatory mite eggs was laid on the underside of leaves in hair tufts (domatia). During the experiment, females spent increasing amounts of time in flowers where they fed on pollen and thrips larvae. The risk of predation on predator eggs by thrips was lower on leaves than in flowers where the majority of thrips resides. Moreover, predation risk was higher outside leaf domatia than inside. 4. This suggests that predators avoid ovipositing in places with abundant prey to prevent their eggs from being eaten by thrips.  相似文献   

10.
D. R. Gillespie 《BioControl》1989,34(2):185-192
The predatory miteAmblyseius cucumeris (Oudemans) [Acarina: Phytoseiidae] was evaluated as a biological control forThrips tabaci Lindeman andFrankliniella occidentalis (Pergande) [Thysanoptera: Thripidae] on greenhouse grown seedless cucumber.A. cucumeris spread throughout the greenhouses and provided control of both species of thrips.A. cucumeris adults persisted on plants for 7 weeks in the virtual absence of prey, and increased numerically in response to increases in prey population. On the basis of these resultsA. cucumeris is recommended as a useful biological control forT. tabaci andF. occidentalis on greenhouse cucumber. Publication No. 361, Agassiz Research Station, Agriculture Canada, Agassiz, B.C. Canada VOM 1AO.  相似文献   

11.
Attacking prey is not without risk; predators may endure counterattackby the prey. Here, we study the oviposition behaviour of a predatory mite(Iphiseius degenerans) in relation to its prey, thewesternflower thrips (Frankliniella occidentalis). This thrips iscapable of killing the eggs of the predator. Thrips and predatory mites - apartfrom feeding on each other - can also feed and reproduce on a diet of pollen.Because thrips may aggregate at pollen patches, such patches may be risky foroviposition by the predatory mites. We found that, in absence of thrips,predatory mites lay their eggs close to pollen, but further away when thripsarepresent. Predatory mite eggs near pollen were killed more frequently by thripsthan when they were deposited further away. The oviposition behaviour of thepredatory mite was also studied in absence of thrips, but in presence of thealarm pheromone of thrips. This pheromone is normally secreted upon contactwithpredators or competitors. When applied close to the pollen, predatory mitesoviposited significantly further away from it. When the alarm pheromone wasapplied away from the food source, most eggs were found near the pollen. Theseresults indicate that female predatory mites show flexible ovipositionbehaviourin response to the presence of their counterattacking prey.  相似文献   

12.
To test the hypothesis that pest species diversity enhances biological pest control with generalist predators, we studied the dynamics of three major pest species on greenhouse cucumber: Western flower thrips, Frankliniella occidentalis (Pergande), greenhouse whitefly, Trialeurodes vaporariorum (Westwood), and two-spotted spider mites, Tetranychus urticae Koch in combination with the predator species Amblyseius swirskii Athias-Henriot. When spider mites infested plants prior to predator release, predatory mites were not capable of controlling spider mite populations in the absence of other pest species. A laboratory experiment showed that predators were hindered by the webbing of spider mites. In a greenhouse experiment, spider mite leaf damage was lower in the presence of thrips and predators than in the presence of whiteflies and predators, but damage was lowest in the presence of thrips, whiteflies and predators. Whitefly control was also improved in the presence of thrips. The lower levels of spider mite leaf damage probably resulted from (1) a strong numerical response of the predator (up to 50 times higher densities) when a second and third pest species were present in addition to spider mites, and (2) from A. swirskii attacking mobile spider mite stages outside or near the edges of the spider mite webbing. Interactions of spider mites with thrips and whiteflies might also result in suppression of spider mites. However, when predators were released prior to spider mite infestations in the absence of other pest species, but with pollen as food for the predators, we found increased suppression of spider mites with increased numbers of predators released, confirming the role of predators in spider mite control. Thus, our study provides evidence that diversity of pest species can enhance biological control through increased predator densities.  相似文献   

13.

A generalist predatory mite, Anystis baccarum (L.), was evaluated as a biological control agent against western flower thrips (WFT), Frankliniella occidentalis (Pergande). Laboratory assays showed A. baccarum was able to kill a mean of five WFT adult females or nine WFT larvae in 24 h, out-performing both Neoseiulus cucumeris (Oudemans) and Amblyseius swirskii Athias-Henriot. Next, a greenhouse assay was conducted to assess the performance of A. baccarum on potted chrysanthemums, comparing their efficacy to that provided by N. cucumeris slow-release sachets which represented the commercial standard in Canada. A combined treatment which incorporated both predatory mite species was also included to assess compatibility and potential additive effects of using both species together for WFT management. Introduction of two A. baccarum per pot was as efficacious as 125 N. cucumeris in terms of WFT control; however, despite the lack of significance between the level of WFT control obtained in the single predatory species treatments and the combined treatment, only the combination treatment suppressed WFT populations to levels that were almost unchanged over 8 weeks. There was no significant difference between the number of N. cucumeris recovered from plants in the single-species and the combination treatments, demonstrating the functional compatibility of the two predators. Additionally, WFT feeding damage was significantly lower on the A. baccarum-treated plants than on the untreated control and the N. cucumeris treatment. This study, together with our development of a prototype mass rearing method, shows that A. baccarum could be successfully used as a biocontrol agent for WFT.

  相似文献   

14.
Extensive sampling of strawberry plants in everbearing and June-bearing strawberry plantations and on potted plants showed that different species of mites were spatially separated. Of the two phytophagous species recorded, Tetranychus urticae was most abundant on old leaves and Phytonemus pallidus on folded leaves and flower/fruit clusters. Predatory phytoseiid mites were found on all plant parts but different species were spatially separated; Neoseiulus cucumeris and N. aurescens were found mostly on folded leaves and clusters, and N. californicus and Phytoseiulus persimilis on old and medium aged leaves. No Typhlodromus pyri were found in the field plantations. These patterns of distribution did not change over sampling dates in summer and early autumn. An understanding of this within-plant zonation of mite species is important when studying predator–prey interactions and when designing sampling strategies for strawberry. A programme to sample the entire mite system on strawberry should be stratified to include all the above mentioned parts of the plant. Different sampling protocols, as appropriate, are required for sampling different pest species and their associated predators.  相似文献   

15.
We investigated the responses of 3 thrips species, Frankliniella schultzei Trybom, F. occidentalis Pergrande, and Thrips tabaci Lindeman (Thysanoptera: Thripidae) to herbivore‐damaged and undamaged cotton seedlings (Gossypium hirsutum L. [Malvales: Malvaceae]) at a range of time intervals following damage by adult Tetranychus urticae (Koch), adult T. ludeni (Zacher) (Acari: Tetranychidae) or Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae in olfactometer assays. The intensity/frequency of the response of thrips to herbivore‐induced plants decreased with time and ultimately disappeared in all cases; however, the rate at which the response declined was related to the herbivore species that inflicted the damage. All 3 species of thrips were attracted to plants damaged by T. urticae for longer than they were to plants damaged by T. ludeni. The duration for which damaged plants remained attractive was also affected by the degree of damage inflicted on cotton seedlings. For example, F. schultzei was attracted to plants damaged by a higher density of two‐spotted spider mites (100/plant) for much longer than to plants damaged by a lower density of these mites (50/plant). The results reinforce previous studies that demonstrate that arrangement of variables influences the responses of thrips to their herbivore‐induced cotton host plants. Results also show that these responses are variable in time following herbivore damage to cotton plants, which further demonstrates how difficult it is to generalize about the functional significance of these interactions.  相似文献   

16.
The predatory mite Neoseiulus cucumeris is used for biological control of phytophagous mites and thrips on greenhouse cucumber and sweet pepper. In a previous study, N. cucumeris provided effective control of broad mite but was only rarely found on the sampled leaves, raising questions about the factors affecting N. cucumeris distribution. To determine the distribution of N. cucumeris, leaves of pepper plants were sampled three times per day: just after sunrise, at noon and just before sunset for two years and throughout a 24 h period in one year. The presence of other mites and insects was recorded. Biotic (pollen) and abiotic (temperature, humidity) factors were monitored from the three plant levels. The effect of direct and indirect sunlight on the mites was assessed. N. cucumeris was found primarily in flowers; however, the mite’s distribution was affected by other predators (intraguild predation); in the presence of the predatory bug Orius laevigatus virtually no mites occurred in the flowers. Whereas temperature and humidity varied from the top to the lower level of the plants, apparently neither these factors nor the presence of pollen outside the flowers influenced mite distribution. N. cucumeris was found to be negatively phototropic; therefore N. cucumeris were pre-conditioned to light by rearing under light conditions for 4 months before being released. The light-reared mites were initially more numerous during the noon sampling period, however, rearing conditions caused only a temporary and non-significant change in distribution.  相似文献   

17.
Soil-dwelling predatory mites are natural enemies of various soil pest insects and mites. Both Gaeolaelaps aculeifer (Canestrini) and Stratiolaelaps scimitus (Womersley) are commercialized natural enemies of thrips, but there is little information on the predation rate of these predatory mites on different thrips species. We compared their predation capacities on three thrips species, Frankliniella occidentalis, F. intonsa, and Thrips palmi, which are major pests of various horticultural plants. The predatory rate of G. aculeifer was higher than that of S. scimitus. Both predator species fed on more T. palmi thrips than F. occidentalis or F. intonsa thrips, which may be attributable to the smaller body size of T. palmi than the other thrips. Predation rates of female adults were 2.6–2.8 times higher than those of deutonymphs in both species. Predation rates were not separated according to the various developmental stages (i.e., second instar larva, pupa, or adult) of thrips; however, deutonymphs fed on fewer adults than larvae or pupae of F. occidentalis. Our results suggest that both G. aculeifer and S. scimitus are active predators that can prey during any of their developmental stages and on any species of thrips tested.  相似文献   

18.
Ten predatory mite species, all phytoseiids, were evaluated for control of western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on greenhouse cucumber. This study was done to further improve biological control of thrips on this crop. Neoseiulus cucumeris (Oudemans) is at present used for biological control of thrips in greenhouses. Compared to this species, Typhlodromalus limonicus (Garman & McGregor), Typhlodromips swirskii (Athias-Henriot) and Euseius ovalis (Evans) reached much higher population levels resulting in a significantly better control of thrips. T. limonicus was clearly the best predator of WFT. Also Euseius scutalis (Athias-Henriot) increased to higher populations levels than N. cucumeris, but without controlling the thrips, probably because of an unequal distribution of this predator on the plant. Iphiseius degenerans (Berlese), Neoseiulus barkeri (Hughes), Euseius finlandicus (Oudemans) and Typhlodromus pyri (Scheuten) did not establish better than N. cucumeris. A non-diapausing exotic strain of N. cucumeris did not differ from the North European strain. The best performers in this study were all of sub-tropical origin. T. limonicus, T. swirskii and E. ovalis have good potentials for controlling not only thrips but also whiteflies. Factors affecting the efficacy of phytoseiids on greenhouse cucumbers are discussed.  相似文献   

19.
Many plant species possess structures on their leaves that often harbour predatory or fungivorous mites. These so‐called domatia are thought to mediate a mutualistic interaction; the plant gains protection because mites decimate plant pathogenic fungi or herbivores, whereas the mites find shelter in the domatia. We tested this hypothesis using two species of coffee (Coffea spp.) plants that posses domatia consisting of small cavities at the underside of the leaves, and which often harbour mites. We assessed densities of domatia, of the predatory mite Iphiseiodes zuluagai Denmark and Muma (Acari: Phytoseiidae) and of herbivorous mites Oligonychus ilicis (McGregor) (Acari: Tetranychidae) and Brevipalpus phoenicis (Geijskes) (Acari: Tenuipalpidae) on Coffea arabica L. (Rubiaceae) and Coffea canephora Pierre in the field. Over a period of 50 days, C. arabica harboured on average 7.5 times more predatory mites and 0.4–0.66 fewer prey mites than C. canephora. Hence, the higher density of predatory mites on C. arabica could not be explained by higher densities of prey. However, the density of domatia on C. arabica was on average 1.65 times higher than on C. canephora, and within each species, leaves with higher densities of domatia also harboured more predators. This suggests a positive effect of domatia on predatory mites. In the laboratory, survival of adult female predatory mites on leaves of C. arabica with open domatia was indeed significantly higher than on leaves with closed domatia. Hence, predatory mites benefited from the domatia. However, plants with higher densities of domatia did not harbour fewer herbivores. Taken together, our study only provides partial evidence for a mutualistic interaction between coffee plants and predatory mites, mediated by domatia.  相似文献   

20.
Omnivores obtain resources from more than one trophic level, and choose their food based on quantity and quality of these resources. For example, omnivores may switch to feeding on plants when prey are scarce. Larvae of the western flower thrips Frankiniella occidentalis Pergande (Thysanoptera: Thripidae) are an example of omnivores that become predatory when the quality of their host plant is low. Western flower thrips larvae usually feed on leaf tissue and on plant pollen, but may also attack eggs of predatory mites, their natural enemies, and eggs of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae), one of their competitors. Here, we present evidence that western flower thrips larvae prey on Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), another competitor for plant tissue. We tested this on two host plant species, cucumber (Cucumis sativa L.), considered a host plant of high quality for western flower thrips, and sweet pepper (Capsicum annuum L.), a relatively poor quality host. We found that western flower thrips killed and fed especially on whitefly crawlers and that the incidence of feeding did not depend on host-plant species. The developmental rate and oviposition rate of western flower thrips was higher on a diet of cucumber leaves with whitefly crawlers than on cucumber leaves without whitefly crawlers, suggesting that thrips do not just kill whiteflies to reduce competition, but utilize whitefly crawlers as food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号