首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The degradation of rat liver tyrosine aminotransferase has been studied after transfection of suitable expression vectors into mammalian cells in culture. A normal rapid rate of degradation (half-life about 6 h) was observed in cells under stable transfection conditions. However, the higher enzyme levels produced during transient transfections or after amplification with methotrexate caused the apparent half-life of degradation to increase substantially. Analysis of expression in Chinese hamster ovary (CHO)-DG44 cells from vectors with deletions near either end of the tyrosine aminotransferase coding sequence showed that approximately the first 40 and the last 12 amino acid residues are not required to obtain normal catalytic function. When catalytically active deletion mutants were examined for effects on tyrosine aminotransferase degradation in stably transfected CHO-DG44 cell populations, short sequences near each end of the protein were found to be necessary for rapid degradation. The required sequence near the amino terminus is located between amino acids 30 and 40 and includes the highly basic region RKKGRKAR, a potential ubiquitin attachment site. The other essential sequence (EECDK) is located at the very COOH terminus of the 454-amino acid chain and is part of an acidic domain rich in cysteines and having PEST characteristics (rich in Pro, Glu, and Thr). Ser448, a potential casein kinase II phosphorylation site, is not required for activity or rapid degradation of tyrosine aminotransferase. No correlation was observed between the intracellular degradation rates of the various mutant proteins and their heat stabilities in vitro.  相似文献   

2.
Eukaryotic expression vectors have been used successfully in viral LT-expressing cell lines (ie. COS) to clone cDNAs encoding proteins that can be detected through their bio-activity or reactivity with specific antibodies. Since Chinese hamster ovary cells (CHO) have been used extensively for the isolation and characterization of somatic cell mutants, we felt it would be an advantage to develop an expression cloning system in CHO cells. We have modified the eukaryotic expression vector CDM8 by replacing the polyoma and SV40 origins of replication with the 427bp non-coding region of the Syrian hamster papovavirus. Wild-type CHO cells and the CHO glycosylation-mutant Lec4A were transfected with plasmids bearing the early genes of either polyoma virus or hamster papovavirus in order to establish stable, LT antigen-expressing cell lines designated CHOP or CHOH, respectively. CHOP cell lines expressing polyoma LT antigen supported efficient replication of CDM8, but replicated pMH poorly. Conversely, CHOH cells expressing the hamster papovavirus LT antigen supported replication of pMH, and at a lower efficiency, CDM8. Replication of CDM8 and pMH vectors were equally efficient in selected CHOP and CHOH cell lines, respectively and comparable to that of CDM8 replication in COS-1 cells. A bacterial beta-galactosidase fusion gene inserted into the multiple cloning site of a CDM8 derivative was efficiently expressed when transiently transfected into CHOP and CHOH cells but not CHO cells since only the former supports autonomous plasmid replication. These results show that expression-cloning in CHO cells expressing either polyoma virus or hamster papovavirus LT antigens is possible using either the CDM8 or the pMH vectors, respectively.  相似文献   

3.
A mouse complementary deoxyribonucleic acid segment coding for the enzyme dihydrofolate reductase has been cloned in two general classes of vectors containing simian virus 40 deoxyribonucleic acid: (i) those that can be propagated as virions in permissive cells and (ii) those that can be introduced into and maintained stably in various mammalian cells. Both types of vectors express the mouse dihydrofolate reductase by using signals supplied by simian virus 40 deoxyribonucleic acid sequences. Moreover, plasmid vectors carrying the complementary deoxyribonucleic acid segment can complement Chinese hamster ovary cells lacking dihydrofolate reductase.  相似文献   

4.
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology for many years as a mammalian host cell platform for cloning and expressing genes of interest. A detailed physical chromosomal map of the CHO DG44 cell line was constructed by fluorescence in situ hybridization (FISH) imaging using randomly selected 303 BAC clones as hybridization probes (BAC-FISH). The two longest chromosomes were completely paired chromosomes; other chromosomes were partly deleted or rearranged. The end sequences of 624 BAC clones, including 287 mapped BAC clones, were analyzed and 1,119 informative BAC end sequences were obtained. Among 303 mapped BAC clones, 185 clones were used for BAC-FISH analysis of CHO K1 chromosomes and 94 clones for primary Chinese hamster lung cells. Based on this constructed physical map and end sequences, the chromosome rearrangements between CHO DG44, CHO K1, and primary Chinese hamster cells were investigated. Among 20 CHO chromosomes, eight were conserved without large rearrangement in CHO DG44, CHO K1, and primary Chinese hamster cells. This result suggested that these chromosomes were stable and essential in CHO cells and supposedly conserved in other CHO cell lines.  相似文献   

5.
6.
Human UDP-glucuronosyltransferases (UGTs) 1A6 and 1A9 were expressed using Semliki Forest virus (SFV) vectors. Infection of chinese hamster lung fibroblast V79 cells with recombinant SFV-UGT viruses resulted in efficient protein expression as detected by metabolic labeling, Western blot analyses and immunofluorescence microscopy. The expression of UGT 1A6 and UGT1A9 in the SFV-infected cells was approximately two fold higher than in a stable V79 cell line. No UGT signal was detected in noninfected cells. In addition, SFV-UGT viruses also efficiently infected other mammalian cells, such as baby hamster kidney (BHK), chinese hamster ovary (CHO) and human lung (WI-26 VA4) cells leading to high production of recombinant enzyme. The measurement of enzyme activities and kinetic parameters using p-nitrophenol and nitrocatechol (entacapone) as substrates for UGT1A6 and UGT1A9, respectively, showed that the overall kinetic properties of the enzymes produced by the two systems were similar. We conclude that the SFV expression system represents an efficient, fast and versatile method for production of metabolic enzymes for in vitro assays.  相似文献   

7.
We have previously developed a sensitive and rapid mammalian cell mutation assay which is based on a Chinese hamster ovary cell line that stably incorporates human chromosome 11 (CHO A(L)) and uses flow cytometry to measure mutations in CD59. We now show that multiparameter flow cytometry may be used to simultaneously analyze irradiated CHO A(L) cells for mutations in five CD genes along chromosome 11 (CD59, CD44, CD90, CD98, CD151) and also a GPI-anchor gene. Using this approach, 19 different mutant clones derived from individual sorted mutant cells were analyzed to determine the mutant spectrum induced by ionizing radiation. All clones analyzed were negative for CD59 expression and PCR confirmed that at least CD59 exon 4 was also absent. As expected, ionizing radiation frequently caused large deletions along chromosome 11. This technology can readily be used to rapidly analyze the mutant yield as well as the spectrum of mutations caused by a variety of genotoxic agents and provide greater insight into the mechanisms of mutagenesis.  相似文献   

8.
Viral expression systems offer the ability to generate high levels of a particular protein within a relatively short period of time. In particular, alphavirus constructs based on Sindbis virus (SV) and Semliki Forest virus (SFV) are promising vehicles as they are cytoplasmic vectors with the potential for high expression levels. Two such alphavirus vectors were utilized during the current study to infect two commercially relevant cell lines, baby hamster kidney (BHK) and Chinese hamster ovary (CHO); the first was a fully competent SV derivative carrying the gene for chloramphenicol acetyltransferase (dsSV-CAT), while the second was a replication deficient SFV construct containing the human interleukin-12 (IL-12) p35 and p40 genes (SFV-IL-12). Since infection with these vectors induced apoptosis in both cell lines, the present effort was dedicated to determining the ability of anti-apoptosis genes to limit the cell death associated with these virus constructs. Infection with the dsSV-CAT vector resulted in the rapid death of BHK and CHO cells within 4 days, a phenomenon which was considerably delayed by stably overexpressing bcl-2 or bcl-x(L). In fact, cellular lifespans were doubled in both BHK-bcl2 and CHO-bclx(L) cells relative to the parental cell lines. Furthermore, the presence of these gene products provided increases of up to 2-fold in recombinant CAT production. Overexpression of bcl-2 and bcl-x(L) also altered the response of these cells upon infection with SFV-IL-12. While the parental cell lines were completely nonviable within 1 week, the BHK-bcl2, BHK-bclx(L), and CHO-bclx(L) cells each recovered from the infection, resuming exponential growth and regaining viabilities of over 90% by 9 days post-infection. Total IL-12 productivities were nearly doubled by Bcl-2 and Bcl-x(L) in the CHO cells, although this effect was apparently cell-line specific, as the native BHK cells were able to secrete more IL-12 than either of its transfected derivatives. Regardless, the presence of the anti-apoptosis genes allowed the production of IL-12 to be maintained, albeit at low levels, from each of the cell lines for the duration of the culture process. Therefore, overexpression of bcl-2 family members can have a significant impact on culture viabilities and recombinant protein production during alphavirus infections of mammalian cells.  相似文献   

9.
10.
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology as a mammalian host cell platform for expressing genes of interest. Previously, we constructed a detailed physical chromosomal map of the CHO DG44 cell line by fluorescence in situ hybridization (FISH) imaging using 303 bacterial artificial chromosome (BAC) clones as hybridization probes (BAC-FISH). BAC-FISH results revealed that the two longest chromosomes were completely paired. However, other chromosomes featured partial deletions or rearrangements. In this study, we determined the end sequences of 303 BAC clones (BAC end sequences), which were used for BAC-FISH probes. Among 606 BAC-end sequences (BESs) (forward and reverse ends), 558 could be determined. We performed a comparison between all determined BESs and mouse genome sequences using NCBI BLAST. Among these 558 BESs, 465 showed high homology to mouse chromosomal sequences. We analyzed the locations of these BACs in chromosomes of the CHO DG44 cell line using a physical chromosomal map. From the obtained results, we investigated the regional similarities among CHO chromosomes (A–T) and mouse chromosomes (1–19 and sex) about 217 BESs (46.7% of 465 high homologous BESs). Twenty-three specific narrow regions in 13 chromosomes of the CHO DG44 cell line showed high homology to mouse chromosomes, but most of other regions did not show significant correlations with the mouse genome. These results contribute to accurate alignments of chromosomes of Chinese hamster and its genome sequence, analysis of chromosomal instability in CHO cells, and the development of target locations for gene and/or genome editing techniques.  相似文献   

11.
12.
Recombinant human adenovirus (rhAd) has been used extensively for functional protein expression in mammalian cells including those of human and nonhuman origin. High-level protein production by rhAd vectors is expected in their permissive host cells, such as the human embryonic kidney 293 (HEK293) cell line. This is attributed primarily to the permissiveness of HEK293 to rhAd infection and their ability to support viral DNA replication by providing the missing El proteins. However, the HEK293 cells tend to suffer from cytopathic effect (CPE) as a result of virus replication. Under these circumstances, the host cell function is compromised and the culture viability will be reduced. Consequently, newly synthesized polypeptides may not be processed properly at posttranslational levels. Therefore, the usefulness of HEK293 cells for the expression of complex targets such as secreted proteins could be limited. In the search for a more robust cell line as a production host for rhAd expression vectors, a series of screening experiments was performed to isolate clones from Chinese hamster ovary-K1 (CHO-K1) cells. First, multiple rounds of infection of CHO-K1 cells were performed utilizing an rhAd expressing GFP. After each cycle of infection, a small population of CHO cells with high GFP levels was enriched by FACS. Second, individual clones more permissive to human adenovirus infection were isolated from the highly enriched subpopulation by serial dilution. A single clone, designated CHO-K1-C5, was found to be particularly permissive to rhAd infection than the parental pool and has served as a production host in the successful expression of several secreted proteins.  相似文献   

13.
Engineering of the cell cycle can be an effective means for bypassing growth factor requirements of animal cells. Cloned human E2F-1 from Nalm 6 cells was subcloned into pRc/CMV and transfected into Chinese hamster ovary (CHO) cells. Ten stable transfectant clones isolated from cells cultured under neomycin-resistance selection pressure all expressed significantly higher amounts of E2F-1 than control cells as determined by Western analysis. Confocal immunofluorescent microscopy and Southern analysis of several clones also provided evidence for the expression of cloned E2F-1 in these cells. CHO K1:E2F-1 cells are able to proliferate on well-defined serum- and protein-free basal medium and exhibit an S-phase extended by 65% compared to CHO K1 cells mitogenically stimulated by basic fibroblast growth factor (bFGF). Two-dimensional electrophoresis of the intracellular proteins of E2F-1 clones shows an increase in 236 gene products compared to CHO K1 control cells, further verifying a functional regulatory role of cloned E2F-1 in CHO cells. Among these upregulated species is the cell cycle regulatory protein, cyclin A, which has already been shown to be regulated by E2F-1 in human fibroblasts. Overexpression of cloned E2F-1 in CHO cells is a potentially useful new strategy for bypassing serum requirements in mammalian cell culture. Furthermore, such cell cycle control stimulus-protein pattern response data can contribute to a clearer understanding of complex multigene networks involved in mammalian cell cycle regulation. (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Chinese hamster ovary (CHO) cells are traditionally regarded as nonpermissive cells for herpes simplex virus type 1 (HSV-1) infection as they lack the specific entry receptors, and modified CHO cells have been instrumental in the identification of HSV-1 receptors in numerous studies. In this report we demonstrate that the HSV-1 strain 17+ variant HSV1716 is able to infect unmodified CHO cells but only if the virus is propagated in baby hamster kidney (BHK) cells. Infection of CHO cells by BHK-propagated HSV1716 results in expression of immediate-early, early, and late viral genes, and infectious progeny virions are produced. In normally cultured CHO cells, up to a maximum of 50% of cells were permissive for BHK-propagated HSV1716 infection, with 24 h of serum starvation increasing this to 100% of CHO cells, suggesting that the mechanism used by BHK-propagated virus to infect CHO cells was cell cycle dependent. The altered tropism of HSV1716 was also evident in another nonpermissive mouse melanoma cell line and is an exclusive property resulting from propagation of the virus using BHK cells, as viruses propagated on Vero, C8161 (a human melanoma cell line), or indeed, CHO cells were completely unable to infect either CHO or mouse melanoma cells.  相似文献   

15.
To facilitate the use of large-insert bacterial clones for functional analysis, we have constructed new bacterial artificial chromosome vectors, pPAC4 and pBACe4. These vectors contain two genetic elements that enable stable maintenance of the clones in mammalian cells: (1) The Epstein-Barr virus replicon, oriP, is included to ensure stable episomal propagation of the large insert clones upon transfection into mammalian cells. (2) The blasticidin deaminase gene is placed in a eukaryotic expression cassette to enable selection for the desired mammalian clones by using the nucleoside antibiotic blasticidin. Sequences important to select for loxP-specific genome targeting in mammalian chromosomes are also present. In addition, we demonstrate that the attTn7 sequence present on the vectors permits specific addition of selected features to the library clones. Unique sites have also been included in the vector to enable linearization of the large-insert clones, e. g., for optical mapping studies. The pPAC4 vector has been used to generate libraries from the human, mouse, and rat genomes. We believe that clones from these libraries would serve as an important reagent in functional experiments, including the identification or validation of candidate disease genes, by transferring a particular clone containing the relevant wildtype gene into mutant cells or transgenic or knock-out animals.  相似文献   

16.
A 4 Mb human mini-chromosome, ΔΔ2, was transferred from Chinese hamster ovary (CHO) cells into a mouse L cell line. The mini-chromosome could be transferred intact into the L cells, with 112/119 clones maintaining a mini-chromosome of the same size as the original. Ten clones were grown for 30 days in continuous culture. The mini-chromosomes were maintained stably with or without selection at a copy number of 1–2 per cell and none experienced any size alterations, as determined by pulsed-field gel electrophoresis. Thus ΔΔ2 is structurally and mitotically stable in L cells. This contrasts with results in embryonic stem cells, in which ΔΔ2 is highly unstable. These findings indicate that established somatic cell lines, such as L cells and CHO cells, have less stringent controls over centromeric function than do normal embryonic cells. Received: 4 December 1997; in revised form: 25 February 1998 / Accepted: 14 April 1998  相似文献   

17.
Previous studies suggest that secretion of cloned proteins synthesized by recombinant Chinese hamster ovary (CHO) cells can be adenosine triphosphate (ATP) limited. Other research indicates that the presence of cloned Vitreoscilla hemoglobin (VHb) enhances ATP production in oxygen-limited Escherichia coli. To evaluate the influence of VHb expression on recombinant CHO cell productivity, the vhb gene has been fused to the mouse mammary tumor virus (MMTV) promoter and cloned in a CHO cell line previously engineered to express human tissue plasminogen activator (tPA). Western blot analysis confirms dexamethasone-inducible VHb expression in all of the clones tested. Batch cultivation experiments with one VHb-expressing clone and the parental CHO-tPA expressing cells. The VHb-expressing clone exhibits specific tPA production 40 to 100% greater than the parental CHO-tPA culture. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
We have previously shown that Chinese hamster ovary (CHO) cells are resistant to infection by gibbon ape leukemia virus and amphotropic pseudotype retroviral vectors because of the secretion of factors that inhibit retrovirus infection. Such factors were not secreted by any mouse or human cell lines tested. Secretion of the inhibitors and resistance to infection are abrogated by treatment of CHO cells with the glycosylation inhibitor tunicamycin. Here we show that the inhibitory activities against gibbon ape leukemia virus and amphotropic viruses are partially separable and that glycosylation mutations in CHO cells mimic the effects of tunicamycin treatment. We find that several hamster cell lines derived from both Chinese and Syrian hamsters secrete inhibitors of retrovirus infection, showing that these inhibitors are not unique to the CHO cell line. Inhibitory factors are also present in the sera of Chinese and Syrian hamsters but were not detected in bovine serum. These results suggest the presence of specific factors that function to inhibit retrovirus infection in hamsters.  相似文献   

19.
Our group and others have recently demonstrated the ability of recombinant baculoviruses to transduce mammalian cells at high frequency. To further characterize the use of baculovirus as a mammalian gene delivery system, we examined the status of transduced DNA stably maintained in Chinese hamster ovary (CHO) cells. Four independent clones carrying two introduced markers, the genes for neomycin resistance (Neo) and green fluorescent protein (GFP), were selected. PCR analysis, Southern blotting, and DNA sequencing showed that discrete portions of the 148-kb baculovirus DNA were present as single-copy fragments ranging in size from 5 to 18 kb. Integration into the CHO cell genome was confirmed by fluorescent in situ hybridization (FISH) analysis. For one clone, the left and right viral/chromosomal junctions were determined by DNA sequencing of inverse PCR products. Similarly, for a different clone, the left viral/chromosomal junction was determined; however, the right junction sequence revealed the joining to another viral fragment by a short homology (microhomology), a hallmark of illegitimate recombination. The random viral breakpoints and the lack of homology between the virus and flanking chromosomal sequences are also suggestive of an illegitimate integration mechanism. To examine the long-term stability of reporter gene expression, all four clones were grown continuously for 36 passages in either the presence or absence of selection for Neo. Periodic assays over a 5-month period showed no loss of GFP expression for at least two of the clones. This report represents the first detailed analysis of baculovirus integrants within mammalian cells. The potential advantages of the baculovirus system for the stable integration of genetic material into mammalian genomes are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号