首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The activation of antithrombin (AT) by heparin facilitates the exosite-dependent interaction of the serpin with factors IXa (FIXa) and Xa (FXa), thereby improving the rate of reactions by 300- to 500-fold. Relative to FXa, AT inhibits FIXa with ∼40-fold slower rate constant. Structural data suggest that differences in the residues of the 39-loop (residues 31–41) may partly be responsible for the differential reactivity of the two proteases with AT. This loop is highly acidic in FXa, containing three Glu residues at positions 36, 37, and 39. By contrast, the loop is shorter by one residue in FIXa (residue 37 is missing), and it contains a Lys and an Asp at positions 36 and 39, respectively. To determine whether differences in the residues of this loop contribute to the slower reactivity of FIXa with AT, we prepared an FIXa/FXa chimera in which the 39-loop of the protease was replaced with the corresponding loop of FXa. The chimeric mutant cleaved a FIXa-specific chromogenic substrate with normal catalytic efficiency, however, the mutant exhibited ∼5-fold enhanced reactivity with AT specifically in the absence of the cofactor, heparin. Further studies revealed that the FIXa mutant activates factor X with ∼4-fold decreased kcat and ∼2-fold decreased Km, although the mutant interacted normally with factor VIIIa. Based on these results we conclude that residues of the 39-loop regulate the cofactor-independent interaction of FIXa with its physiological inhibitor AT and substrate factor X.  相似文献   

2.
We report here the crystal structure of the DNA hexamer duplex d(CGCGCA).d(TGCGCG) at 1.71 Å resolution. The crystals, in orthorhombic space group, were grown in the presence of cobalt hexammine, a known inducer of the left-handed Z form of DNA. The interaction of this ion with the DNA helix results in a change of the adenine base from the common amino tautomeric form to the imino tautomer. Consequently the A:T base pair is disrupted from the normal Watson–Crick base pairing to a ‘wobble’ like base pairing. This change is accommodated easily within the helix, and the helical parameters are those expected for Z-DNA. When the cobalt hexammine concentration is decreased slightly in the crystallization conditions, the duplex crystallizes in a different, hexagonal space group, with two hexamer duplexes in the asymmetric unit. One of these is situated on a crystallographic 6-fold screw axis, leading to disorder. The tautomeric shift is not observed in this space group. We show that the change in inter-helix interactions that lead to the two different space groups probably arise from the small decrease in ion concentration, and consequently disordered positions for the ion.  相似文献   

3.
A RNA aptamer (R06) raised against the trans- activation responsive (TAR) element of HIV-1 was previously shown to generate a loop–loop complex whose stability is strongly dependent on the selected G and A residues closing the aptamer loop. The rationally designed TAR* RNA hairpin with a loop sequence fully complementary to the TAR element, closed by U,A residues, also engages in a loop–loop association with TAR, but with a lower stability compared with the TAR–R06 complex. UV absorption monitored thermal denaturation showed that TAR–TAR*(GA), in which the U,A kissing residues were exchanged for G,A, is as stable as the selected TAR–R06 complex. Consequently, we used the TAR–TAR* structure deduced from NMR studies to model the TAR–R06 complex with either GA, CA or UA loop closing residues. The results of the molecular dynamics trajectories correlate well with the thermal denaturation experiments and show that the increased stability of the GA variant results from an optimized stacking of the bases at the stem–loop junction and from stable interbackbone hydrogen bonds.  相似文献   

4.
The transmission of infectious prions into different host species requires compatible prion protein (PrP) primary structures, and even one heterologous residue at a pivotal position can block prion infection. Mapping the key amino acid positions that govern cross-species prion conversion has not yet been possible, although certain residue positions have been identified as restrictive, including residues in the β22 loop region of PrP. To further define how β22 residues impact conversion, we investigated residue substitutions in PrPC using an in vitro prion conversion assay. Within the β22 loop, a tyrosine residue at position 169 is strictly conserved among mammals, and transgenic mice expressing mouse PrP having the Y169G, S170N, and N174T substitutions resist prion infection. To better understand the structural requirements of specific residues for conversion initiated by mouse prions, we substituted a diverse array of amino acids at position 169 of PrP. We found that the substitution of glycine, leucine, or glutamine at position 169 reduced conversion by ∼75%. In contrast, replacing tyrosine 169 with either of the bulky, aromatic residues, phenylalanine or tryptophan, supported efficient prion conversion. We propose a model based on a requirement for tightly interdigitating complementary amino acid side chains within specific domains of adjacent PrP molecules, known as “steric zippers,” to explain these results. Collectively, these studies suggest that an aromatic residue at position 169 supports efficient prion conversion.  相似文献   

5.
Helix–hairpin–helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein–protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)2 domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)2 domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each α-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the α-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glyco­s­y­lases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)2 domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)2 functional unit.  相似文献   

6.
7.
We have used random sequence mutagenesis to generate mutants of DNA polymerase β in an effort to identify amino acid residues important for function, catalytic efficiency and fidelity of replication. A library containing 100 000 mutants at residues 274–278 in the N-helix of the thumb subdomain of the polymerase was constructed and screened for polymerase activity by genetic complementation. The genetic screen identified 4000 active pol β mutants, 146 of which were sequenced. Each of the five positions mutagenized tolerated substitutions, but residues G274 and F278 were only found substituted in combination with mutations at other positions. The least conserved residue, D276, was replaced by a variety of amino acids and, therefore, does not appear to be essential for function. Steady-state kinetic analysis, however, demonstrated that D276 may be important for catalytic efficiency. Mutant D276E exhibited a 25-fold increase in catalytic efficiency over the wild-type enzyme but also a 25-fold increase in G:T misincorporation efficiency. We present a structural model that can account for the observations and we discuss the implications of this study for the question of enzyme optimization by natural selection.  相似文献   

8.
Abstract

The stereochemistry and the dynamics of two loops of yeast tRNA-asp, the thymine loop and the anticodon loop, are compared in the hope of a better understanding of the relationships between loop sequence and loop topology. Both loops are seven residues long and both present sharp turns after the second residue, U33 and ψ55, stabilized by hydrogen bonds between N3-H of the pyrimidine and the phosphates of C36 and A58 and stacking interactions of the pyrimidine ring with the phosphates of U35 and A57, respectively. In the thymine loop, the two purines following C56, A57 and A58, open up to leave space for the intercalation of the first invariant guanine residue of the D-loop, while the two pyrimidine bases, which follow A58, turn away from the stacking pattern of the thymine arm and stack instead with the last base pair of the dihydrouridine arm A15-U48. In the anticodon loop, however, the bases G34 to C38 form an helical stack in continuity with the anticodon stem on the 3′-end. At the same time C36 forms Watson-Crick hydrogen bonds with G34 of a twofold symmetrically related molecule. The anticodon-anticodon base pairing interactions between symmetrically-related molecules are stabilized by stacking with the modified base G37 on both sides of the triplet. Some comparisons are made with the structure of yeast tRNA-phe and some implications about the structure of mitochondrial tRNAs are discussed.  相似文献   

9.
A precise molecular map of the nidogen binding site of laminins was obtained by site-directed mutagenesis and structural analysis of the 56 residue LE module gamma1III4 of their gamma1 chain. This demonstrated the crucial importance of the sequence DPNAV (position 800-804) in the disulfide-bonded loop a, with major contributions made by all residues except P801. Different substitutions of these residues emphasized the essential role of the negative charge (D800) and carboxamide group (N802) as well as their spacings and hydrophobic contacts (V804) for interaction, and predict direct contacts of these three residues with a complementary binding region of nidogen. An inactivating A803-V substitution, however, may lead to a distorted loop structure. A lower but still significant contribution originates from the non-contiguous link/loop c sequence LKCIY (positions 815-819) which is spatially close to the loop a sequence. The link residues (L815 and K816) provide main chain hydrogen bonds to N806 and a side chain hydrogen bond to the V804 carbonyl and thus stabilize the conformation of loop a. The side chains of I818 and Y819 together with P842 from loop d form hydrophobic contacts that provide further stability but could possibly also participate in direct ligation. The nidogen binding epitope is therefore localized on a narrow ridge and has a length of approximately 17 angstroms. The data also indicate a strong conservation of the epitope in the laminin gamma1 chains of several invertebrates.  相似文献   

10.
Molecular interactions of human Exo1 with DNA   总被引:3,自引:0,他引:3       下载免费PDF全文
Human Exo1 is a member of the RAD2 nuclease family with roles in replication, repair and recombination. Despite sharing significant amino acid sequence homology, the RAD2 proteins exhibit disparate nuclease properties and biological functions. In order to identify elements that dictate substrate selectivity within the RAD2 family, we sought to identify residues key to Exo1 nuclease activity and to characterize the molecular details of the human Exo1–DNA interaction. Site-specific mutagenesis studies demonstrate that amino acids D78, D173 and D225 are critical for Exo1 nuclease function. In addition, we show that the chemical nature of the 5′-terminus has a major impact on Exo1 nuclease efficiency, with a 5′-phosphate group stimulating degradation 10-fold and a 5′-biotin inhibiting degradation 10-fold (relative to a 5′-hydroxyl moiety). An abasic lesion located within a substrate DNA strand impedes Exo1 nucleolytic degradation, and a 5′-terminal abasic residue reduces nuclease efficiency 2-fold. Hydroxyl radical footprinting indicates that Exo1 binds predominantly along the minor groove of flap DNA, downstream of the junction. As will be discussed, our results favor the notion that the single-stranded DNA structure is pinched by the helical arch of the protein and not threaded through this key recognition loop. Furthermore, our studies indicate that significant, presumably biologically relevant, differences exist between the active site dynamics of Exo1 and Fen1.  相似文献   

11.
Loop stereochemistry and dynamics in transfer RNA   总被引:6,自引:0,他引:6  
The stereochemistry and the dynamics of two loops of yeast tRNA-asp, the thymine loop and the anticodon loop, are compared in the hope of a better understanding of the relationships between loop sequence and loop topology. Both loops are seven residues long and both present sharp turns after the second residue, U33 and psi 55, stabilized by hydrogen bonds between N3-H of the pyrimidine and the phosphates of C36 and A58 and stacking interactions of the pyrimidine ring with the phosphates of U35 and A57, respectively. In the thymine loop, the two purines following C56, A57 and A58, open up to leave space for the intercalation of the first invariant guanine residue of the D-loop, while the two pyrimidine bases, which follow A58, turn away from the stacking pattern of the thymine arm and stack instead with the last base pair of the dihydrouridine arm A15-U48. In the anticodon loop, however, the bases G34 to C38 form an helical stack in continuity with the anticodon stem on the 3'-end. At the same time C36 forms Watson-Crick hydrogen bonds with G34 of a twofold symmetrically related molecule. The anticodon-anticodon base pairing interactions between symmetrically-related molecules are stabilized by stacking with the modified base G37 on both sides of the triplet. Some comparisons are made with the structure of yeast tRNA-phe and some implications about the structure of mitochondrial tRNAs are discussed.  相似文献   

12.
A new technique of PCR hot start using oligonucleotide primers with a stem–loop structure is developed here. The molecular beacon oligonucleotide structure without any chromophore addition to the ends was used. The 3′-end sequence of the primers was complementary to the target and five or six nucleotides complementary to the 3′-end were added to the 5′-end. During preparation of the reaction mixture and initial heating, the oligonucleotide has a stem–loop structure and cannot serve as an effective primer for DNA polymerase. After heating to the annealing temperature it acquires a linear structure and primer extension can begin.  相似文献   

13.

Background

The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the Cα atoms which are modeled with modest accuracy.

Methodology/Principal Findings

In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of Cα atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of Cα. We extend the method further to recognize potential protein-protein interface residues.

Conclusion/ Significance

Our approach to identify buried and exposed residues solely from the positions of Cα atoms resulted in an accuracy of 84%, sensitivity of 83–89% and specificity of 67–94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70–96% and specificity of 58–94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from Cα positions and all-atom models suggested that, recognition of interfacial residues using Cα atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only Cα positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly.  相似文献   

14.
The secondary structure of a recently identified ATP-binding RNA aptamer consists of apurine-rich 11-residue internal loop positioned opposite a single guanine bulge flanked oneither side by helical stem segments. The ATP ligand targets the internal loop and bulgedomains, inducing a structural transition in this RNA segment on complex formation.Specifically, 10 new slowly exchanging proton resonances in the imino, amino and sugarhydroxyl chemical shift range are observed on AMP–RNA aptamer complex formation.This paper outlines site-specific labeling approaches to identify slowly exchanging imino(guanine) and amino (guanine and adenine) protons in internal loop and bulge segments ofcompact RNA folds such as found in the AMP–RNA aptamer complex. One approachincorporates 15N-labeled guanine (N1 imino and N2 amino positions) and 15N-labeledadenine (N6 amino position), one residue at a time, in the AMP-binding RNA aptamer, withlabeling incorporation through chemical synthesis facilitated by generating the aptamer fromtwo separate strands. The unambiguous assignments deduced from the 15N labeling studieshave been verified from an independent labeling strategy where individual guanines in theinternal loop have been replaced, one at a time, by inosines and assignments were made onthe basis of the large 2 ppm downfield shift of the guanine imino protons on inosinesubstitution. The strengths and limitations of the inosine-for-guanine substitution approachemerge from our studies on the AMP–RNA aptamer complex. The assignment of theinternal loop and bulge imino and amino protons was critical in our efforts to define thesolution structure of the AMP–RNA aptamer complex since these slowly exchangingprotons exhibit a large number of long-range intramolecular NOEs within the RNA, as wellas intermolecular NOEs to the AMP in the complex. The current application of specific 15Nand inosine labeling approaches for exchangeable imino and amino proton assignments in thenonhelical segments of an RNA aptamer complex in our laboratory complements selective 2Hand 13C approaches to assign nonexchangeable base and sugar protons in RNA andligand–RNA complexes reported in the literature.  相似文献   

15.
Cobalt hexammine [Co(NH3)6(3+)] is an efficient DNA complexing agent which significantly perturbs nucleic acid secondary structure. We have employed red excitation (647.1 nm) from a krypton laser to obtain Raman spectra of the highly colored complexes formed between cobalt hexammine and crystals of the DNA oligomers, d(5BrCGAT5BrCG) and d(CGCGATCGCG), both of which incorporate out-of-alternation pyrimidine/purine sequences. The Co(NH3)6(3+) complex of d(5BrCGAT5BrCG) exhibits a typical Z-form Raman signature, similar to that reported previously for the alternating d(CGCGCG) sequence. Comparison of the Raman bands of d(5BrCGAT5BrCG) with those of other oligonucleotide and polynucleotide structures suggests that C3'-endo/syn and C3'-endo/anti thymidines may exhibit distinctive nucleoside conformation markers, and tentative assignments are proposed. The Raman markers for C2'-endo/anti adenosine in this Z-DNA are consistent with those reported previously for B-DNA crystals containing C2'-endo/anti dA. Raman bands of the cobalt hexammine complex of d(CGCGATCGCG) are those of B-DNA, but with significant differences from the previously characterized B-DNA dodecamer, d(CGCAAATTTGCG). The observed differences suggest an unusual deoxyguanosine conformer, possibly related to a previously characterized structural intermediate in the B-->Z transition. The present results show that crystallization of d(CGCGATCGCG) in the presence of cobalt hexammine is not alone sufficient to induce the left-handed Z-DNA conformation. This investigation represents the first application of off-resonance Raman spectroscopy for characterization of highly chromophoric DNA and illustrates the feasibility of the Raman method for investigating other structurally perturbed states of DNA-cobalt hexammine complexes.  相似文献   

16.
Gaucher disease is caused by mutations in the enzyme acid β-glucosidase (GCase), the most common of which is the substitution of serine for asparagine at residue 370 (N370S). To characterize the nature of this mutation, we expressed human N370S GCase in insect cells and compared the x-ray structure and biochemical properties of the purified protein with that of the recombinant human GCase (imiglucerase, Cerezyme®). The x-ray structure of N370S mutant acid β-glucosidase at acidic and neutral pH values indicates that the overall folding of the N370S mutant is identical to that of recombinant GCase. Subtle differences were observed in the conformation of a flexible loop at the active site and in the hydrogen bonding ability of aromatic residues on this loop with residue 370 and the catalytic residues Glu-235 and Glu-340. Circular dichroism spectroscopy showed a pH-dependent change in the environment of tryptophan residues in imiglucerase that is absent in N370S GCase. The mutant protein was catalytically deficient with reduced Vmax and increased Km values for the substrate p-nitrophenyl-β-d-glucopyranoside and reduced sensitivity to competitive inhibitors. N370S GCase was more stable to thermal denaturation and had an increased lysosomal half-life compared with imiglucerase following uptake into macrophages. The competitive inhibitor N-(n-nonyl)deoxynojirimycin increased lysosomal levels of both N370S and imiglucerase 2–3-fold by reducing lysosomal degradation. Overall, these data indicate that the N370S mutation results in a normally folded but less flexible protein with reduced catalytic activity compared with imiglucerase.  相似文献   

17.
Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα–Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K–D49, E96R–D28, E96K–D28, S440K–E70, T231K–D388, and Q277E–D282 was detected, respectively. Reversing the polarity of T231K–D388 to T231D–D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K) generated a melting temperature increase of 15.7°C. Thus, this study demonstrated a novel method for the thermal adaptive design of salt bridges through inference of suitable positions and substitutions.  相似文献   

18.
OXA-58 is a class D β-lactamase from the multi-drug resistant Acinetobacter baumannii. We determined the crystal structure of OXA-58 in a novel crystal, and revealed the structure of the substrate-binding cleft in a closed state, distinct from a previously reported OXA-58 crystal structure with the binding cleft in an open state. In the closed state, the movement of three loops (α3–α4, β6–β7, and β8–α10) forms an arch-like architecture over the binding cleft through interaction between the Phe113 residues of α3–α4 and Met225 of β6–β7. This structure suggests the involvement of these flexible loops in OXA-58 substrate binding. In contrast to the mobile loops, the Ω-loop appeared static, including the conserved loop residues and their hydrogen bonds; the pivotal residue Trp169 within the Ω-loop, ζ-carbamic acid of the modified base catalyst residue Lys86, and nucleophilic residue Ser83. The stability of OXA-58 was enhanced concomitant with an increase in the hydrolytic activity catalyzed by NaHCO3-dependent ζ-carbamic acid formation, with an EC50 of 0.34 mM. The W169A mutant enzyme was significantly thermally unstable even in the presence of 100 mM NaHCO3, whereas the S83A mutant was stabilized with NaHCO3-dependent activation. The ζ-carbamic acid was shown to increase not only OXA-58 hydrolytic activity but also OXA-58 stability through the formation of a hydrogen bond network connected to the Ω-loop with Ser83 and Trp169. Thus, the static Ω-loop is important for OXA-58 stability, whereas the mobile loops of the substrate-binding cleft form the basis for accommodation of the various substituents of β-lactam backbone.  相似文献   

19.
We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20–30 base oligodeoxynucleotides with 5–6 bp complementary ends to which a 5′ fluorophore and 3′ quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem–loop of the SQRM suggests that SQRM be made to target natural stem–loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells.  相似文献   

20.
Human cationic and anionic trypsins are sulfated on Tyr154, a residue which helps to shape the prime side substrate-binding subsites. Here, we used phage display technology to assess the significance of tyrosine sulfation for the specificity of human trypsins. The prime side residues P1′–P4′ in the binding loop of bovine pancreatic trypsin inhibitor (BPTI) were fully randomized and tight binding inhibitor phages were selected against non-sulfated and sulfated human cationic trypsin. The selection pattern for the two targets differed mostly at the P2′ position, where variants selected against non-sulfated trypsin contained primarily aliphatic residues (Leu, Ile, Met), while variants selected against sulfated trypsin were enriched also for Arg. BPTI variants carrying Arg, Lys, Ile, Leu or Ala at the P2′ position of the binding loop were purified and equilibrium dissociation constants were determined against non-sulfated and sulfated cationic and anionic human trypsins. BPTI variants harboring apolar residues at P2′ exhibited 3–12-fold lower affinity to sulfated trypsin relative to the non-sulfated enzyme, whereas BPTI variants containing basic residues at P2′ had comparable affinity to both trypsin forms. Taken together, the observations demonstrate that the tyrosyl sulfate in human trypsins interacts with the P2′ position of the substrate-like inhibitor and this modification increases P2′ selectivity towards basic side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号