首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Synaptic plasma membrane (SPM)-bound, extracellular-facing (ecto) ATPases are Mg2+- or Ca2+-activated enzymes that regulate the synaptic levels of the excitatory neurotransmitter ATP and provide ADP for the further ecto-nucleotidase-mediated production of the inhibitory neuromodulator adenosine. The present results show that low concentrations (IC50 = 4 M) of the lipid peroxidation product 4-hydroxynonenal (HNE) inhibited up to about 80% of the ecto-ATPase activity of SPM purified from rat brain cerebral cortex. In contrast, low concentrations of HNE did not inhibit the activity of the intracellular-facing Na+, K+, Mg2+-ATPase. In addition, the inhibition of SPM ecto-ATPase activity by HNE was largely irreversible and pH-dependent. Furthermore, structure-activity studies demonstrate that inhibition was dependent on the presence of the reactive functional groups of HNE. These findings suggest that HNE selectively inhibits SPM ecto-ATPase activity by a mechanism that may involve the covalent modification of functionally-critical nucleophilic amino acids. It is proposed that inhibition of SPM ecto-ATPase activity could contribute to the mechanisms by which lipid peroxidation and HNE formation promote excitotoxicity.  相似文献   

2.
Abstract: Traumatic injury to the spinal cord initiates a host of pathophysiological events that are secondary to the initial insult. One such event is the accumulation of free radicals that damage lipids, proteins, and nucleic acids. A major reactive product formed following lipid peroxidation is the aldehyde, 4-hydroxynonenal (HNE), which cross-links to side chain amino acids and inhibits the function of several key metabolic enzymes. In the present study, we used immunocytochemical and immunoblotting techniques to examine the accumulation of protein-bound HNE, and synaptosomal preparations to study the effects of spinal cord injury and HNE formation on glutamate uptake. Protein-bound HNE increased in content in the damaged spinal cord at early times following injury (1–24 h) and was found to accumulate in myelinated fibers distant to the site of injury. Immunoblots revealed that protein-bound HNE levels increased dramatically over the same postinjury interval. Glutamate uptake in synaptosomal preparations from injured spinal cords was decreased by 65% at 24 h following injury. Treatment of control spinal cord synaptosomes with HNE was found to decrease significantly, in a dose-dependent fashion, glutamate uptake, an effect that was mimicked by inducers of lipid peroxidation. Taken together, these findings demonstrate that the lipid peroxidation product HNE rapidly accumulates in the spinal cord following injury and that a major consequence of HNE accumulation is a decrease in glutamate uptake, which may potentiate neuronal cell dysfunction and death through excitotoxic mechanisms.  相似文献   

3.
Abstract: Alzheimer's disease (AD) is widely held to be a disorder associated with oxidative stress due, in part, to the membrane action of amyloid β-peptide (Aβ). Aβ-associated free radicals cause lipid peroxidation, a major product of which is 4-hydroxy-2- trans -nonenal (HNE). We determined whether HNE would alter the conformation of synaptosomal membrane proteins, which might be related to the known neurotoxicity of Aβ and HNE. Electron paramagnetic resonance spectroscopy, using a protein-specific spin label, MAL-6(2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl), was used to probe conformational changes in gerbil cortical synaptosomal membrane proteins, and a lipid-specific stearic acid label, 5-nitroxide stearate, was used to probe for HNE-induced alterations in the fluidity of the bilayer domain of these membranes. Synaptosomal membranes, incubated with low concentrations of HNE, exhibited changes in protein conformation and bilayer order and motion (fluidity). The changes in protein conformation were found to be concentration- and time-dependent. Significant protein conformational changes were observed at physiologically relevant concentrations of 1–10 µ M HNE, reminiscent of similar changes in synaptosomal membrane proteins from senile plaque- and Aβ-rich AD hippocampal and inferior parietal brain regions. HNE-induced modifications in the physical state of gerbil synaptosomal membrane proteins were prevented completely by using excess glutathione ethyl ester, known to protect neurons from HNE-caused neurotoxicity. Membrane fluidity was found to increase at higher concentrations of HNE (50 µ M ). The results obtained are discussed with relevance to the hypothesis of Aβ-induced free radical-mediated lipid peroxidation, leading to subsequent HNE-induced alterations in the structure and function of key membrane proteins with consequent neurotoxicity in AD brain.  相似文献   

4.
The formation, reactivity and toxicity of aldehydes originating from lipid peroxidation of cellular membranes are reviewed. Very reactive aldehydes, namely 4-hydroxyalkenals, were first shown to be formed in autoxidizing chemical systems. It was subsequently shown that 4-hydroxyalkenals are formed in biological conditions, i.e. during lipid peroxidation of liver microsomes incubated in the NADPH-Fe systems. Our studies carried out in collaboration with Hermann Esterbauer which led to the identification of 4-hydroxynonenal (4-HNE) are reported. 4-HNE was the most cytotoxic aldehyde and was then assumed as a model molecule of oxidative stress. Many other aldehydes (alkanals, alk-2-enals and dicarbonyl compounds) were then identified in peroxidizing liver microsomes or hepatocytes. The in vivo formation of aldehydes in liver of animals intoxicated with agents that promote lipid peroxidation was shown in further studies. In a first study, evidence was forwarded for aldehydes (very likely alkenals) bound to liver micro-somal proteins of CCl4 or BrCCl3-intoxicated rats. In a second study, 4-HNE and a number of other aldehydes (alkanals and alkenals) were identified in the free (non-protein bound) form in liver extracts from bromoben-zene or ally-1 alcohol-poisoned mice. The detection of free 4-HNE in the liver of CCl4 or BrCCl3-poisoned animals was obtained with the use of an electrochemical detector, which greatly increased the sensitivity of the HPLC method. Furthermore, membrane phospho-lipids bearing carbonyl groups were demonstrated in both in vitro (incubation of microsomes with NADPH-Fe) and in vivo (CCl4 or BrCCl3 intoxication) conditions. Finally, the results concerned with the histochemical detection of lipid peroxidation are reported. The methods used were based on the detection of lipid peroxidation-derived carbonyls. Very good results were obtained with the use of fluorescent reagents for carbonyls, in particular with 3-hydroxy-2-naphtoic acid hydrazide (NAH) and analysis with confocal scanning fluorescence microscopy with image video analysis. The significance of formation of toxic aldehydes in biological membranes is discussed.  相似文献   

5.
Abstract: Peroxidation of membrane lipids results in release of the aldehyde 4-hydroxynonenal (HNE), which is known to conjugate to specific amino acids of proteins and may alter their function. Because accumulating data indicate that free radicals mediate injury and death of neurons in Alzheimer's disease (AD) and because amyloid β-peptide (Aβ) can promote free radical production, we tested the hypothesis that HNE mediates Aβ25-35-induced disruption of neuronal ion homeostasis and cell death. Aβ induced large increases in levels of free and protein-bound HNE in cultured hippocampal cells. HNE was neurotoxic in a time- and concentration-dependent manner, and this toxicity was specific in that other aldehydic lipid peroxidation products were not neurotoxic. HNE impaired Na+,K+-ATPase activity and induced an increase of neuronal intracellular free Ca2+ concentration. HNE increased neuronal vulnerability to glutamate toxicity, and HNE toxicity was partially attenuated by NMDA receptor antagonists, suggesting an excitotoxic component to HNE neurotoxicity. Glutathione, which was previously shown to play a key role in HNE metabolism in nonneuronal cells, attenuated the neurotoxicities of both Aβ and HNE. The antioxidant propyl gallate protected neurons against Aβ toxicity but was less effective in protecting against HNE toxicity. Collectively, the data suggest that HNE mediates Aβ-induced oxidative damage to neuronal membrane proteins, which, in turn, leads to disruption of ion homeostasis and cell degeneration.  相似文献   

6.
《Free radical research》2013,47(2):81-89
4-hydroxynonenal (HNE) is one of the major breakdown products of cellular lipid peroxidation. Its effects on proliferation, ornithine decarboxylase (ODC) activity and DNA synthesis have been investigated in leukemic cell lines. The cells were incubated for 1 hour with different aldehyde concentrations, then washed and resuspended in medium with fresh foetal calf serum. HNE concentrations ranging from 10-5 to 10-6 M significantly inhibited ODC activity when induced by addition of fresh foetal calf serum both in K562 and HL-60 cells. 3H-Thymidine incorporation in K562 cells was also inhibited from 6 to 12 hours after the treatment. The same HNE concentrations did not inhibit ODC activity when added to cytosol, thus a direct action on the enzyme can be excluded. Moreover, HNE did not affect the half-life of ODC, so that a specific effect on ODC synthesis may be supposed. These data indicate a reduction of proliferative capacity of the cells and are consistent with the possibility that HNE, at concentrations close to those found in normal cells, plays a role in the control of cell proliferation.  相似文献   

7.
4-hydroxynonenal (HNE) is one of the major breakdown products of cellular lipid peroxidation. Its effects on proliferation, ornithine decarboxylase (ODC) activity and DNA synthesis have been investigated in leukemic cell lines. The cells were incubated for 1 hour with different aldehyde concentrations, then washed and resuspended in medium with fresh foetal calf serum. HNE concentrations ranging from 10-5 to 10-6 M significantly inhibited ODC activity when induced by addition of fresh foetal calf serum both in K562 and HL-60 cells. 3H-Thymidine incorporation in K562 cells was also inhibited from 6 to 12 hours after the treatment. The same HNE concentrations did not inhibit ODC activity when added to cytosol, thus a direct action on the enzyme can be excluded. Moreover, HNE did not affect the half-life of ODC, so that a specific effect on ODC synthesis may be supposed. These data indicate a reduction of proliferative capacity of the cells and are consistent with the possibility that HNE, at concentrations close to those found in normal cells, plays a role in the control of cell proliferation.  相似文献   

8.
《Free radical research》2013,47(6):421-427
In rat kidney cortex mitochondria, 4-hydroxynonenal inhibits state 3 respiration as well as uncoupled respiration at micromolar concentrations. The inhibition is more distinct for NAD-linked than for FAD-linked respiration. 4-Hydroxynonenal increases the state 4 respiration. It is assumed that 4-hydroxynonenal behaves like a decoupling agent. 4-Hydroxynonenal augments the inhibitory effect of 2, 4-dinitrophenol observed at superoptimal concentrations. 4-Hydroxynonenal is metabolised by renal mitochondria, and 4-hydroxynonenoic acid is one of the metabolites generated. This metabolite is without effect on respiration at concentrations up to 50 μM. Therefore, the effect of 4-hydroxynonenal on respiration is not mediated by this fatty acid derivative formed during respiratory measurements.  相似文献   

9.
4-Hydroxynonenal (HNE), a major aidchydic product of lipid peroxidation, is a chemoattractant for neutrophilic polymorphonuclear granulocytes in vitro. The question was studied, whether HNE is formed during the ingress of neutrophils in the Sephadex model of inflammation. The polydextrane Sephadex G-200, which causes an acute aseptic traumatic inflammation, was injected subcutaneously into rats. The implants were excised 6-36 hours later, and the neutrophils separated from the exsudate by centrifugation. After extraction with dichloromethane HNE was identified in the exsudate by non-derivative reversed phase HPLC in combination with on-line uv-spectroscopy. The concentration of HNE in the inflammatory focus did not correlate with the number of neutrophils present. While the peak of HNE coincided with the time point of the highest turnover rate of neutrophils (0.13 μM at 6 hrs after implantation), the highest number of neutrophils (about 100 million cells) occurred not earlier than 18 hrs later (24 hrs after onset of inflammation).

When neutrophils were isolated from the inflammatory focus and stimulated with Zymosan, they were able to produce HNE in vitro depending on the time of isolation. The highest production of HNE (0.17 μM) by phagocyting neutrophils was observed at the shortest inflammation time studied (3 hrs). In order to compare these results with the oxidative burst of neutrophils the formation of superoxide was also measured by the cytochrome c reduction assay in vitro. The maximum of the production rate of superoxide anion was observed at the same inflammation time (6 hrs), when the HNE maximum occurred. Cells which ingressed earliest (at 3 hrs) showed the highest production rate of superoxide per cell (307 × 10-18 moles per cell and 30min).

The ability of HNE to attract neutrophils in vivo was studied by adding synthetic HNE to the Sephadex gel and measuring the ingression of neutrophils afterwards. The application of 1 μM HNE in the focus did not change the number of neutrophils but 10 μM HNE increased the cell number by a factor of 3.

The results indicate that HNE is not only a chemoattractant for rat neutrophils in vitro but also in vivo. It is suggested that HNE is produced by selfdestruction of neutrophils during a traumatic inflammation and its production seems to be tightly connected to the oxidative burst of neutrophils. The idea of HNE as part of an autocatalytic cycle is supported whereby neutrophils which immigrate into an inflammatory focus produce HNE which stimulates the ingress of new neutrophils.  相似文献   

10.
Abstract: Amyloid β-peptides (Aβ) may alter the neuronal membrane lipid environment by changing fluidity and inducing free radical lipid peroxidation. The effects of Aβ1–40 and Aβ25–35 on the fluidity of lipids adjacent to proteins (annular fluidity), bulk lipid fluidity, and lipid peroxidation were determined in rat synaptic plasma membranes (SPM). A fluorescent method based on radiationless energy transfer from tryptophan of SPM proteins to pyrene and pyrene monomer-eximer formation was used to determine SPM annular fluidity and bulk fluidity, respectively. Lipid peroxidation was determined by the thiobarbituric acid assay. Annular fluidity and bulk fluidity of SPM were increased significantly ( p ≤ 0.02) by Aβ1–40. Similar effects on fluidity were observed for Aβ25–35 ( p ≤ 0.002). Increased fluidity was associated with lipid peroxidation. Both Aβ peptides significantly increased ( p ≤ 0.006) the amount of malondialdehyde in SPM. The addition of a water-soluble analogue of vitamin E (Trolox) inhibited effects of Aβ on lipid peroxidation and fluidity in SPM. The fluidizing action of Aβ peptides on SPM may be due to the induction of lipid peroxidation by those peptides. Aβ-induced changes in neuronal function, such as ion flux and enzyme activity, that have been reported previously may result from the combined effects of lipid peroxidation and increased membrane fluidity.  相似文献   

11.
Abstract: Deposits of amyloid β-peptide (Aβ), reduced glucose uptake into brain cells, oxidative damage to cellular proteins and lipids, and excitotoxic mechanisms have all been suggested to play roles in the neurodegenerative process in Alzheimer's disease. Synapse loss is closely correlated with cognitive impairments in Alzheimer's disease, suggesting that the synapse may be the site at which degenerative mechanisms are initiated and propagated. We report that Aβ causes oxyradical-mediated impairment of glucose transport, glutamate transport, and mitochondrial function in rat neocortical synaptosomes. Aβ induced membrane lipid peroxidation in synaptosomes that occurred within 1 h of exposure; significant decreases in glucose transport occurred within 1 h of exposure to Aβ and decreased further with time. The lipid peroxidation product 4-hydroxynonenal conjugated to synaptosomal proteins and impaired glucose transport; several antioxidants prevented Aβ-induced impairment of glucose transport, indicating that lipid peroxidation was causally linked to this adverse action of Aβ. FeSO4 (an initiator of lipid peroxidation), Aβ, and 4-hydroxynonenal each induced accumulation of mitochondrial reactive oxygen species, caused concentration-dependent decreases in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, and reduced cellular ATP levels significantly. Aβ also impaired glutamate transport, an effect blocked by antioxidants. These data suggest that Aβ induces membrane lipid peroxidation, which results in impairment of the function of membrane glucose and glutamate transporters, altered mitochondrial function, and a deficit in ATP levels; 4-hydroxynonenal appears to be a mediator of these actions of Aβ. These data suggest that oxidative stress occurring at synapses may contribute to the reduced glucose uptake and synaptic degeneration that occurs in Alzheimer's disease patients. They further suggest a sequence of events whereby oxidative stress promotes excitotoxic synaptic degeneration and neuronal cell death in a variety of different neurodegenerative disorders.  相似文献   

12.
The markers of oxidative stress were measured in four cerebrocortical regions of Alzheimer's disease (AD) and age-matched control brains. In controls the levels of diene conjugates (DC) and lipid peroxides (LOOH) were significantly higher in the sensory postcentral and occipital primary cortex than in the temporal inferior or frontal inferior cortex. The antioxidant capacity (AOC) was highest in the temporal, and GSH in the frontal inferior cortex. The highest activity of superoxide dismutase (SOD) and catalase (CAT) was found in the occipital primary cortex. Compared with controls, significantly higher level of DC and LOOH and attenuated AOC were evident in AD temporal inferior cortex. In AD frontal inferior cortex moderate increase in LOOH was associated with positive correlation between SOD activity and counts of senile plaques. Our data suggest that in AD cerebral cortex, the oxidative stress is expressed in the reducing sequence: temporal inferior cortex > frontal inferior cortex > sensory postcentral cortex occipital primary cortex, corresponding to the histopathological spreading of AD from the associative to primary cortical areas.  相似文献   

13.
Any change in the cell membrane structure activates lipoxygenases (LOX). LOX transform polyunsaturated fatty acids (PUFAs) to lipidhydroperoxide molecules (LOOHs). When cells are severely wounded, this physiological process switches to a non-enzymatic lipid peroxidation (LPO) process producing LOO· radicals. These oxidize nearly all-biological molecules such as lipids, sugars, and proteins. The LOO· induced degradations proceed by transfer of the radicals from cell to cell like an infection. The chemical reactions induced by LO· and LOO· radicals seem to be responsible for aging and induction of age dependent diseases. Alternatively, LO· and LOO· radicals are generated by frying of fats and involve cholesterol-PUFA esters and thus induce atherogenesis. Plants and algae are exposed to LOO· radicals generating radiation. In order to remove LOO· radicals, plants and algae transform PUFAs to furan fatty acids, which are incorporated after consumption of vegetables into mammalian tissues where they act as excellent scavengers of LOO· and LO· radicals. Figure 6 of this article is reprinted from the paper of G. Spiteller: “Peroxyl radicals: Inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars and proteins into deleterious products” published in Free Radic. Biol. Med. 41, 362–387 (2006) Elsevier, 2006 by permission from Elsevier.  相似文献   

14.
Abstract: Considerable data indicate that oxidative stress and membrane lipid peroxidation contribute to neuronal degeneration in an array of age-related neurodegenerative disorders. In contrast, the impact of subtoxic levels of membrane lipid peroxidation on neuronal function is largely unknown. We now report that 4-hydroxy-nonenal (HNE), an aldehydic product of lipid peroxidation, disrupts coupling of muscarinic cholinergic receptors and metabotropic glutamate receptors to phospholipase C-linked GTP-binding proteins in cultured rat cerebrocortical neurons. At subtoxic concentrations, HNE markedly inhibited GTPase activity, inositol phosphate release, and elevation of intracellular calcium levels induced by carbachol (muscarinic agonist) and ( RS )-3,5-dihydroxyphenyl glycine (metabotropic glutamate receptor agonist). Maximal impairment of agonist-induced responses occurred within 30 min of exposure to HNE. Other aldehydes, including malondialdehyde, had little effect on agonist-induced responses. Antioxidants that suppress lipid peroxidation did not prevent impairment of agonist-induced responses by HNE, whereas glutathione, which is known to bind and detoxify HNE, did prevent impairment of agonist-induced responses. HNE itself did not induce oxidative stress. Immunoprecipitation-western blot analysis using an antibody to HNE-protein conjugates showed that HNE can bind to Gαq/11. HNE also significantly suppressed inositol phosphate release induced by aluminum fluoride. Collectively, our data suggest that HNE plays a role in altering receptor-G protein coupling in neurons under conditions of oxidative stress that may occur both normally, and before cell degeneration and death in pathological settings.  相似文献   

15.
In this study, we compared the neuronal induction of the antioxidant heme oxygenase-1 (HO-1) in Alzheimer's disease with abnormalities in tau marked by antibodies recognizing either phosphorylation (AT8) or conformational change (Alz50). The epitope recognized by Alz50 shows a complete overlap with HO-1-containing neurons, but AT8 recognized these neurons as well as neurons not displaying HO-1. These findings suggest that tau phosphorylation precedes the HO-1 response and that HO-1 is coincident with the Alz50 epitope. This led us to consider whether oxidative damage plays a role in forming the Alz50 epitope. We found that 4-hydroxy-2-nonenal (HNE), a highly reactive product of lipid peroxidation, reacts with normal tau and induces the Alz50 epitope in tau. It is important that the ability of HNE to create the Alz50 epitope not only is dependent on lysine residues of tau but also requires tau phosphorylation because neither methylated, recombinant, nor dephosphorylated tau reacts with HNE to create the Alz50 epitope. Supporting the in vivo relevance of this observation, endogenous paired helical filament-tau isolated from subjects with Alzheimer's disease was immunoreactive with an antibody to a stable HNE-lysine adduct, as were all vulnerable neurons in subjects with Alzheimer's disease but not in control individuals. Together, these findings support the involvement of oxidative damage early in neurofibrillary tangle formation in Alzheimer's disease and also suggest that HNE modification contributes to the generation of the tau conformation defining the Alz50 epitope. These findings provide evidence that an interplay between phosphorylation of tau and neuronal oxidative stress-induced pathology is important in the formation of neurofibrillary tangles.  相似文献   

16.
Abstract: Steroid hormones, particularly estrogens and glucocorticoids, may play roles in the pathogenesis of neurodegenerative disorders, but their mechanisms of action are not known. We report that estrogens protect cultured hippocampal neurons against glutamate toxicity, glucose deprivation, FeSO4 toxicity, and amyloid β-peptide (Aβ) toxicity. The toxicity of each insult was significantly attenuated in cultures pretreated for 2 h with 100 n M -10 µ M 17β-estradiol, estriol, or progesterone. In contrast, corticosterone exacerbated neuronal injury induced by glutamate, FeSO4, and Aβ. Several other steroids, including testosterone, aldosterone, and vitamin D, had no effect on neuronal vulnerability to the different insults. The protective actions of estrogens and progesterone were not blocked by actinomycin D or cycloheximide. Lipid peroxidation induced by FeSO4 and Aβ was significantly attenuated in neurons and isolated membranes pretreated with estrogens and progesterone, suggesting that these steroids possess antioxidant activities. Estrogens and progesterone also attenuated Aβ- and glutamate-induced elevation of intracellular free Ca2+ concentrations. We conclude that estrogens, progesterone, and corticosterone can directly affect neuronal vulnerability to excitotoxic, metabolic, and oxidative insults, suggesting roles for these steroids in several different neurodegenerative disorders.  相似文献   

17.
The understanding of oxidative damage in different neurodegenerative diseases could enhance therapeutic strategies. Our objective was to quantify lipoperoxidation and other oxidative products as well as the activity of antioxidant enzymes and cofactors in cerebrospinal fluid (CSF) samples. We recorded data from all new patients with a diagnosis of either one of the four most frequent neurodegenerative diseases: Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD) and lateral amyotrophic sclerosis (ALS). The sum of nitrites and nitrates as end products of nitric oxide (NO) were increased in the four degenerative diseases and fluorescent lipoperoxidation products in three (excepting ALS). A decreased Cu/Zn-dependent superoxide dismutase (SOD) activity characterized the four diseases. A significantly decreased ferroxidase activity was found in PD, HD and AD, agreeing with findings of iron deposition in these entities, while free copper was found to be increased in CSF and appeared to be a good biomarker of PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号