首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Expression of the Aspergillus nidulans penicillin biosynthesis genes acvA and ipnA, encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase and isopenicillin N synthetase, respectively, was analyzed. The intergenic region carrying the divergently oriented promoters was fused in frame in both orientations to Escherichia coli lacZ and E. coli uidA reporter genes. Each construct permits simultaneous expression studies of both genes. Transformants of A. nidulans carrying a single copy of either plasmid integrated at the chromosomal argB locus were selected for further investigations. Expression of both genes was directed by the 872-bp intergenic region. ipnA- and acvA-derived gene fusions were expressed from this region at different levels. ipnA had significantly higher expression than did acvA. Glucose specifically reduced the production of penicillin and significantly repressed the expression of ipnA but not of acvA gene fusions. The specific activities of isopenicillin N synthetase, the gene product of ipnA, and acyl coenzyme A:6-aminopenicillanic acid acyltransferase were also reduced in glucose-grown cultures.  相似文献   

2.
3.
4.
The addition of 0.1 M L-lysine to the fermentation medium reduced the production of penicillin by about 50% in Aspergillus nidulans. To analyse this effect at the molecular level, the expression of the penicillin biosynthesis genes acvA and ipnA, encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase and isopenicillin N synthetase, was studied by using translational fusions with different reporter genes (strain AXB4A, acvA-uidA, ipnA-lacZ fusions; AXB4B, acvA-lacZ, ipnA-uidA fusions) integrated in single copy at the chromosomal argB locus of Aspergillus nidulans. Irrespective of the reporter genes used the expression of acvA and ipnA fusion genes was repressed in L-lysine grown cultures. The expression of a fusion gene of an A. nidulans primary metabolism gene (oliC-lacZ) was not affected by L-lysine.  相似文献   

5.
D J Smith  A J Earl    G Turner 《The EMBO journal》1990,9(9):2743-2750
The nucleotide sequence of the Penicillium chrysogenum Oli13 acvA gene encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase, which performs the first step in penicillin biosynthesis, has been determined. The acvA gene contains an open reading frame of 11,238 bp encoding a protein of 3746 amino acids with a predicted mol. wt of 421,073 dalton. Three domains within the protein of approximately 570 amino acids have between 38% and 43% identity with each other and share similarity with two antibiotic peptide synthetases from Bacillus brevis as well as two other enzymes capable of performing ATP-pyrophosphate exchange reactions. The acvA gene is located close to the pcbC gene encoding isopenicillin N synthetase, the enzyme for the second step of beta-lactam biosynthesis, and is transcribed in the opposite orientation to it. The intergenic region of 1107 bp from which the acvA and pcbC genes are divergently transcribed has also been sequenced.  相似文献   

6.
The Aspergillus nidulans gene (acvA) encoding the first catalytic steps of penicillin biosynthesis that result in the formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), has been positively identified by matching a 15-amino acid segment of sequence obtained from an internal CNBr fragment of the purified amino-terminally blocked protein with that predicted from the DNA sequence. acvA is transcribed in the opposite orientation to ipnA (encoding isopenicillin N synthetase), with an intergenic region of 872 nucleotides. The gene has been completely sequenced at the nucleotide level and found to encode a protein of 3,770 amino acids (molecular mass, 422,486 Da). Both fast protein liquid chromatography and native gel estimates of molecular mass are consistent with this predicted molecular weight. The enzyme was identified as a glycoprotein by means of affinity blotting with concanavalin A. No evidence for the presence of introns within the acvA gene has been found. The derived amino acid sequence of ACV synthetase (ACVS) contains three homologous regions of about 585 residues, each of which displays areas of similarity with (i) adenylate-forming enzymes such as parsley 4-coumarate-CoA ligase and firefly luciferase and (ii) several multienzyme peptide synthetases, including bacterial gramicidin S synthetase 1 and tyrocidine synthetase 1. Despite these similarities, conserved cysteine residues found in the latter synthetases and thought to be essential for the thiotemplate mechanism of peptide biosynthesis have not been detected in the ACVS sequence. These observations, together with the occurrence of putative 4'-phosphopantetheine-attachment sites and a putative thioesterase site, are discussed with reference to the reaction sequence leading to production of the ACV tripeptide. We speculate that each of the homologous regions corresponds to a functional domain that recognizes one of the three substrate amino acids.  相似文献   

7.
Penicillins and cephalosporins belong chemically to the group of beta-lactam antibiotics. The formation of hydrophobic penicillins has been reported in fungi only, notably Penicillium chrysogenum and Emericella nidulans, whereas the hydrophilic cephalosporins are produced by both fungi, e.g., Acremonium chrysogenum (cephalosporin C), and bacteria. The producing bacteria include Gram-negatives and Gram-positives, e.g. Lysobacter lactamdurans (cephabacins) and Streptomyces clavuligerus (cephamycin C), respectively. For a long time the evolutionary origin of beta-lactam biosynthesis genes in fungi has been discussed. As often, there are arguments for both hypotheses, i.e., horizontal gene transfer from bacteria to fungi versus vertical descent. There were strong arguments in favour of horizontal gene transfer, e.g., fungal genes were clustered or some genes lack introns. The recent identification and characterisation of cis-/trans-elements involved in the regulation of the beta-lactam biosynthesis genes has provided new arguments in favour of horizontal gene transfer. In contrast to the bacterium S. clavuligerus, all regulators of fungal beta-lactam biosynthesis genes represent wide-domain regulators which were recruited to also regulate the beta-lactam biosynthesis genes. Moreover, the fungal regulatory genes are not part of the gene cluster. If bacterial regulators were co-transferred with the gene cluster from bacteria to fungi, most likely they would have been non-functional in eukaryotes and lost during evolution. Alternatively, it is conceivable that only a part of the beta-lactam biosynthesis gene cluster was transferred to some fungi, e.g., the acvA and ipnA gene without a regulatory gene.  相似文献   

8.
9.
The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. Penicillin biosynthesis is catalyzed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC), and aatA (penDE). The genes are organized into a cluster. In A. chrysogenum, in addition to acvA and ipnA, a second cluster contains the genes encoding enzymes that catalyze the reactions of the later steps of the cephalosporin pathway (cefEF and cefG). Within the last few years, several studies have indicated that the fungal β-lactam biosynthesis genes are controlled by a complex regulatory network, e.g., by the ambient pH, carbon source, and amino acids. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of β-lactams and their physiological meaning for the producing fungi, and they can be expected to have a major impact on rational strain improvement programs. The knowledge of biosynthesis genes has already been used to produce new compounds.  相似文献   

10.
11.
12.
13.
14.
Starting from three amino acid precursors, penicillin biosynthesis is catalyzed by three enzymes which are encoded by the following three genes: acvA (pcbAB), ipnA (pcbC), and aat (penDE). To identify trans-acting mutations which are specifically involved in the regulation of these secondary metabolism genes, a molecular approach was employed by using an Aspergillus nidulans strain (AXTII9) carrying acvA-uidA and ipnA-lacZ gene fusions integrated in double copies at the chromosomal argB gene. On minimal agar plates supplemented with X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside), colonies of such a strain stained blue, which is indicative of ipnA-lacZ expression. After mutagenesis with UV light, colonies were isolated on agar plates with lactose as the carbon source, which produced only a faint blue color or no color at all. Such mutants (named Prg for penicillin regulation) most likely were defective in trans-acting genes. Control experiments revealed that the mutants studied still carried the correct number of gene fusions. In a fermentation run, mutants Prg-1 and Prg-6 exhibited only 20 to 50% of the ipnA-lacZ expression of the wild-type strain and produced only 20 to 30% of the penicillin produced by the wild-type strain. Western blot (immunoblot) analysis showed that these mutants contained reduced amounts of ipnA gene product, i.e., isopenicillin N synthase. Both mutant Prg-1 and mutant Prg-6 also differed in acvA-uidA expression levels from the wild type. Segregation analysis indicated that for both mutants the Prg phenotype resulted from mutation of a single gene. Two different complementation groups, which were designated prgA1 and prgB1, were identified. However, the specific activity of the aat (penDE) gene product, i.e., acyl coenzyme A:6-aminopenicillanic acid acyltransferase, was essentially the same for the mutants as for the wild-type strain, implying that the last step of the penicillin biosynthetic pathway is not affected by the trans-acting mutations identified.  相似文献   

15.
16.
B Feng  E Friedlin    G A Marzluf 《Applied microbiology》1994,60(12):4432-4439
Vectors which possess a truncated niaD gene encoding nitrate reductase were developed to allow targeted gene integration during transformation of an niaD mutant Penicillium chrysogenum host. The Penicillium genes pcbC and penAB are immediately adjacent to each other and are divergently transcribed, with an intergenic control region serving as their promoters. Gene fusions were constructed with a reporter gene, uidA, which encodes beta-glucuronidase. The pcbC-penAB intergenic region was fused to the uidA gene in both orientations so that regulated expression of each structural gene could be investigated. These fusion genes were targeted to the chromosomal site of the niaD locus of P. chrysogenum, and their expression was examined under different growth conditions. The expression of each of these penicillin biosynthesis genes was found to be regulated by nitrogen repression, glucose repression, and growth stage control.  相似文献   

17.
18.
19.
20.
The biosynthesis of the beta-lactam antibiotic penicillin is an excellent model for the study of secondary metabolites produced by filamentous fungi due to the good background knowledge on the biochemistry and molecular genetics of the beta-lactam producing microorganisms. The three genes (pcbAB, pcbC, penDE) encoding enzymes of the penicillin pathway in Penicillium chrysogenum are clustered, but no penicillin pathway-specific regulators have been found in the genome region that contains the penicillin gene cluster. The biosynthesis of this beta-lactam is controlled by global regulators of secondary metabolism rather than by a pathway-specific regulator. In this work we have identified the gene encoding the secondary metabolism global regulator LaeA in P. chrysogenum (PcLaeA), a nuclear protein with a methyltransferase domain. The PclaeA gene is present as a single copy in the genome of low and high-penicillin producing strains and is not located in the 56.8-kb amplified region occurring in high-penicillin producing strains. Overexpression of the PclaeA gene gave rise to a 25% increase in penicillin production. PclaeA knock-down mutants exhibited drastically reduced levels of penicillin gene expression and antibiotic production and showed pigmentation and sporulation defects, but the levels of roquefortine C produced and the expression of the dmaW involved in roquefortine biosynthesis remained similar to those observed in the wild-type parental strain. The lack of effect on the synthesis of roquefortine is probably related to the chromatin arrangement in the low expression roquefortine promoters as compared to the bidirectional pbcAB-pcbC promoter region involved in penicillin biosynthesis. These results evidence that PcLaeA not only controls some secondary metabolism gene clusters, but also asexual differentiation in P. chrysogenum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号