首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution two dimensional gel electrophoresis has been used to study the patterns of protein synthesis in imaginal discs of Drosophila melanogaster. In this paper we first compare the patterns of protein synthesis in wing, haltere, leg 1, leg 2, leg 3 and eye antenna imaginal discs of late third instar larvae. We have detected only quantitative changes: differences in 17 proteins among the different imaginal discs. In addition, we have analysed the variations in pattern of proteins in the wing disc of the last larval stage and early pupae as well as in wing discs cultured in vivo for 6 days. Variations in these patterns affect more than 20% of the proteins and involve both qualitative and quantitative changes. Some of the changes may correspond to protein phosphorylation. Correlations of these changes between discs and through development are also discussed. Correspondence to: F. Santaren  相似文献   

2.
Patterns of protein synthesis in imaginal discs of Drosophila melanogaster.   总被引:3,自引:0,他引:3  
M E Rodgers  A Shearn 《Cell》1977,12(4):915-921
Patterns of polypeptide synthesis in wing, leg and eye-antenna imaginal discs and in whole larvae of wild-type and and mutant Drosophila melanogaster have been examined using two-dimensional polyacrylamide gel electrophoresis and autoradiography. After 2 hr of labeling with 35S during the third larval instar, the synthesis of more than 318 polypeptides has been detected in imaginal discs. Of these, 268 are present in similar amounts in all three disc types. The remaining polypeptides detected in the three imaginal disc types fall into two categories: those unique to a particular disc type, and those specific for a particular pair of disc types. These results are discussed in relation to the spectrum of gene expression in imaginal discs.  相似文献   

3.
With the exception of the wing imaginal discs, the imaginal discs of Manduca sexta are not formed until early in the final larval instar. An early step in the development of these late-forming imaginal discs from the imaginal primordia appears to be an irreversible commitment to form pupal cuticle at the next molt. Similar to pupal commitment in other tissues at later stages, activation of broad expression is correlated with pupal commitment in the adult eye primordia. Feeding is required during the final larval instar for activation of broad expression in the eye primordia, and dietary sugar is the specific nutritional cue required. Dietary protein is also necessary during this time to initiate the proliferative program and growth of the eye imaginal disc. Although the hemolymph titer of juvenile hormone normally decreases to low levels early in the final larval instar, eye disc development begins even if the juvenile hormone titer is artificially maintained at high levels. Instead, creation of the late-forming imaginal discs in Manduca appears to be controlled by unidentified endocrine factors whose activation is regulated by the nutritional state of the animal.  相似文献   

4.
Summary A comparison of the morphogenetic maps of the notum anlage of Drosophila melanogaster derived from the gynandromorph data and mosaics induced by somatic crossing-over during the first instar larval stage revealed that practically no major morphogenetic movements occur in the development of the anlage between the blastoderm and first instar larval stages and the adult stage. By comparing the morphogenetic map derived from gynandromorphs and the fate map derived from data on the transplantation of fragments of the mature wing imaginal disc, it was observed that no major morphogenetic movements occur in the notum anlage between the stages of the allocation of the disc and the mature disc. The results are consistent with the observations of other authors concerning the larval development of eye-antenna, wing and leg discs.  相似文献   

5.
6.
The relative DNA content of Drosophila melanogaster imaginal leg disc nuclei during larval growth and pupal and adult differentiation was measured by microspectrophotometry. During the larval proliferative phase there were twice as many nuclei in the 4C class as nuclei in the 2C class. At the end of the third larval instar, the proportion of nuclei with a 4C DNA value increased. By 3 hr after pupariation, during pupal cuticle secretion, 90% of the nuclei were in this class. After pupal apolysis which occurs at 12 hr after pupariation, the 4C to 2C ratio was reversed. The increase in the proportion of nuclei with a 2C value was observed until 24 hr after pupariation when 90% of the nuclei were in this class. We propose that most cells divide at least once between pupal and adult differentiation. All of these changes in the cell cycle were correlated temporally with changes in the ecdysteroid titers that occur during these periods.  相似文献   

7.
Previous attempts to study sorting out of Drosophila imaginal disc cells have been hampered by an inability to thoroughly dissociate these cells and the need to use cuticular markers which require several days of in vivo culture. This study overcomes these limitations by using a new dissociation procedure and a genetic marker for undifferentiated cells, the succinate dehydrogenase8 (sdh8) mutation. Dissociated and reaggregated cells from wing and leg imaginal discs segregated or "sorted out" from one another after only 24 hr of in vivo culture. It was also found that leg cells from different body segments may sort out, but to a lesser degree than wing and leg cells. Mixtures of wing and haltere cells did not sort out, in contrast to previous reports. These results constitute the first unambiguous study of sorting out with Drosophila imaginal disc cells and indicate that dorsally situated imaginal cells share a recognition specificity which is different from that of ventral imaginal cells.  相似文献   

8.
At the beginning of the final larval (fifth) instar of Manduca sexta, imaginal precursors including wing discs and eye primordia initiate metamorphic changes, such as pupal commitment, patterning and cell proliferation. Juvenile hormone (JH) prevents these changes in earlier instars and in starved final instar larvae, but nutrient intake overcomes this effect of JH in the latter. In this study, we show that a molecular marker of pupal commitment, broad, is up-regulated in the wing discs by feeding on sucrose or by bovine insulin or Manduca bombyxin in starved final instar larvae. This effect of insulin could not be prevented by JH. In vitro insulin had no effect on broad expression but relieved the suppression of broad expression by JH. This effect of insulin was directly on the disc as shown by its reduction in the presence of insulin receptor dsRNA. In starved penultimate fourth instar larvae, broad expression in the wing disc was not up-regulated by insulin. The discs became responsive to this action of insulin during the molt to the fifth instar together with the ability to become pupally committed in response to 20-hydroxyecdysone. Thus, the Manduca bombyxin acts as a metamorphosis-initiating factor in the imaginal precursors.  相似文献   

9.
Summary Cell dissociates of wing and leg imaginal discs perform, culturedin vivo, disc specific morphogenetic movements leading to their aggregation into layers and vesicles. These histological patterns correspond directly with the final cuticular patterns which appear after metamorphosis of the same implants.The reaggregation into layers is achieved before the entry of the blastems into metamorphosis, and reflects the existence of traits of differentiation in the isolated imaginal disc cells.The bearing of selective affinity and reaggregation on cell differentiation of imaginal discs cells is discussed.Supported by a grant of the Juan March Foundation.  相似文献   

10.
The heat-sensitive mutation of Drosophila melanogaster l(3)c4(3)hs1, causes mutant larvae raised at a restrictive temperature to have abnormally large wing discs. The large size of these discs is a disc-autonomous property and results from an increase in the number rather than the size of wing disc cells. We have used wing discs from this mutant to further investigate properties of transdetermination which had previously been investigated with nonmutant discs. Transdetermination can occur in nonmutant discs when the proliferative phase of imaginal disc development is extended by wounding discs and culturing them in vivo. The results indicate that additional proliferation in the absence of wounding does not lead to transdetermination. There is a correlation between the extent of growth of a cultured disc and the probability that it will undergo transdetermination. The results suggest that this correlation does not depend on a differential rate of cell division. Finally, the results indicate that the cells which give rise to transdetermination are at an equivalent developmental stage no later than that characteristic of eye-antenna disc cells before the third larval instar.  相似文献   

11.
This paper describes the aggregation in vitro of cells dissociated from imaginal discs and demonstrates the sorting out of undifferentiated cells from different imaginal discs and from differently determined regions of the same imaginal disc, as well as the abilities of such cells to undergo pattern reconstruction when injected into larvae. Dissociated cells begin to aggregate by 1.5 hr of rotation. By 5 hr of rotation, large aggregates of loosely associated cells appear. By 18 hr the aggregates have condensed and taken on a characteristic epithelial structure. To study sorting out in undifferentiated cells, we combined a histochemical stain for acid phosphatase with the use of the acid phosphatase null mutant acphn-11. We performed cell mixing experiments with 0-2 (prospective notum) and 2-8 (prospective wing) fragments, with the A and P (prospective anterior and posterior) fragments of the dorsal mesothoracic disc and with mixtures of cells from ventral prothoracic and dorsal mesothoracic discs. We found that prospective anterior and posterior dorsal mesothoracic cells do not sort out, but that prospective notum and wing and leg and wing cells do. The results from differentiated implants are consistent with those from undifferentiated mixes.  相似文献   

12.
The origin and development of the dorso-ventral flight muscles (DVM) was studied by light and electron microscopy in Chironomus (Diptera; Nematocera). Chironomus was chosen because unlike Drosophila, its flight muscles develop during the last larval instar, before the lytic process of metamorphosis. Ten fibrillar DVM were shown to develop from a larval muscle associated with myoblasts. This muscle is connected to the imaginal leg discso that its cavity communicates with the adepithelial cells present in the disc; but no migration of myoblasts seems to take place from the imaginal leg disc towards the larval muscle or vice versa. At the beginning of the last larval instar, the myoblasts were always present together with the nerves in the larval muscle. In addition, large larval muscle cells incorporated to the imaginal discs were observed to border on the area occupied by adepithelial cells, and are probably involved in the formation of 4 other fibrillar DVM with adepithelial cells. Three factors seem to determine the number of DVM fibres: the initial number of larval fibres in the Anlage, the fusions of myoblasts with these larval fibres and the number of motor axons in the Anlage. The extrapolation of these observations to Drosophila, a higher dipteran, is discussed.  相似文献   

13.
Imaginal discs of Drosophila provide an excellent system with which to study morphogenesis, pattern formation and cell proliferation in an epithelium. Discs are sac-like in structure and are composed of two epithelial layers: an upper peripodial epithelium and lower disc proper. Although development of the disc proper has been studied extensively in terms of cell proliferation, cell signaling mechanisms and pattern formation, little is known about these same processes in the peripodial epithelium. We address this topic by focusing on morphogenesis, compartmental organization, proliferation and cell lineage of the PE in wing, second thoracic leg (T2) and eye discs. We show that a subset of peripodial cells in different imaginal discs undergo a cuboidal-to-squamous cell shape change at distinct larval stages. We find that this shape change requires both Hedgehog and Decapentapelagic, but not Wingless, signaling. Additionally, squamous morphogenesis shifts the anteroposterior (AP) compartment boundary in the peripodial epithelium relative to the stationary AP boundary in the disc proper. Finally, by lineage tracing cells in the PE, we surprisingly find that peripodial cells are displaced into the disc proper during larval development and this movement leads to Ubx repression.  相似文献   

14.
Summary The regulative behavior of fragments of the imaginal discs of the wing and first leg was studied when these fragments were combined with fragments of other thoracic imaginal discs. A fragment of the wing disc which does not normally regenerate when cultured could be stimulated to regenerate by combination with certain fragments of the haltere disc. When combined with a haltere disc fragment thought to be homologous by the criteria of morphology and the pattern of homoeotic transformation, such stimulated intercalary regeneration was not observed. Combinations of first and second leg disc fragments showed that a lateral first leg fragment could be stimulated to regenerate medial structures when combined with a medial second leg disc fragment but not when combined with a lateral second leg disc fragment. Combinations of wing and second leg disc fragments showed that one fragment of the second leg disc is capable of stimulating regeneration from a wing disc fragment while another second leg disc fragment fails to stimulate such regeneration. It is suggested that absence of intercalary regeneration in combinations of fragments of different thoracic imaginal discs is a result of homology or identity of the positional information residing in the cells of the fragments. The pattern of correspondence of positional information revealed by this analysis is consistant with the pattern of homology determined by morphological observation and by analysis of the positional specificity of homoeotic transformation among serially homologous appendages. The implications of the existence of homologous positional information in wing and second leg discs which share a common cell lineage early in development are discussed.  相似文献   

15.
The antibody produced by the hybrid cell line DK.1A4 recognizes an antigen present initially on all the epithelial cells of the D. melanogaster wing imaginal disc. This antigen becomes progessively restricted to cells in the dorsal region of the disc during the final larval instar. The presence of the antigen does not correlate with the specific adult structures to which the cells will eventually contribute, but rather with the position of the cells in the disc. In late discs, the line bounding the region in which the antigen persists corresponds to the boundary between the dorsal and ventral compartments as revealed by a clonal analysis of the undifferentiated disc. Together, these data suggest that the antigen's disappearance may be specific to the cells of the ventral compartment of the wing disc.  相似文献   

16.
17.
The wing imaginal disc of Drosophila melanogaster is a prominent experimental system for research on control of cell growth, proliferation and death, as well as on pattern formation and morphogenesis during organogenesis. The precise genetic methodology applicable in this system has facilitated conceptual advances of fundamental importance for developmental biology. Experimental accessibility and versatility would gain further if long term development of wing imaginal discs could be studied also in vitro. For example, culture systems would allow live imaging with maximal temporal and spatial resolution. However, as clearly demonstrated here, standard culture methods result in a rapid cell proliferation arrest within hours of cultivation of dissected wing imaginal discs. Analysis with established markers for cells in S- and M phase, as well as with RGB cell cycle tracker, a novel reporter transgene, revealed that in vitro cultivation interferes with cell cycle progression throughout interphase and not just exclusively during G1. Moreover, quantification of EGFP expression from an inducible transgene revealed rapid adverse effects of disc culture on basic cellular functions beyond cell cycle progression. Disc transplantation experiments confirmed that these detrimental consequences do not reflect fatal damage of imaginal discs during isolation, arguing clearly for a medium insufficiency. Alternative culture media were evaluated, including hemolymph, which surrounds imaginal discs during growth in situ. But isolated larval hemolymph was found to be even less adequate than current culture media, presumably as a result of conversion processes during hemolymph isolation or disc culture. The significance of prominent growth-regulating pathways during disc culture was analyzed, as well as effects of insulin and disc co-culture with larval tissues as potential sources of endocrine factors. Based on our analyses, we developed a culture protocol that prolongs cell proliferation in cultured discs.  相似文献   

18.
The effects of homeotic mutations on transdetermination in eye-antenna imaginal discs of Drosophila melanogaster were studied. After 12 days of culture in vivo, antenna discs transformed to ventral mesothorax by AntpNs or AntpZ, transdetermined to notum and wing structures four to five times more frequently than the corresponding wild-type antenna discs. Likewise, eye discs transformed to dorsal mesothorax by eyopt transdetermined to leg structures, also extremely frequently (90%). It seems that, during culture, homeotic antenna as well as homeotic eye discs tend to complete the structural inventory of the mesothoracic segment. Transdetermination in the homeotic disc parts is interpreted as a regeneration process which reestablishes an entire segment, i.e., the ventral mesothoracic portion (leg) in the antenna disc regenerates dorsal mesothoracic parts, and the dorsal mesothoracic portion in the eye disc (wing) regenerates ventral mesothoracic parts, respectively. This implies that antenna and leg discs (ventral qualities) as well as eye and wing discs (dorsal qualities) are serially homologous. The transdetermination frequency of the untransformed eye disc to notum and wing structures is enhanced by Antp to the same extent as is the transdetermination frequency of the antenna disc. The first allotypic wing disc structure formed by the eye disc is notum, followed by structures of the anterior wing compartment and finally by posterior wing structures. No evidence for such a sequence was found in the transdetermination pattern of the antenna disc.  相似文献   

19.
Summary Leg and wing imaginal discs of mature larvae ofDrosophila melanogaster when treated with 0.1% trypsin for 5–10 min underwent a change in shape that closely resembled normal pupal morphogenesis. Simultaneously, the cells of the disc epithelium changed in shape from tall columnar to cuboidal. Colcemid eliminated microtubules but was without effect on the shape of the imaginal discs or their cells. Tryptic digestion reduced non-junctional intercellular adhesivity but septate desmosomes and gap junctions remained intact.It is proposed that the structure of imaginal discs permits the packaging of the anlagen of the adult integument so that they can change shape and replace the larval structures in a brief period. Apparently most of the definitive form of the pupal leg is built into the disc and becomes visible within a few minutes as intercellular adhesivity is changed.  相似文献   

20.
In developmental biology, the sequence of gene induction and pattern formation is best studied over time as an organism develops. However, in the model system of Drosophila larvae this oftentimes proves difficult due to limitations in imaging capabilities. Using the larval wing imaginal disc, we show that both overall growth, as well as the creation of patterns such as the distinction between the anterior(A) and posterior(P) compartments and the dorsal(D) and ventral(V) compartments can be studied directly by imaging the wing disc as it develops inside a larva. Imaged larvae develop normally, as can be seen by the overall growth curve of the wing disc. Yet, the fact that we can follow the development of individual discs through time provides the opportunity to simultaneously assess individual variability. We for instance find that growth rates can vary greatly over time. In addition, we observe that mechanical forces act on the wing disc within the larva at times when there is an increase in growth rates. Moreover, we observe that A/P boundary formation follows the established sequence and a smooth boundary is present from the first larval instar on. The division of the wing disc into a dorsal and a ventral compartment, on the other hand, develops quite differently. Contrary to expectation, the specification of the dorsal compartment starts with only one or two cells in the second larval instar and a smooth boundary is not formed until the third larval instar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号