首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The complete postembryonic ceil lineages of the free-living nentatodes Caenorhabditis elegans and Panagrellus redivivus are known. Postembryonic cell divisions lead to substantial increases in the number of cells and, in most cases, in the number of types of cells in the neuronal, muscular, hypodermal, and digestive systems. The patterns of postembyronic cell divisions are essentially invariant and generate a fixed number of progeny cells of strictly specified fates. Cell fates depend upon both lineage history and cell-cell interactions: lineage limits the developmental potential of each cell and, for certain cells, cell-cell interactions specify which of a small number of alternative potential fates is acquired. Relatively simple differences in cell lineage account for some of the striking differences in gross morphology both between sexes and between species. Genetic studies indicate that these cell lineage differences reflect one or a few relatively simple mutational events. Interspecific differences in cell lineage are likely to be good indicators of evolutionary distance and may be helpful in defining taxonomic relationships. Both the techniques utilized in, and the information acquired from, studies of cell lineages in C. elegans and P. redivivus may prove useful to other hematologists.  相似文献   

2.
To explore the nature of cell lineage modifications that have occurred during evolution, the gonadal cell lineages of the nematode Panagrellus redivivus have been determined and compared to the known gonadal lineages of Caenorhabditis elegans (J. Kimble and D. Hirsh, 1979, Develop. Biol.70, 396–417). Essentially invariant lineages generate the 143 somatic cells of the male gonad and at least 326 somatic cells of the female gonad of P. redivivus. The basic program of gonadogenesis is strikingly similar among both sexes of both species. For example, the early division patterns of the somatic gonad precursors Z1 and Z4 are almost identical. Later division patterns are more divergent and, in a few cases, generate structures that are species specific. In general, similar cell types are produced after similar patterns of cell divisions. Differences among the Z1 and Z4 cell lineages appear to reflect phylogenetic modifications of a common developmental program. The nature of these differences suggests that the evolution of cell lineages involves four distinct classes of alterations: switches in the fate of a cell to that normally associated with another cell; reversals in the polarity of the lineage generated by a blast cell; alterations in the number of rounds of cell division; and an “altered segregation” of developmental potential, so that a potential normally associated with one cell instead becomes associated with its sister. A number of cell deaths occur during gonadogenesis in P. redivivus. The death of Z4.pp, a cell that controls the development of the posterior ovary in C. elegans, probably prevents the development of a posterior ovary in P. redivivus and hence is responsible for the gross difference in the morphologies of the gonads of the P. redivivus female and the C. elegans hermaphrodite. As exemplified by the death of Z4.pp, an alteration in the fate of a “regulatory cell” could facilitate rapid and/or discontinuous evolutionary change.  相似文献   

3.
The embryonic cell lineage of Caenorhabditis elegans has been traced from zygote to newly hatched larva, with the result that the entire cell lineage of this organism is now known. During embryogenesis 671 cells are generated; in the hermaphrodite 113 of these (in the male 111) undergo programmed death and the remainder either differentiate terminally or become postembryonic blast cells. The embryonic lineage is highly invariant, as are the fates of the cells to which it gives rise. In spite of the fixed relationship between cell ancestry and cell fate, the correlation between them lacks much obvious pattern. Thus, although most neurons arise from the embryonic ectoderm, some are produced by the mesoderm and a few are sisters to muscles; again, lineal boundaries do not necessarily coincide with functional boundaries. Nevertheless, cell ablation experiments (as well as previous cell isolation experiments) demonstrate substantial cell autonomy in at least some sections of embryogenesis. We conclude that the cell lineage itself, complex as it is, plays an important role in determining cell fate. We discuss the origin of the repeat units (partial segments) in the body wall, the generation of the various orders of symmetry, the analysis of the lineage in terms of sublineages, and evolutionary implications.  相似文献   

4.
Comparative genomic analysis of important signaling pathways in Caenorhabditis briggsae and Caenorhabditis elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.  相似文献   

5.
6.
Comparative studies of vulva development between Caenorhabditis elegans and other nematode species have provided some insight into the evolution of patterning networks. However, molecular genetic details are available only in C. elegans and Pristionchus pacificus. To extend our knowledge on the evolution of patterning networks, we studied the C. elegans male hook competence group (HCG), an equivalence group that has similar developmental origins to the vulval precursor cells (VPCs), which generate the vulva in the hermaphrodite. Similar to VPC fate specification, each HCG cell adopts one of three fates (1°, 2°, 3°), and 2° HCG fate specification is mediated by LIN-12/Notch. We show that 2° HCG specification depends on the presence of a cell with the 1° fate. We also provide evidence that Wnt signaling via the Frizzled-like Wnt receptor LIN-17 acts to specify the 1° and 2° HCG fate. A requirement for EGF signaling during 1° fate specification is seen only when LIN-17 activity is compromised. In addition, activation of the EGF pathway decreases dependence on LIN-17 and causes ectopic hook development. Our results suggest that WNT plays a more significant role than EGF signaling in specifying HCG fates, whereas in VPC specification EGF signaling is the major inductive signal. Nonetheless, the overall logic is similar in the VPCs and the HCG: EGF and/or WNT induce a 1° lineage, and LIN-12/NOTCH induces a 2° lineage. Wnt signaling is also required for execution of the 1° and 2° HCG lineages. lin-17 and bar-1/β-catenin are preferentially expressed in the presumptive 1° cell P11.p. The dynamic subcellular localization of BAR-1-GFP in P11.p is concordant with the timing of HCG fate determination.  相似文献   

7.
The number of nongonadal nuclei in the free-living soil nematode Caenorhabditis elegans increases from about 550 in the newly hatched larva to about 810 in the mature hermaphrodite and to about 970 in the mature male. The pattern of cell divisions which leads to this increase is essentially invariant among individuals; rigidly determined cell lineages generate a fixed number of progeny cells of strictly specified fates. These lineages range in length from one to eight sequential divisions and lead to significant developmental changes in the neuronal, muscular, hypodermal, and digestive systems. Frequently, several blast cells follow the same asymmetric program of divisions; lineally equivalent progeny of such cells generally differentiate into functionally equivalent cells. We have determined these cell lineages by direct observation of the divisions, migrations, and deaths of individual cells in living nematodes. Many of the cell lineages are involved in sexual maturation. At hatching, the hermaphrodite and male are almost identical morphologically; by the adult stage, gross anatomical differences are obvious. Some of these sexual differences arise from blast cells whose division patterns are initially identical in the male and in the hermaphrodite but later diverge. In the hermaphrodite, these cells produce structures used in egg-laying and mating, whereas, in the male, they produce morphologically different structures which function before and during copulation. In addition, development of the male involves a number of lineages derived from cells which do not divide in the hermaphrodite. Similar postembryonic developmental events occur in other nematode species.  相似文献   

8.
Pattern formation during vulval development in C. elegans   总被引:10,自引:0,他引:10  
P W Sternberg  H R Horvitz 《Cell》1986,44(5):761-772
Previous studies have shown that the development of the vulva of the C. elegans hermaphrodite involves six multipotential hypodermal cells as well as the gonadal anchor cell, which induces vulval formation. Our further examination of the interactions among these seven cells has led to the following model. Each hypodermal precursor cell becomes determined to adopt one of its three potential fates; each of these fates is to generate a particular cell lineage. In the absence of cellular interactions each precursor cell will generate the nonvulval cell lineage; an inductive signal from the anchor cell is required for a precursor cell to generate either of the two types of vulval cell lineages. The inductive signal is spatially graded, and the potency of the signal specifies which lineage is expressed by each of the tripotential precursor cells.  相似文献   

9.
The nematode Caenorhabditis elegans (C. elegans) is an ideal model organism to study the cell fate specification mechanisms during embryogenesis. It is generally believed that cell fate specification in C. elegans is mainly mediated by lineage-based mechanisms, where the specification paths are driven forward by a succession of asymmetric cell divisions. However, little is known about how each binary decision is made by gene regulatory programs. In this study, we endeavor to obtain a global understanding of cell lineage/fate divergence processes during the early embryogenesis of C. elegans. We reanalyzed the EPIC data set, which traced the expression level of reporter genes at single-cell resolution on a nearly continuous time scale up to the 350-cell stage in C. elegans embryos. We examined the expression patterns for a total of 131 genes from 287 embryos with high quality image recordings, among which 86 genes have replicate embryos. Our results reveal that during early embryogenesis, divergence between sister lineages could be largely explained by a few genes. We predicted genes driving lineage divergence and explored their expression patterns in sister lineages. Moreover, we found that divisions leading to fate divergence are associated with a large number of genes being differentially expressed between sister lineages. Interestingly, we found that the developmental paths of lineages could be differentiated by a small set of genes. Therefore, our results support the notion that the cell fate patterns in C. elegans are achieved through stepwise binary decisions punctuated by cell divisions. Our predicted genes driving lineage divergence provide good starting points for future detailed characterization of their roles in the embryogenesis in this important model organism.  相似文献   

10.
As a fundamental process of development, cell proliferation must be coordinated with other processes such as fate differentiation. Through statistical analysis of individual cell cycle lengths of the first 8 out of 10 rounds of embryonic cell division in Caenorhabditis elegans, we identified synchronous and invariantly ordered divisions that are tightly associated with fate differentiation. Our results suggest a three-tier model for fate control of cell cycle pace: the primary control of cell cycle pace is established by lineage and the founder cell fate, then fine-tuned by tissue and organ differentiation within each lineage, then further modified by individualization of cells as they acquire unique morphological and physiological roles in the variant body plan. We then set out to identify the pace-setting mechanisms in different fates. Our results suggest that ubiquitin-mediated degradation of CDC-25.1 is a rate-determining step for the E (gut) and P3 (muscle and germline) lineages but not others, even though CDC-25.1 and its apparent decay have been detected in all lineages. Our results demonstrate the power of C. elegans embryogenesis as a model to dissect the interaction between differentiation and proliferation, and an effective approach combining genetic and statistical analysis at single-cell resolution.  相似文献   

11.
Caenorhabditis elegans and Panagrellus redivivus were investigated for surface carbohydrates using fluorescent-labelled and ferritin-labelled lectins. Rhodamine-labelled Concanavalin A was specifically located in the cephalic region of both species. Rhodamine-labelled wheat germ agglutinin was located over the entire cuticle of P. redivivus but was absent on C. elegans. Rhodamine-labelled peanut agglutinin and Limax flavus agglutinin did not label nematodes of either species. Galactose and sialic acid were not detected on either species, whereas mannose-glucose residues were specifically localized in the head areas of both species. No detectable N-acetylglucosamine occurred on C. elegans, but it was evenly distributed over the cuticle surface of P. redivivus.  相似文献   

12.
Segmental tissues of glossiphoniid leeches arise from rostrocaudally arrayed columns (bandlets) of segmental founder cells (primary m, n, o, p, and q blast cells) which undergo stereotyped sublineages to generate identifiable subsets of definitive progeny. The bandlets lie at the surface of the embryo beneath the squamous epithelium of a transient embryonic covering called the provisional integument. This "provisional epithelium" derives from microsomes produced during the early cleavage divisions. Previous experiments have shown that the primary o and p blast cells constitute an equivalence group, i.e., are initially developmentally equipotent and undergo hierarchical interactions which cause them to assume distinct O and P fates. Here, we examine the role of the provisional epithelium in determining the fates of the underlying o and p blast cells. Experiments entailing the microinjection of individual micromeres with cell lineage tracers show that, at stages 7-8 of normal development, the epithelium comprises coherent and relatively stereotyped domains derived from particular micromeres. Upon photoablating domains of epithelium labeled with photosensitizing lineage tracer, the normal assignment of O fates is disturbed; o blast cells divide symmetrically (as p blast cells do) and some supernumerary definitive progeny expressing P fates arise within the O lineage. We therefore conclude that the epithelium is essential for generation and/or reception of signal(s) by which the o and p blast cells' normally determine their fates. Finally, a new tracer substance, biotinylated fixable dextran (BFD), is described which was essential for this study by virtue of its superior resistance to photobleaching and which offers several other advantages as well.  相似文献   

13.
Embryonic segmentation in clitellate annelids (oligochaetes and leeches) is a cell lineage-driven process. Embryos of these worms generate a posterior growth zone consisting of 5 bilateral pairs of identified segmentation stem cells (teloblasts), each of which produces a column of segmental founder cells (blast cells). Each blast cell generates a lineage-specific clone via a stereotyped sequence of cell divisions, which are typically unequal both in terms of the relative size of the sister cells and in the progeny to which they give rise. In two of the five teloblast lineages, including the ventralmost, primary neurogenic (N) lineage, the blast cells adopt two different fates, designated nf and ns, in exact alternation within the blast cell column; this is termed a grandparental stem cell lineage. To lay groundwork for investigating unequal divisions in the leech Helobdella, we have surveyed the Helobdella robusta genome for genes encoding orthologs of the Rho family GTPases, including the rho, rac and cdc42 sub-families, which are known to be involved in multiple processes involving cell polarization in other systems. We find that, in contrast to most other known systems the Helobdella genome contains two cdc42 orthologs, one of which is expressed at higher levels in the ns blast cells than in nf blast cells. We also demonstrate that the asymmetric divisions of the primary nf and ns blast cells are regulated by the polarized distribution of the activated form of the Cdc42 protein, rather than by the overall level of expression. Our results provide the first molecular insights into the mechanisms of the grandparental stem cell lineages, a novel, yet evolutionarily ancient stem cell division pattern. Our results also provide an example in which asymmetries in the distribution of Cdc42 activity, rather than in the overall levels of Cdc42 protein, are important regulating unequal divisions in animal cells.  相似文献   

14.
Correct cell fate choice is crucial in development. In post-embryonic development of the hermaphroditic Caenorhabitis elegans, distinct cell fates must be adopted in two diverse tissues. In the germline, stem cells adopt one of three possible fates: mitotic cell cycle, or gamete formation via meiosis, producing either sperm or oocytes. In the epidermis, the stem cell-like seam cells divide asymmetrically, with the daughters taking on either a proliferative (seam) or differentiated (hypodermal or neuronal) fate. We have isolated a novel conserved C. elegans tetratricopeptide repeat containing protein, TRD-1, which is essential for cell fate determination in both the germline and the developing epidermis and has homologs in other species, including humans (TTC27). We show that trd-1(RNAi) and mutant animals have fewer seam cells as a result of inappropriate differentiation towards the hypodermal fate. In the germline, trd-1 RNAi results in a strong masculinization phenotype, as well as defects in the mitosis to meiosis switch. Our data suggests that trd-1 acts downstream of tra-2 but upstream of fem-3 in the germline sex determination pathway, and exhibits a constellation of phenotypes in common with other Mog (masculinization of germline) mutants. Thus, trd-1 is a new player in both the somatic and germline cell fate determination machinery, suggestive of a novel molecular connection between the development of these two diverse tissues.  相似文献   

15.
16.
The small nematode C. elegans is characterized by developing through a highly coordinated, reproducible cell lineage that serves as the basis of many studies focusing on the development of multi-lineage organisms. Indeed, the reproducible cell lineage enables discovery of developmental defects that occur in even a single cell. Only recently has attention been focused on how these animals modify their genetically programmed cell lineages to adapt to altered environments. Here, we summarize the current understanding of how C. elegans responds to food deprivation by adapting their developmental program in order to conserve energy. In particular, we highlight the AMPK-mediated and insulin-like growth factor signaling pathways that are the principal regulators of induced cell cycle quiescence.  相似文献   

17.
18.
Despite a high degree of homonomy in the segmental organization of the ectoderm, the body plan of the leech is divided into two zones based on the distinct cell lineage patterns that give rise to the O/P portion of the segmental ectoderm. In the midbody and caudal segments, each segmental repeat of ectoderm arises in part from one 'o' blast cell and one 'p' blast cell. These two blast cells are positionally specified to distinct O and P fates, and give rise to differentiated descendant cells called O and P pattern elements, respectively. In the rostral segments, each segmental repeat of O and P pattern elements arises from a single 'op' blast cell. Based on their developmental fates and their responses to the ablation of neighboring cells, the granddaughters of the primary op blast cell are categorized into two O-type cells and two P-type cells. The O-type cells do not require the presence of the rest of the op blast cell clone for their normal development. By contrast, normal development of the P-type cells depends upon interactions with the other OP sublineages. Additional experiments showed that the O-type cells are the source of a repressive signal involved in the normal fate specification of the P-type cells. Our data suggest that the cell interactions involved in fate specification differ substantially in the rostral and midbody segments, even though the set of differentiated descendants produced by the rostral OP pathway and the midbody O and P pathways are very similar.  相似文献   

19.
P. Chanal  M. Labouesse 《Genetics》1997,146(1):207-226
The Caenorhabditis elegans lin-26 gene is expressed in all nonneuronal ectodermal cells. To identify genes required to specify the fates of ectodermal cells, we have conducted screens designed to identify loci whose zygotic function would be required for normal lin-26 expression. First, we examined 90 deficiencies covering 75% of the genome; second, we examined the progeny of 3600 genomes after EMS mutagenesis. We identified six loci that appear to be required for normal lin-26 expression. We argue that the deficiency eDf19 deletes a gene involved in specifying hypodermal cell fates. The genes emb-29 (previously known) and ale-1 (newly found) could be involved in a cell cycle function and/or in specifying the fates of some precursors within different lineages that generate hypodermal cells and nonectodermal cells. We argue that the overlapping deficiencies qDf7, qDf8 and qDf9 delete a gene required to limit the number of nonneuronal ectodermal cells. We suggest that the deficiencies ozDf2, itDf2 and nDf42 delete genes required, directly or indirectly, to repress lin-26 expression in cells that normally do not express lin-26. We discuss the implications of these findings concerning the generation of the ectoderm.  相似文献   

20.
Cell fate determination and cell migration are two essential events in the development of an organism. We identify mig-5, a Dishevelled family member, as a gene that regulates several cell fate decisions and cell migrations that are important during C. elegans embryonic and larval development. In offspring from mig-5 mutants, cell migrations are defective during hypodermal morphogenesis, QL neuroblast migration, and the gonad arm migration led by the distal tip cells (DTCs). In addition to abnormal migration, DTC fate is affected, resulting in either an absent or an extra DTC. The cell fates of the anchor cell in hermaphrodites and the linker cells in the male gonad are also defective, often resulting in the cells adopting the fates of their sister lineage. Moreover, 2 degrees vulval precursor cells occasionally adopt the 3 degrees vulval cell fate, resulting in a deformed vulva, and the P12 hypodermal precursor often differentiates into a second P11 cell. These defects demonstrate that MIG-5 is essential in determining proper cell fate and cell migration throughout C. elegans development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号