首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of autoproteolysis of Lactococcus lactis lactocepin III on its specificity towards β-casein was investigated. β-Casein degradation was performed by using either an autolysin-defective derivative of L. lactis MG1363 carrying the proteinase genes of L. lactis SK11, which was unable to transport oligopeptides, or autoproteolyzed enzyme purified from L. lactis SK11. Comparison of the peptide pools by high-performance liquid chromatography analysis revealed significant differences. To analyze these differences in more detail, the peptides released by the cell-anchored proteinase were identified by on-line coupling of liquid chromatography to mass spectrometry. More than 100 oligopeptides were released from β-casein by the cell-anchored proteinase. Analysis of the cleavage sites indicated that the specificity of peptide bond cleavage by the cell-anchored proteinase differed significantly from that of the autoproteolyzed enzyme.  相似文献   

2.
Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40 degrees C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes beta-casein mainly and alpha- and kappa-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from beta-casein, which have been identified.  相似文献   

3.
The peptidases of thermophilic lactic acid bacteria have a key role in the proteolysis of Swiss cheeses during warm room ripening. To compare their peptidase activities toward a dairy substrate, a tryptic/chymotryptic hydrolysate of purified β-casein was used. Thirty-four peptides from 3 to 35 amino acids, including three phosphorylated peptides, constitute the β-casein hydrolysate, as shown by tandem mass spectrometry. Cell extracts prepared from Lactobacillus helveticus ITG LH1, ITG LH77, and CNRZ 32, Lactobacillus delbrueckii subsp. lactis ITG LL14 and ITG LL51, L. delbrueckii subsp. bulgaricus CNRZ 397 and NCDO 1489, and Streptococcus thermophilus CNRZ 385, CIP 102303, and TA 060 were standardized in protein. The peptidase activities were assessed with the β-casein hydrolysate as the substrate at pH 5.5 and 24°C (conditions of warm room ripening) by (i) free amino acid release, (ii) reverse-phase chromatography, and (iii) identification of undigested peptides by mass spectrometry. Regardless of strain, L. helveticus was the most efficient in hydrolyzing β-casein peptides. Interestingly, cell extracts of S. thermophilus were not able to release a significant level of free proline from the β-casein hydrolysate, which was consistent with the identification of numerous dipeptides containing proline. With the three lactic acid bacteria tested, the phosphorylated peptides remained undigested or weakly hydrolyzed indicating their high intrinsic resistance to peptidase activities. Finally, several sets of peptides differing by a single amino acid in a C-terminal position revealed the presence of at least one carboxypeptidase in the cell extracts of these species.  相似文献   

4.
Two fermented milks containing angiotensin-I-converting-enzyme (ACE)-inhibitory peptides were produced by using selected Lactobacillus delbrueckii subsp. bulgaricus SS1 and L. lactis subsp. cremoris FT4. The pH 4.6-soluble nitrogen fraction of the two fermented milks was fractionated by reversed-phase fast-protein liquid chromatography. The fractions which showed the highest ACE-inhibitory indexes were further purified, and the related peptides were sequenced by tandem fast atom bombardment-mass spectrometry. The most inhibitory fractions of the milk fermented by L. delbrueckii subsp. bulgaricus SS1 contained the sequences of β-casein (β-CN) fragment 6-14 (f6-14), f7-14, f73-82, f74-82, and f75-82. Those from the milk fermented by L. lactis subsp. cremoris FT4 contained the sequences of β-CN f7-14, f47-52, and f169-175 and κ-CN f155-160 and f152-160. Most of these sequences had features in common with other ACE-inhibitory peptides reported in the literature. In particular, the β-CN f47-52 sequence had high homology with that of angiotensin-II. Some of these peptides were chemically synthesized. The 50% inhibitory concentrations (IC50s) of the crude purified fractions containing the peptide mixture were very low (8.0 to 11.2 mg/liter). When the synthesized peptides were used individually, the ACE-inhibitory activity was confirmed but the IC50s increased considerably. A strengthened inhibitory effect of the peptide mixtures with respect to the activity of individual peptides was presumed. Once generated, the inhibitory peptides were resistant to further proteolysis either during dairy processing or by trypsin and chymotrypsin.  相似文献   

5.
Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A.  相似文献   

6.
The molecular masses of purified extracellular serine proteinase of a number of Lactococcus lactis strains vary significantly, and these molecular mass values do not correspond to the values estimated on the basis of genetic data. The discrepancies can only partially be explained by N-terminal processing during maturation of the precursor enzyme and by C-terminal cleaving during the release from the cell envelope. With a monoclonal antibody that binds in the active site region of the L. lactis proteinase, the processing of the released proteinase was followed. At 30°C the proteinase was degraded with a concomitant loss of β-casein hydrolytic activity. In the presence of CaCl2, proteinase degradation was inhibited, and new degradation products were detected. The specific serine proteinase inhibitors phenylmethylsulfonyl fluoride and diisopropylfluorophosphate also inhibited proteinase degradation. Two major high-molecular-mass proteinase fragments (165 and 90 kDa) were found to have the same N-terminal amino acid sequence as the mature proteinase, i.e., [Asp-1-Ala-2-Lys-3-Ala-4-Asn-5-Ser-6, indicating that both fragments were formed by cleavage at the C terminus. The N terminus of a proteinase fragment with low molecular mass (58 kDa) started with Gln-215. In this fragment part of the active site region was eliminated, suggesting that it is proteolytically inactive. Unlike larger fragments, this 58-kDa fragment remained intact after prolonged incubations. These results indicate that autoproteolysis of the L. lactis subsp. cremoris Wg2 proteinase ultimately leads to inactivation of the proteinase by deletion of the active site region.  相似文献   

7.
Partially purified cell wall proteinases of eight strains of Streptococcus cremoris were compared in their action on bovine αs1-, β-, and κ-casein, as visualized by starch gel electrophoresis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and thin-layer chromatography. Characteristic degradation profiles could be distinguished, from which the occurrence of two proteinases, represented by strain HP and strain AM1, was concluded. The action of the HP-type proteinase P1 (also detectable in strains Wg2, C13, and TR) was established by electrophoretic methods to be directed preferentially towards β-casein. The AM1-type proteinase PIII (also detectable in strain SK11) was also able to degrade β-casein, but at the same time split αs1- and κ-casein more extensively than did PI. Strain FD27 exhibited mainly PI activity but also detectable PIII degradation characteristics. The cell wall proteinase preparation of strain E8 showed low PI as well as low PIII activity. All proteinase preparations produced from κ-casein positively charged degradation products with electrophoretic mobilities similar to those of degradation products released by the action of the milk-clotting enzyme chymosin. The differences between PI and PIII in mode of action, as detected by gel electrophoresis and thin-layer chromatography, were reflected by the courses of the initial degradation of methyl-14C-labeled β-casein and by the effect of αs1- plus κ-casein on these degradations. The results are discussed in the light of previous comparative studies of cell wall proteinases in strains of S. cremoris and with respect to the growth of this organism in milk.  相似文献   

8.
The cell wall proteinase fraction of Streptococcus cremoris HP has been isolated. This preparation did not exhibit any activity due to either specific peptidases known to be located near the outside surface of and in the membrane or intracellular proteolytic enzymes. By using thin-layer chromatography for the detection of relatively small hydrolysis products which remain soluble at pH 4.6, it was shown that β-casein is preferentially attacked by the cell wall proteinase. This was also the case when whole casein or micelles were used as the substrate. κ-casein hydrolysis is a relatively slow process, and αs-casein degradation appeared to proceed at an extremely low rate. These results could be confirmed by using 14CH3-labeled caseins. A relatively fast and linear initial progress of 14CH3-labeled β-casein degradation is not inhibited by αs-casein and only slightly by κ-casein at concentrations of these components which reflect their stoichiometry in the micelles. Possible implications of β-casein degradation for growth of the organism in milk are discussed.  相似文献   

9.
Lactobacillus casei HN14, which was isolated from homemade cheese, produces an extracellular, cell wall-bound proteinase. The HN14 proteinase can be removed from the cell envelope by washing the cells in a Ca2+-free buffer. The activity of the crude proteinase extract is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the HN14 proteinase is similar to the lactococcal PI-type enzyme, since it hydrolyzes β-casein only. Lactobacillus casei HN14 appeared to be plasmid free, which suggests that the proteinase gene is chromosomally located. Chromosomal DNA of this strain hybridizes with DNA probes Q1 (which contains a fragment of the prtM gene) and Q6 and Q92 (which contain fragments of the prtP gene); all three probes originated from the proteinase gene region of Lactococcus lactis subsp. cremoris Wg2. A restriction enzyme map of the proteinase region of Lactobacillus casei HN14 was constructed on the basis of hybridization experiments. Comparison of the restriction enzyme maps of the Lactobacillus casei HN14 proteinase gene region and those of lactococcal proteinase gene regions studied so far indicates that they are highly similar.  相似文献   

10.
The procedure generally used for the isolation of extracellular, cell-associated proteinases of Lactococcus lactis species is based on the release of the proteinases by repeated incubation and washing of the cells in a Ca2+-free buffer. For L. lactis subsp. cremoris Wg2, as many as five incubations for 30 min at 29°C are needed in order to liberate 95% of the proteinase. Proteinase release was not affected by chloramphenicol, which indicates that release is not the result of protein synthesis during the incubations. Ca2+ inhibited, while ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) stimulated, proteinase release from the cells. The pH optimum for proteinase release ranged between 6.5 and 7.5, which was higher than the optimum pH of the proteinase measured for casein hydrolysis (i.e., 6.4). Treatment of cells with the serine proteinase inhibitor phenylmethylsulfonyl fluoride prior to the incubations in Ca2+-free buffer reduced the release of the proteinase by 70 to 80%. The residual proteinase remained cell associated but could be removed by the addition of active L. lactis subsp. cremoris Wg2 proteinase. This suggests that proteinase release from cells of L. lactis subsp. cremoris Wg2 is the result of autoproteolytic activity. From a comparison of the N-terminal amino acid sequence of the released proteinase with the complete amino acid sequence determined from the nucleotide sequence of the proteinase gene, a protein of 180 kilodaltons would be expected. However, a proteinase with a molecular weight of 165,000 was found, which indicated that further hydrolysis had occurred at the C terminus.  相似文献   

11.
Ability of industrially relevant species of thermophilic lactobacilli strains to hydrolyze proteins from animal (caseins and β-lactoglobulin) and vegetable (soybean and wheat) sources, as well as influence of peptide content of growth medium on cell envelope-associated proteinase (CEP) activity, was evaluated. Lactobacillus delbrueckii subsp. lactis (CRL 581 and 654), L. delbrueckii subsp. bulgaricus (CRL 454 and 656), Lactobacillus acidophilus (CRL 636 and 1063), and Lactobacillus helveticus (CRL 1062 and 1177) were grown in a chemically defined medium supplemented or not with 1 % Casitone. All strains hydrolyzed mainly β-casein, while degradation of αs-caseins was strain dependent. Contrariwise, κ-Casein was poorly degraded by the studied lactobacilli. β-Lactoglobulin was mainly hydrolyzed by CRL 656, CRL 636, and CRL 1062 strains. The L. delbrueckii subsp. lactis strains, L. delbrueckii subsp. bulgaricus CRL 656, and L. helveticus CRL 1177 degraded gliadins in high extent, while the L. acidophilus and L. helveticus strains highly hydrolyzed soy proteins. Proteinase production was inhibited by Casitone, the most affected being the L. delbrueckii subsp. lactis species. This study highlights the importance of proteolytic diversity of lactobacilli for rational strain selection when formulating hydrolyzed dairy or vegetable food products.  相似文献   

12.
The cell wall-associated proteinase from Lactococcus lactis subsp. cremoris H2 (isolate number 4409) was released from the cells by treatment with lysozyme, even in the presence of 50 mM calcium chloride. Cell lysis during lysozyme treatment was minimal. The proteinase activity released by lysozyme treatment fractionated on ion-exchange chromatography as three main forms, the molecular masses of which were determined by gel exclusion chromatography and polyacrylamide gel electrophoresis. Two of the enzyme forms released, 137 and 145 kDa, were the same as those released by incubation of cells in calcium-free phosphate buffer. In the presence of calcium, lysozyme treatment also resulted in the release of a 180-kDa enzyme molecule. The total proteinase activity released by lysozyme treatment (in the presence or absence of calcium) was not only greater than that released by phosphate buffer but was also greater than that initially detectable on the surface of whole cells, suggesting an unmasking of enzyme on the cell surface. The presence of calcium during release treatment resulted in increased stability of the crude enzyme preparations. For the proteinase preparation released by using lysozyme with 50 mM CaCl2, the half-life of proteinase activity at 37°C was 39 h, compared with 0.22 h for the calcium-free phosphate buffer-released preparation. In all cases, maximum stability was observed at pH 5.5. Comparison of β-casein hydrolysis by the three forms of the enzyme showed that the products of short-term (5- to 30-min) digestions were very similar, although subtle differences were detected with the 180-kDa form.  相似文献   

13.
The genetic determinants for lactose utilization from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 and galactose utilization from Lactococcus lactis subsp. cremoris MG 1363 were heterologously expressed in the lysine-overproducing strain Corynebacterium glutamicum ATCC 21253. The C. glutamicum strains expressing the lactose permease and β-galactosidase genes of L. delbrueckii subsp. bulgaricus exhibited β-galactosidase activity in excess of 1,000 Miller units/ml of cells and were able to grow in medium in which lactose was the sole carbon source. Similarly, C. glutamicum strains containing the lactococcal aldose-1-epimerase, galactokinase, UDP-glucose-1-P-uridylyltransferase, and UDP-galactose-4-epimerase genes in association with the lactose permease and β-galactosidase genes exhibited β-galactosidase levels in excess of 730 Miller units/ml of cells and were able to grow in medium in which galactose was the sole carbon source. When grown in whey-based medium, the engineered C. glutamicum strain produced lysine at concentrations of up to 2 mg/ml, which represented a 10-fold increase over the results obtained with the lactose- and galactose-negative control, C. glutamicum 21253. Despite their increased catabolic flexibility, however, the modified corynebacteria exhibited slower growth rates and plasmid instability.  相似文献   

14.
The production and biochemical properties of cell envelope-associated proteinases from two strains of Streptococcus thermophilus (strains CNRZ 385 and CNRZ 703) were compared. No significant difference in proteinase activity was found for strain CNRZ 385 when cells were grown in skim milk medium and M17 broth. Strain CNRZ 703 exhibited a threefold-higher proteinase activity when cells were grown in low-heat skim milk medium than when grown in M17 broth. Forty-one percent of the total activity of CNRZ 385 was localized on the cell wall. The optimum pH for enzymatic activity at 37°C was around 7.0. Serine proteinase inhibitors, such as phenylmethylsulfonyl fluoride and diisopropylfluorophosphate, inhibited the enzyme activity in both strains. The divalents cations Ca2+, Mg2+, and Mn2+ were activators, while Zn2+ and Cu2+ were inhibitors. β-Casein was hydrolyzed more rapidly than αs1-casein. The results of DNA hybridization and immunoblot studies suggested that the S. thermophilus cell wall proteinase and the lactococcal proteinase are not closely related.  相似文献   

15.
During the ripening of Gouda-type cheese, two kinds of endopeptidases were found to participate in the degradation of αs1-CN(f1-23), a specific product from αs1-casein hydrolyzed by chymosin. One of the endopeptidases, lactic acid bacteria endopeptidase (LEP-II), which can recognize the size of its substrates, has already been purified and characterized (T. R. Yan, N. Azuma, S. Kaminogawa, and K. Yamauchi, Eur. J. Biochem. 163:259-265, 1987). The other endopeptidase, LEP-I, was purified to homogeneity by conventional chromatographic techniques from Streptococcus cremoris H61. The enzyme appeared to be monomeric, with an apparent molecular weight of 98,000, and its isoelectric point was 5.1. For the hydrolysis of αs1-CN(f1-23), the enzyme had an optimum pH and temperature of 7.0 to 7.5 and 40°C, respectively. Its activity was inhibited by such chelating agents as EDTA and 1,10-phenanthrolin, and it could be fully reactivated by Mn2+. Inhibitors specific for serine and thiol proteases had no effect on the protease activity. The enzyme showed a high affinity toward the Glu-Asn peptide bond of αs1-CN(f1-23) and αs1-CN(f91-100) but showed no hydrolysis activity toward αs1-CN(f1-52), αs1-CN(61-122), αs1-CN(136-196), αs1-casein, β-casein, κ-casein, α-lactalbumin, and β-lactoglobulin. The Km and Vmax of LEP-I for αs1-CN(f1-23) were 14.2 pM and 139 U, respectively.  相似文献   

16.
The proteolytic system of Bifidobacterium animalis subsp. lactis was analyzed, and an intracellular endopeptidase (PepO) was identified and characterized. This work reports the first complete cloning, purification, and characterization of a proteolytic enzyme in Bifidobacterium spp. Aminopeptidase activities (general aminopeptidases, proline iminopeptidase, X-prolyl dipeptidylaminopeptidase) found in cell extracts of B. animalis subsp. lactis were higher for cells that had been grown in a milk-based medium than for those grown in MRS. A high specific proline iminopeptidase activity was observed in B. animalis subsp. lactis. Whole cells and cell wall-bound protein fractions showed no caseinolytic activity; however, the combined action of intracellular proteolytic enzymes could hydrolyze casein fractions rapidly. The endopeptidase activity of B. animalis subsp. lactis was examined in more detail, and the gene encoding an endopeptidase O in B. animalis subsp. lactis was cloned and overexpressed in Escherichia coli. The deduced amino acid sequence for B. animalis subsp. lactis PepO indicated that it is a member of the M13 peptidase family of zinc metallopeptidases and displays 67.4% sequence homology with the predicted PepO protein from Bifidobacterium longum. The recombinant enzyme was shown to be a 74-kDa monomer. Activity of B. animalis subsp. lactis PepO was found with oligopeptide substrates of at least 5 amino acid residues, such as met-enkephalin, and with larger substrates, such as the 23-amino-acid peptide αs1-casein(f1-23). The predominant peptide bond cleaved by B. animalis subsp. lactis PepO was on the N-terminal side of phenylalanine residues. The enzyme also showed a post-proline secondary cleavage site.  相似文献   

17.
The concentrations of γ-aminobutyric acid (GABA) in 22 Italian cheese varieties that differ in several technological traits markedly varied from 0.26 to 391 mg kg−1. Presumptive lactic acid bacteria were isolated from each cheese variety (total of 440 isolates) and screened for the capacity to synthesize GABA. Only 61 isolates showed this activity and were identified by partial sequencing of the 16S rRNA gene. Twelve species were found. Lactobacillus paracasei PF6, Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactococcus lactis PU1, Lactobacillus plantarum C48, and Lactobacillus brevis PM17 were the best GABA-producing strains during fermentation of reconstituted skimmed milk. Except for L. plantarum C48, all these strains were isolated from cheeses with the highest concentrations of GABA. A core fragment of glutamate decarboxylase (GAD) DNA was isolated from L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48 by using primers based on two highly conserved regions of GAD. A PCR product of ca. 540 bp was found for all the strains. The amino acid sequences deduced from nucleotide sequence analysis showed 98, 99, 90, and 85% identity to GadB of L. plantarum WCFS1 for L. paracasei PF6, L. delbrueckii subsp. bulgaricus PR1, L. lactis PU1, and L. plantarum C48, respectively. Except for L. lactis PU1, the three lactobacillus strains survived and synthesized GABA under simulated gastrointestinal conditions. The findings of this study provide a potential basis for exploiting selected cheese-related lactobacilli to develop health-promoting dairy products enriched in GABA.  相似文献   

18.
An aminopeptidase was purified to homogeneity from a crude cell extract of Lactococcus lactis subsp. cremoris Wg2 by a procedure that included diethyl-aminoethane-Sephacel chromatography, phenyl-Sepharose chromatography, gel filtration, and high-performance liquid chromatography over an anion-exchange column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band with a molecular weight of 95,000. The aminopeptidase was capable of degrading several peptides by hydrolysis of the N-terminal amino acid. The peptidase had no endopeptidase or carboxypeptidase activity. The aminopeptidase activity was optimal at pH 7 and 40°C. The enzyme was completely inactivated by the p-chloromecuribenzoate mersalyl, chelating agents, and the divalent cations Cu2+ and Cd2+. The activity that was lost by treatment with the sulfhydryl-blocking reagents was restored with dithiothreitol or β-mercapto-ethanol, while Zn2+ or Co2+ restored the activity of the 1,10-phenantroline-treated enzyme. Kinetic studies indicated that the enzyme has a relatively low affinity for lysyl-p-nitroanilide (Km, 0.55 mM) but that it can hydrolyze this substrate at a high rate (Vmax, 30 μmol/min per mg of protein).  相似文献   

19.
A tripeptidase from a cell extract of Lactococcus lactis subsp. cremoris Wg2 has been purified to homogeneity by DEAE-Sephacel and phenyl-Sepharose chromatography followed by gel filtration over a Sephadex G-100 SF column and a high-performance liquid chromatography TSK G3000 SW column. The enzyme appears to be a dimer with a molecular weight of between 103,000 and 105,000 and is composed of two identical subunits each with a molecular weight of about 52,000. The tripeptidase is capable of hydrolyzing only tripeptides. The enzyme activity is optimal at pH 7.5 and at 55°C. EDTA inhibits the activity, and this can be reactivated with Zn2+, Mn2+, and partially with Co2+. The reducing agents dithiothreitol and β-mercaptoethanol and the divalent cation Cu2+ inhibit tripeptidase activity. Kinetic studies indicate that the peptidase hydrolyzes leucyl-leucyl-leucine with a Km of 0.15 mM and a Vmax of 151 μmol/min per mg of protein.  相似文献   

20.
The membrane-associated proteinase of Streptococcus lactis strain 3 hydrolyzed αs, 1-casein B into 11 peptide fragments. Eight of the 11 peptides were purified and partially characterized. Each peptide contained several, but not all six, essential amino acids required for growth. The culture was able to utilize one peptide as the sole source for the essential amino acid leucine. Leucine, serine, valine, and glycine were found to be NH2-terminal residues. Two of the peptides were phosphopeptides. The data support the functional role of the membrane-associated proteinase as being involved in the initial breakdown of proteins to peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号