首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang T  Wang RY  Bao QY  Rawson DM 《Theriogenology》2006,66(4):982-988
Information on fish embryo membrane permeability is vital in their cryopreservation. Whilst conventional volumetric measurement based assessment methods have been widely used in fish embryo membrane permeability studies, they are lengthy and reduce the capacity for multi-embryo measurement during an experimental run. A new rapid 'real-time' measurement technique is required to determine membrane permeability during cryoprotectant treatment. In this study, zebrafish (Danio rerio) embryo membrane permeability to cryoprotectants was investigated using impedance spectroscopy. An embryo holding cell, capable of holding up to 10 zebrafish embryos was built incorporating the original system electrods for measuring the impedance spectra. The holding cell was tested with deionised water and a series of KCl solutions with known conductance values to confirm the performance of the modified system. Untreated intact embryos were then tested to optimise the loading capacity and sensitivity of the system. To study the impedance changes of zebrafish embryos during cryoprotectant exposure, three, six or nine embryos at 50% epiboly stage were loaded into the holding cell in egg water, which was then removed and replaced by 0.5, 1.0, 2.0 or 3M methanol or dimethyl sulfoxide (DMSO). The impedance changes of the loaded embryos in different cryoprotectant solutions were monitored over 30 min at 22 degrees C, immediately following embryo exposure to cryoprotectants, at the frequency range of 10-10(6)Hz. The impedance changes of the embryos in egg water were used as controls. Results from this study showed that the optimum embryo loading level was six embryos per cell for each experimental run. The optimum frequency was identified at 10(3.14) or 1,380 Hz which provided good sensitivity and reproducibility. Significant impedance changes were detected after embryos were exposed to different concentrations of cryoprotectants. The results agreed well with those obtained from conventional volumetric based studies.  相似文献   

2.
Studies on permittivity changes in fish embryos measured by impedance spectroscopy after ultrasound treatment during exposure to cryoprotectant is reported here for the first time. The permittivity changes of zebrafish embryos in cryoprotectant solutions before and after ultrasound treatment were measured using impedance spectroscopy. Zebrafish (Danio rerio) embryos at 50% epiboly stage were exposed to 2 M methanol for 25 min before ultrasound treatment for 5 min at 22 degrees C. Embryos were treated with ultrasound in different frequencies (24 and 48 kHz) and voltages (50, 100, 150 and 175 V) combinations. The results showed a clear increasing trend of permittivity from voltage 50 to 175 V over lower impedance frequency range of 10-10(3) Hz indicating increased methanol penetration into the embryos after ultrasound treatment. The embryo survival was not compromised after ultrasound treatment under conditions used in the present study. The use of impedance spectroscopy technique provides a useful none-invasive tool for detecting changes of cryoprotectant penetration in fish embryos after ultrasound treatment. The technique is especially useful for the selection of the suitable cryoprotectants in embryo cryopreservation and may also allow quantitative measurements in embryo membrane permeability studies.  相似文献   

3.
Although fish embryos have been used in a number of slow-freezing cryopreservation experiments, they have never been successfully cryopreserved. In part this is because little is known about whether ice forms within the embryo during the slow-freezing dehydration process. Therefore, we examined the temperature of intraembryonic ice formation (T(IIF)) and the temperature of extraembryonic ice formation (T(EIF)), using a cryomicroscope. We used both unmodified zebrafish embryos and those with water channels (aquaporin-3 or AQP3) inserted into their membranes to increase permeability to water and cryoprotectants, examined at 100% epiboly to the 6-somite stage. In these experiments we examined: (1) the spontaneous freezing of (external) solutions; (2) the spontaneous freezing of solutions containing embryos; (3) the effect of preloading the embryos with cryoprotectants on T(IIF); (4) whether preloading the embryos with cryoprotectant helps in survival after nucleating events in the solution; and (5) the damaging effects of extracellular nucleation events versus solution toxicity on the embryos. The solutes alone (embryo medium--EM, sucrose culture medium, 1 M propylene glycol in EM, and 1 M propylene glycol in a sucrose culture medium) froze at -14.9 +/- 1.1, -17.0 +/- 0.3, -17.8 +/- 1.0, and -17.7 +/- 1.4, respectively. There was no difference amongst these means (P > 0.05), thus adding cryoprotectant did not significantly lower the nucleation point. Adding embryos (preloaded with cryoprotectant or not) did not change the basic freezing characteristics of these solutes. In all these experiments, (T(EIF)) equaled (T(IIF)), and there was no difference in the freezing point of the solutions with or without the embryos (P > 0.05). Additionally, there was no difference in the freezing characteristics of embryos with and without aquaporins (P > 0.05). The formation of intraembryonic ice was lethal to the zebrafish embryos in all cases. But this lethal outcome was not related to solution injury effects, because 88-98% of embryos survived when exposed to a higher solute concentration with no ice present. Taken together, these data suggest that slow-freezing is not a suitable option for zebrafish embryos. The mechanism of this high temperature nucleation event in zebrafish embryos is still unknown.  相似文献   

4.
The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes and embryos. Several efforts have been made to facilitate the movement of water and cryoprotectants across the plasma membrane of fish oocytes/embryos because of their large size. Aquaporin-3 is a water/solute channel that can also transport various cryoprotectants. In this study, we tried to improve the permeability of immature medaka (Oryzias latipes) oocytes to water and cryoprotectants by artificially expressing aquaporin-3. The oocytes were injected with aquaporin-3 cRNA and cultured for 6-7 h. Then, hydraulic conductivity (L(P)) and cryoprotectant permeability (P(S)) were determined from volume changes in a hypertonic sucrose solution and various cryoprotectant solutions, respectively, at 25 degrees C. The L(P) value of the cRNA-injected oocytes was 0.22+/-0.04 microm/min/atm, nearly twice larger than that of intact or water-injected oocytes (0.14+/-0.02 and 0.14+/-0.03 microm/min/atm, respectively). P(S) values of intact oocytes for ethylene glycol, propylene glycol, and DMSO were 1.36+/-0.34, 1.97+/-0.20, and 1.17+/-0.52 x 10(-3) cm/min, respectively. The permeability to glycerol could not be calculated because oocytes remained shrunken in the glycerol solution. On the other hand, cRNA-injected oocytes had significantly higher P(S) values (glycerol, 2.20+/-1.29; ethylene glycol, 2.98+/-0.36; propylene glycol, 3.93+/-1.70; DMSO, 3.11+/-0.74 x 10(-3) cm/min) than intact oocytes. When cRNA-injected oocytes were cultured for 12-14 h, 51% matured to the metaphase II stage, and 43% of the matured oocytes were fertilized and hatched following in vitro fertilization and 14 days of culture. Thus, the permeability of medaka oocytes to water and cryoprotectants was improved by the artificial expression of aquaporin-3, and the oocytes retained the ability to develop to term.  相似文献   

5.
The first successful cryopreservation of fish embryos was reported in the Japanese flounder by vitrification [Chen and Tian, Theriogenology, 63, 1207-1219, 2005]. Since very high concentrations of cryoprotectants are needed for vitrification and fish embryos have a large volume, Japanese flounder embryos must have low sensitivity to cryoprotectant toxicity and high permeability to water and cryoprotectants. So, we investigated the sensitivity and the permeability of Japanese flounder embryos. In addition, we assessed the survival of flounder embryos after vitrification with solutions containing methanol and propylene glycol, following Chen and Tian's report. The embryos were relatively insensitive to the toxicity of individual cryoprotectants at lower concentrations, especially methanol and propylene glycol as their report. Although their permeability to water and cryoprotectants could not be measured from volume changes in cryoprotectant solutions, the embryos appeared to be permeable to methanol but less permeable to DMSO, ethylene glycol, and propylene glycol. Although vitrification solutions containing methanol and propylene glycol, which were used in Chen and Tian's report, were toxic to embryos, a small proportion of embryos did survived. However, when vitrified with the vitrification solutions, no embryos survived after warming. The embryos became opaque during cooling with liquid nitrogen, indicating the formation of intracellular ice during cooling. When embryos had been kept in vitrification solutions for 60 min after being treated with the vitrification solution, some remained transparent during cooling, but became opaque during warming. This suggests that dehydration and/or permeation by cryoprotectants were insufficient for vitrification of the embryos even after they had been over-treated with the vitrification solutions. Thus, Chen and Tian's cryopreservation method lacks general application to Japanese flounder embryos.  相似文献   

6.
Fish embryos have never been successfully cryopreserved because of the low permeability of cryoprotectants into the yolk. Recently, we used aquaporin-3 fused with a green fluorescent protein (AQP3GFP) to modify the zebrafish embryo, and demonstrated that the pores functioned physiologically. This increased the water and cryoprotectant permeability of the membranes. We have continued our work on AQP3-modified embryos and here we report their developmental expression of AQP3, the success of various culture media on their survival and development, and their reproductive success. The AQP3GFP expression begins within 30 m after the mRNA AQP3GFP injection into the yolk of the 1- to 4-cell embryo. This expression is distributed in the membranes throughout the blastoderm and the yolk syncytial layer within 24 h. It diminishes after 96 h. We found no difference in the survival or normal development of embryos from AQP3GFP or wild-type adults. Additionally, zebrafish embryos did not require special culture medium to survive after AQP3GFP modification. In fact, they survived best in embryo medium (ca. 40 mOsm). Embryos reared entirely in embryo medium had a higher percent survival and a higher percent normal development than those exposed to a high osmolality sucrose culture medium (ca. 330 mOsm). The mechanism whereby these embryos can maintain their internal osmolality in a hypoosmotic solution with water channels in their membranes is unknown.  相似文献   

7.

Background  

Increasing cell membrane permeability to water and cryoprotectants is critical for the successful cryopreservation of cells with large volumes. Artificial expression of water-selective aquaporins or aquaglyceroporins (GLPs), such as mammalian aquaporin-3 (AQP3), enhances cell permeability to water and cryoprotectants, but it is known that AQP3-mediated water and solute permeation is limited and pH dependent. To exploit further the possibilities of using aquaporins in cryobiology, we investigated the functional properties of zebrafish (Danio rerio) GLPs.  相似文献   

8.
This paper describes some new approaches for understanding the permeability of teleost embryos. The dechorionated zebrafish (Brachydanio rerio) was used as a model for basic studies of water and cryoprotectant permeability. These embryos are composed of two compartments, a large yolk (surrounded by the yolk syncytial layer) and differentiating blastoderm cells. Cellular water was distributed unequally in each compartment. Measurements indicated that the total water in the embryo was 74%, while the total water in the yolk was 42%, and total water in the blastoderm was 82%. The internal isosmotic value for the zebrafish embryo is unknown. However, for one-compartment modeling studies of membrane permeability, the mean Lp (±SEM) values were 0.022 ± 0.002 to 0.049 ± 0.008 μm × min−1atm−1at 40 mOsm (assuming this was one possible internal isosmotic value for the entire embryo) and 0.040 ± 0.004 to 0.1 ± 0.017 μm × min−1atm−1at 300 mOsm (assuming this was another possible internal isosmotic value for the entire embryo). When three- and six-somite embryos were placed in 1.5 and 2.0Mcryoprotectants (dimethyl sulfoxide and propylene glycol), osmometric measurements of volume changes indicated no cryoprotectant permeation. However, similar measurements with methanol revealed a small volume decrease (ca. 8%) and recovery (ca. 5%) for six-somite embryos in a 2.0Msolution. Magnetic resonance (MR) images of the spatial distribution of three cryoprotectants (dimethyl sulfoxide, propylene glycol, and methanol) demonstrated that only methanol permeated the entire embryo within 15 min. The other cryoprotectants exhibited little or no permeation into the yolk over 2.5 h. The results from MR spectroscopy and cryoprotectant microinjections into the yolk suggested that the yolk syncytial layer plays the critical limiting role for cryoprotectant permeation throughout the embryo.  相似文献   

9.
Investigation into fish oocyte membrane permeability is essential for developing successful protocols for their cryopreservation. The aim of the present work was to study the permeability of the zebrafish (Danio rerio) oocyte membrane to water and cryoprotectants before cryopreservation protocol design. The study was conducted on stage III and stage V zebrafish oocytes. Volumetric changes of stage III oocytes in different concentrations of sucrose were measured after 20 min exposure at 22 degrees C and the osmotically inactive volume of the oocytes (Vb) was determined using the Boyle-van't Hoff relationship. Volumetric changes of oocytes during exposure to different cryoprotectant solutions were also measured. Oocytes were exposed to 2 M dimethyl sulphoxide (DMSO), propylene glycol (PG), and methanol for 40 min at 22 degrees C. Stage III oocytes were also exposed to 2 M DMSO at 0 degrees C. Oocyte images were captured on an Olympus BX51 cryomicroscope using Linkham software for image recording. Scion Image was used for image analysis and diameter measurement. The experimental data were fitted to a two-parameter model using Berkeley Madonna 8.0.1 software. Hydraulic conductivity (L(p)) and solute (cryoprotectant) permeability (Ps) were estimated using the model. The osmotically inactive volume of stage III zebrafish oocytes was found to be 69.5%. The mean values+/-SE of Lp were found to be 0.169+/-0.02 and 0.196+/-0.01 microm/min/atm in the presence of DMSO and PG, respectively, at 22 degrees C, assuming an internal isosmotic value for the oocyte of 272 mOsm. The Ps values were 0.000948+/-0.00015 and 0.000933+/-0.00005 cm/min for DMSO and PG, respectively. It was also shown that the membrane permeability of stage III oocytes decreased significantly with temperature. No significant changes in cell volume during methanol treatment were observed. Fish oocyte membrane permeability parameters are reported here for the first time. The Lp and Ps values obtained for stage III zebrafish oocytes are generally lower than those obtained from successfully cryopreserved mammalian oocytes and higher than those obtained with fish embryos and sea urchin eggs. It was not possible to estimate membrane permeability parameters for stage V oocytes using the methods employed in this study because stage V oocytes experienced the separation of outer oolemma membrane from inner vitelline during exposure to cryoprotectants.  相似文献   

10.
It has been shown that aquaporin-3, a water channel, is expressed in mouse embryos. This type of aquaporin transports not only water but also neutral solutes, including cell-permeating cryoprotectants. Therefore, the expression of this channel may have significant influence on the survival of cryopreserved embryos. However, permeability coefficients of aquaporin-3 to cryoprotectants have not been determined except for glycerol. In addition, permeability coefficients under concentration gradients are important for developing and improving cryopreservation protocols. In this study, we examined the permeability of aquaporin-3 to various cryoprotectants using Xenopus oocytes. The permeability of aquaporin-3 to cryoprotectants was measured by the volume change of aquaporin-3 cRNA-injected oocytes in modified Barth's solution containing either 10% glycerol, 8% ethylene glycol, 10% propylene glycol, 1.5 M acetamide, or 9.5% DMSO (1.51-1.83 Osm/kg) at 25 degrees C. Permeability coefficients of aquaporin-3 for ethylene glycol and propylene glycol were 33.50 and 31.45 x 10(-3) cm/min, respectively, which were as high as the value for glycerol (36.13 x 10(-3) cm/min). These values were much higher than those for water-injected control oocytes (0.04-0.11 x 10(-3) cm/min). On the other hand, the coefficients for acetamide and DMSO were not well determined because the volume data were poorly fitted by the two parameter model, possibly because of membrane damage. To avoid this, the permeability for these cryoprotectants was measured under a low concentration gradient by suspending oocytes in aqueous solutions containing low concentrations of acetamide or DMSO dissolved in water (0.20 Osm/kg). The coefficient for acetamide (24.60 x 10(-3) cm/min) was as high as the coefficients for glycerol, ethylene glycol, and propylene glycol, and was significantly higher than the value for control (6.50 x 10(-3) cm/min). The value for DMSO (6.33 x 10(-3) cm/min) was relatively low, although higher than the value for control (0.79 x 10(-3) cm/min). This is the first reported observation of DMSO transport by aquaporin-3.  相似文献   

11.
Nucleation temperatures of intraembryonic water and cryoprotectant penetration in zebrafish embryos were studied using differential scanning calorimetry. The effects of embryo developmental stage, dechorionation, partial removal of yolk, cooling rate, and cryoprotectant treatment on the temperatures of intraembryonic freezing were investigated. Embryo stages were found to have a significant effect on the nucleation temperatures of intact embryos. Freeze onset temperatures of -11.9 +/- 1.5, -15.6 +/- 0.3, and -20.5 +/- 0.1 degrees C were obtained for intact embryos at 6-somite, prim-6, and high-pec stages, respectively. After dechorionation, the freeze onset temperatures of intraembryonic water shifted to significantly lower temperatures, being -23.5 +/- 0.8, -18.7 +/- 0.7, -24.9 +/- 0.8 degrees C for 6-somite, prim-6, and high-pec stages, respectively. Yolk-reduced high-pec stage embryos showed significantly lower nucleation temperatures with an average onset at -27.9 +/- 0.4 degrees C. The effect of cryoprotectant treatment on the nucleation temperatures of intraembryonic water varies among different embryo stages and different cryoprotectants. Thirty-minute treatment with 2 M methanol significantly decreased the nucleation temperatures of dechorionated 6-somite embryos whilst no temperature decrease was observed for prim-6 or yolk-reduced high-pec embryos. Thirty-minute exposure to 1 M propylene glycol did not significantly affect the nucleation temperatures of dechorionated 6-somite, prim-6, or yolk-reduced high-pec embryos. In order to increase the permeability of embryos to cryoprotectants, the yolk sacs of dechorionated embryos at 6-somite or prim-6 embryos were punctured with a sharp micro-needle before exposure to cryoprotectants. The punctured prim-6 embryos showed significantly lower temperatures of intraembryonic freezing after 30 min of exposure to 2 M methanol following the multi-punctures. The nucleation temperatures of punctured 6-somite or prim-6 embryos were also decreased significantly after exposure to 1 M propylene glycol for 30 min. These results suggested that in intact embryos, intraembryonic freezing appeared to be seeded by the external ice in the perivitelline fluid and that in dechorionated embryos (in the absence of external water) intraembryonic freezing was more likely a consequence of heterogeneous nucleation. Methanol was demonstrated to show a limited degree of penetration into prim-6 stage embryos, but it did not penetrate later-stage embryos such as prim-6 and yolk-reduced high-pec. No propylene glycol permeation was observed for embryos at all stages. However, multi-punctures of yolk resulted in the permeation of both cryoprotectants into prim-6 embryos and propylene glycol permeation into 6-somite embryos. These findings may have important implications in overcoming the problem associated with the low membrane permeability of zebrafish embryos to cryoprotectants.  相似文献   

12.
The permeability to water and cryoprotectants of the plasma membrane is crucial to the successful cryopreservation of embryos. Previously, we have shown in mouse morulae that water and glycerol move across the plasma membrane by facilitated diffusion, and we have suggested that aquaporin 3 plays an important role in their movement. In the present study, we clarify the contribution of aquaporin 3 to the movement of water and various cryoprotectants in mouse morulae by measuring the Arrhenius activation energies for permeability to cryoprotectants and water, through artificial expression of aquaporin 3 using Aqp3 cRNA in mouse oocytes, and by suppressing the expression of aquaporin 3 in morulae by injecting double-stranded RNA of Aqp3 at the one-cell zygote stage. The results show that aquaporin 3 plays an important role in the facilitated diffusion of water, glycerol, and ethylene glycol, but not of acetamide and dimethylsulfoxide. On the other hand, in a propylene glycol solution, aquaporin 3 in morulae transported neither propylene glycol nor water by facilitated diffusion, probably because of strong water-solute interactions. These results provide important information for understanding the permeability of the plasma membrane of the mouse embryo.  相似文献   

13.
Ebertz SL  McGann LE 《Cryobiology》2004,49(2):169-180
A human corneal equivalent is being developed with applications in pharmaceutical testing and biomedical research, but the distribution of this engineered tissue, depends on successful cryopreservation. Cryopreservation of tissues depends on the presence of cryoprotectants, their addition and removal, and exposure to conditions during freezing and thawing, all of which depend on cellular membrane permeabilities to water and cryoprotectant. This study defines the permeability properties that define the rate of water and cryoprotectant movement across the plasma membrane of isolated human corneal endothelial, keratocyte, and epithelial cells. Cells were transferred from isotonic conditions (300 mosm/kg) to 0.5, 1, or 2 M dimethyl sulfoxide and propylene glycol solutions at constant temperature, and cell volumes monitored using an electronic particle counter. Histograms describing cell volume changes over time after cryoprotectant exposure allowed calculation of hydraulic conductivity (Lp), cryoprotectant permeability (Ps), and the reflection coefficient (sigma). Experimental values for Lp and Ps at 4, 13, 22, and 37 degrees C were used to determine the Arrhenius activation energy (Ea). Defining the permeability parameters and temperature dependencies allows simulation of responses of human corneal cells to addition and removal of cryoprotectants and to freezing conditions, allowing amount of supercooling, intracellular electrolyte concentration, and intracellular cryoprotectant concentration to be calculated. Simulations also show that the constituent cells in the bioengineered cornea respond differently to addition and removal of cryoprotectants and to freezing. This study has defined the requirements during cryopreservation for the corneal cells; future work will define the matrix requirements which will allow the development of a cryopreservation protocol.  相似文献   

14.
The study investigated the effects of internal (DMSO, 1,2-propanediol, glycerol, ethylene glycol, methanol, N,N-dimethylacetamide) and external cryoprotectants (glucose, sucrose) on the viability and on morphometric parameters of zebrafish embryos. From the tested internal cryoprotectants, DMSO had the lowest toxicity, followed by 1,2-propanediol and glycerol. The external cryoprotectants were less toxic then the internal ones. Early ontogenetic stages were more sensible to cryoprotectant exposure than advanced stages. Two-step incubation procedures in increasing concentrations of internal and external cryoprotectants were superior to multiple-step exposure procedures. All tested vitrification solutions exceeded the tolerance limit of embryos. The tolerance of zebrafish embryos to cryoprotectants was highly variable in a concentration range causing approximately 50% embryo mortality. The width of the perivitelline space showed significant morphometrical changes due to cryoprotectant exposure. In the germinative tissue non-significant changes occurred. The yolk did not change morphometrically after exposure to internal cryoprotectants and showed no sign of dehydration after exposure to external cryoprotectants. Based on these results the study comes to the following conclusions: as yolk dehydration was impossible and as vitrification solutions were over the tolerance limit it seems unlikely that successful vitrification of zebrafish embryos can be achieved. Under these considerations slow freezing methods would be a better option as lower cryoprotectant concentrations can be used and embryos can be dehydrated during freezing.  相似文献   

15.
Biophysical characteristics of the plasma membrane, such as osmotic sensitivity and water and cryoprotectant permeability are important determinants of the function of spermatozoa after cryopreservation. A series of experiments was conducted with rhesus macaque spermatozoa at 23 degrees C to determine their: (1) cell volume and osmotically inactive fraction of the cell volume; (2) permeability coefficients for water and the cryoprotectants dimethyl sulfoxide, glycerol, propylene glycol, and ethylene glycol; (3) tolerance to anisosmotic conditions; and (4) motility after a one step addition and removal of the four cryoprotectants. An electronic particle counter and computer aided semen analysis were used to determine the cell volume and permeability coefficients, and motility, respectively. Rhesus spermatozoa isosmotic cell volume was 27.7+/-3.0 microm3 (mean+/-SEM) with an osmotically inactive cell fraction of 51%. Hydraulic conductivity in the presence of dimethyl sulfoxide, glycerol, propylene glycol, and ethylene glycol was 1.09+/-0.30, 0.912+/-0.27, 1.53+/-0.53, and 1.94+/-0.47 microm/min/atm, respectively. Cryoprotectant permeability was 1.39+/-0.31, 2.21+/-0.32, 3.38+/-0.63, and 6.07+/-1.1 (x10(-3)cm/min), respectively. Rhesus sperm tolerated all hyposmotic exposures. However, greater than 70% motility loss was observed after exposure to solutions of 600 mOsm and higher. A one step addition and removal of all four cryoprotectants did not cause significant motility loss. These data suggest that rhesus sperm are tolerant to hyposmotic conditions, and ethylene glycol may be the most appropriate cryoprotectant for rhesus sperm cryopreservation, as it has the highest permeability coefficient of the tested cryoprotectants.  相似文献   

16.
The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes/embryos. To identify a stage feasible for the cryopreservation of teleost oocytes, we investigated the permeability to water and various cryoprotectants of medaka (Oryzias latipes) oocytes at the germinal vesicle (GV) and metaphase II (MII) stages. In sucrose solutions, the volume changes were greater in GV oocytes than MII oocytes. Estimated values for osmotically inactive volume were 0.41 for GV oocytes and 0.74 for MII oocytes. Water-permeability (microm/min/atm) at 25 degrees C was higher in GV oocytes (0.13+/-0.01) than MII oocytes (0.06+/-0.01). The permeability of MII oocytes to various cryoprotectants (glycerol, propylene glycol, ethylene glycol, and DMSO) was quite low because the oocytes remained shrunken during 2 h of exposure in the cryoprotectant solutions at 25 degrees C. When the chorion of MII oocytes was removed, the volume change was not affected, except in DMSO solution, where dechorionated oocytes shrunk and then regained their volume slowly; the P(DMSO) value was estimated to be 0.14+/-0.01x10(-3) cm/min. On the other hand, the permeability of GV oocytes to cryoprotectants were markedly high, the P(s) values (x10(-3) cm/min) for propylene glycol, ethylene glycol, and DMSO being 2.21+/-0.29, 1.36+/-0.18, and 1.19+/-0.01, respectively. However, the permeability to glycerol was too low to be estimated, because GV oocytes remained shrunken after 2 h of exposure in glycerol solution. These results suggest that, during maturation, medaka oocytes become less permeable to water and to small neutral solutes, probably by acquiring resistance to hypotonic conditions before being spawned in fresh water. Since such changes would make it difficult to cryopreserve mature oocytes, immature oocytes would be more suitable for the cryopreservation of teleosts.  相似文献   

17.
The particular characteristics of fish embryos require the development of specific methods for cryopreservation. One of the main obstacles is related to the presence of membranes and compartments with different water and cryoprotectant permeability. To assess dimethyl sulfoxide (Me2SO4) permeability, we exposed turbot embryos (Scophthalmus maximus) at F stage (tail bud) to the cryoprotectant solutions used in a vitrification protocol and then evaluated the Me2SO4 content inside the embryo using high-performance liquid chromatography (HPLC). The Me2SO4 influx was analyzed in normal embryos and in embryos treated with pronase (2mg/ml) in order to increase chorion permeability. The evaluation was made after each step of cryoprotectant incorporation and removal. Three embryo compartments were distinguished: the perivitelline space (PVS), the yolk sac (YS) and the cellular compartment (CC), and the relative volumes of each, estimated using stereoscopic microscopy imaging, were 11.37, 81.23 and 7.40%, respectively. The Me2SO4 concentration inside the embryos was calculated based on their entrance into one, two or three compartments. Results suggest high entrance of Me2SO4 into the PVS and a low concentration of this cryoprotectant inside the other compartments. Pronase did not significantly increase Me2SO4 influx, but facilitated its elimination during the washing steps.  相似文献   

18.
Vitrification could provide a promising tool for the cryopreservation of fish embryos. However, in order to achieve a vitrifiable medium, a high concentration of permeable cryoprotectants must be employed, and the incorporation of high molecular weight compounds should also be considered. The toxicity of these permeable and non-permeable agents has to be assessed, particularly when high concentrations are required. In the present study, permeable and non-permeable cryoprotectant toxicity was determined in turbot embryos at two development stages (F stage-tail bud and G stage-tail bud free). Embryos treated with pronase (2mg/ml, 10 min at 22 degrees C) were incubated in dimethyl sulfoxide (Me2SO), methanol (Meth.) or ethylene glycol (EG) in concentrations ranging from 0.5 to 6M for periods of 10 or 30 min, and in 5, 10, and 15% polyvinylpyrrolidone (PVP), 10, 15, and 20% sucrose or 0.1, 1, and 2% X-1000 for 2 min. The embryos were then washed well and incubated in seawater until hatching. The toxicity of permeable cryoprotectants increased with concentration and exposure time. There were no significant differences between permeable cryoprotectants. However, embryos tolerated higher concentrations of Me2SO than other cryoprotectants. Exposure to permeable cryoprotectants did not affect the hatching rate except at G stage with X-1000 treatment and 20% sucrose. Taking into account the cryoprotectant toxicity and the vitrification ability of cryoprotectant mixtures, three vitrification solutions (V1, V2, and V3), and one protocol for stepwise incorporation were designed. The tested solutions contained 5M Me2SO+2M Meth+1M EG plus 5% PVP, 10% sucrose or 2% X-1000. The hatching rate of embryos that had been exposed to the the vitrification solutions was analyzed and no significant differences were noticed compared with the controls. Our results demonstrate that turbot embryos can be subject to this cryoprotectant protocol without deleterious effect on the hatching rate.  相似文献   

19.
Insufficient cryoprotectant permeation is one of the major obstacles for successful fish embryo cryopreservation. The purpose of this study was to test the effectiveness of osmotic and chemical treatments to enhance cryoprotectant uptake by fish embryos. Japanese whiting Sillago japonica embryos at the somites and tail elongation stages were treated with hyperosmotic sugar solutions (1 M trehalose and sucrose) for 2-6 min, or a permeating agent (2-6 mg/mL pronase) for 30-120 min, and then impregnated with 10-15% DMSO in artificial sea water or aqueous solutions containing inorganic salts (0.125-0.25 M MgCl2 and CaCl2). The viability of the embryos after the treatments was estimated from hatching rates and the internal DMSO concentration was measured by HPLC. Treatment with trehalose for 3 min prior to impregnation with DMSO enhanced the uptake of the cryoprotectant by 45% without significantly affecting embryo viability, whereas pronase had no noticeable effect on cryoprotectant permeation. Incorporation of DMSO into the embryos was enhanced by 143-170% in the presence of 0.25 M MgCl2 and 0.125 M CaCl2 compared to sea water. A combination of treatments with trehalose and MgCl2 was even more effective in promoting DMSO permeation (191% compared to untreated embryos). Tail elongation embryos were less tolerant of the treatments, but had higher DMSO impregnation. In conclusion, the use of trehalose (as dehydrating agent) and MgCl2/CaCl2 (as a vehicle during impregnation) greatly promoted cryoprotectant uptake and may be a promising aid for the successful cryopreservation of fish embryos.  相似文献   

20.
Honeybees, major providers of pollination, are endangered in many areas. Embryo cryopreservation may be a very useful tool to maintain their genetic diversity. However, it is complex in insects, because embryos are chill sensitive and are surrounded by two protectant membranes, the chorion and vitelline. These membranes prevent penetration of cryoprotectant in the embryos. This study aimed to test different conditions of embryo preparation before cryopreservation, including low-frequency sonophoresis, a physical method of permeabilization, and passages through cryoprotectant solutions. Apis mellifera ligustica embryos were collected in artificial cell plugs 7.5 h after queens had been caged, in two different seasons (winter, spring) and were then incubated in vitro overnight (16.5 h). Embryos were individually sonicated and then incubated in three cryoprotectant baths (B1 = 10%, B2 = 20% and B3 = 40% of cryoprotectant) and quenched in liquid nitrogen. Artificial cell plugs and in vitro incubation device were efficient in producing future embryos hatching. Embryos stained ruby red with rhodamine B after sonophoresis treatment indicated that low-frequency ultrasound had permeabilized embryos. According to the treatment, different significant hatching rates were obtained after sonophoresis (up to 25%). After three cryoprotectant incubations, best hatching rates were obtained after 10 min in B1 and B2, and 40 s in B3. These results show that sonophoresis is an efficient tool to permeabilize the chorion and vitelline membrane of the day one honeybee embryo allowing a hatching rate of more than 20%. They also show that the season is an important variability factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号