首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Model compounds of modified hydrophobicity (H), hydrophobic moment (μ) and angle subtended by charged residues (Φ) were synthesized to define the general roles of structural motifs of cationic helical peptides for membrane activity and selectivity. The peptide sets were based on a highly hydrophobic, non-selective KLA model peptide with high antimicrobial and hemolytic activity. Variation of the investigated parameters was found to be a suitable method for modifying peptide selectivity towards either neutral or highly negatively charged lipid bilayers. H and μ influenced selectivity preferentially via modification of activity on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) bilayers, while the size of the polar/hydrophobic angle affected the activity against 1-palmitoyl-2-oleoylphosphatidyl-DL-glycerol (POPG). The influence of the parameters on the activity determining step was modest in both lipid systems and the activity profiles were the result of the parameters’ influence on the second less pronounced permeabilization step. Thus, the activity towards POPC vesicles was determined by the high permeabilizing efficiency, however, changes in the structural parameters preferentially influenced the relatively moderate affinity. In contrast, intensive peptide accumulation via electrostatic interactions was sufficient for the destabilization of highly negatively charged POPG lipid membranes, but changes in the activity profile, as revealed by the modification of Φ, seem to be preferentially caused by variation of the low permeabilizing efficiency. The parameters proved very effective also in modifying antimicrobial and hemolytic activity. However, their influence on cell selectivity was limited. A threshold value of hydrophobicity seems to exist which restricted the activity modifying potential of μ and Φ on both lipid bilayers and cell membranes.  相似文献   

2.
Infectious diseases are one of the main causes of human morbidity and mortality. In the last few decades, pathogenic microorganisms' resistance to conventional drugs has been increasing, and it is now pinpointed as a major worldwide health concern. The need to search for new therapeutic options, as well as improved treatment outcomes, has therefore increased significantly, with biologically active peptides representing a new alternative. A substantial research effort is being dedicated towards their development, especially due to improved biocompatibility and target selectivity. However, the inherent limitations of peptide drugs are restricting their application. In this review, we summarize the current status of peptide drug development, focusing on antiviral and antimicrobial peptide activities, highlighting the design improvements needed, and those already being used, to overcome the drawbacks of the therapeutic application of biologically active peptides.  相似文献   

3.
Non‐mAb biologics represent a growing class of therapeutics under clinical development. Although affinity chromatography is a potentially attractive approach for purification, the development of platform technologies, such as Protein A for mAbs, has been challenging due to the inherent chemical and structural diversity of these molecules. Here, we present our studies on the rapid development of peptide affinity ligands for the purification of biologics using a prototypical enzyme therapeutic in clinical use. Employing a suite of de novo rational and combinatorial design strategies we designed and screened a library of peptides on microarray platforms for their ability to bind to the target with high affinity and selectivity in cell culture fluid. Lead peptides were evaluated on resin in batch conditions and compared with a commercially available resin to evaluate their efficacy. Two lead candidates identified from microarray studies provided high binding capacity to the target while demonstrating high selectivity against culture contaminants and product variants compared to a commercial resin system. These findings provide a proof‐of‐concept for developing affinity peptide‐based bioseparations processes for a target biologic. Peptide affinity ligand design and screening approaches presented in this work can also be easily translated to other biologics of interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:987–998, 2018  相似文献   

4.
Conflict arises in fisheries worldwide when piscivorous birds target fish species of commercial value. This paper presents a method for estimating size selectivity functions for piscivores and uses it to compare predation selectivities of Great Cormorants (Phalacrocorax carbo sinensis L. 1758) with that of gill-net fishing on a European perch (Perca fluviatilis L. 1758) population in the Curonian Lagoon, Lithuania. Fishers often regard cormorants as an unwanted “satellite species”, but the degree of direct competition and overlap in size-specific selectivity between fishers and cormorants is unknown. This study showed negligible overlap in selectivity between Great Cormorants and legal-sized commercial nets. The selectivity estimation method has general application potential for use in conjunction with population dynamics models to assess fish population responses to size-selective fishing from a wide range of piscivorous predators.  相似文献   

5.
Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure–activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.  相似文献   

6.
Bispecific antibodies constitute a valuable class of therapeutics owing to their ability to bind 2 distinct targets. Dual targeting is thought to enhance biological efficacy, limit escape mechanisms, and increase target selectivity via a strong avidity effect mediated by concurrent binding to both antigens on the surface of the same cell. However, factors that regulate the extent of target selectivity are not well understood. We show that dual targeting alone is not sufficient to promote efficient target selectivity, and report the substantial roles played by the affinity of the individual arms, overall avidity and valence. More particularly, various monovalent bispecific IgGs composed of an anti-CD70 moiety paired with variants of the anti-CD4 mAb ibalizumab were tested for preferential binding and selective depletion of CD4+/CD70+ T cells over cells expressing only one of the target antigens that resulted from antibody dependent cell-mediated cytotoxicity. Variants exhibiting reduced CD4 affinity showed a greater degree of target selectivity, while the overall efficacy of the bispecific molecule was not affected.  相似文献   

7.
Different species of Leishmania are responsible for cutaneous, mucocutaneous or visceral leishmaniasis infections in millions of people around the world [14]. The adverse reactions caused by antileishmanial drugs, emergence of resistance and lack of a vaccine have motivated the search for new therapeutic options to control this disease. Different sources of antimicrobial molecules are under study as antileishmanial agents, including peptides with antimicrobial and/or immunomodulatory activity, which have been considered to be potentially active against diverse species of Leishmania [7] and [39]. This study evaluated the cytotoxicity on dendritic cells, hemolytic activity, leishmanicidal properties on Leishmania panamensis and Leishmania major promastigotes and effectiveness on parasite intracellular forms (dendritic cells infected with L. panamensis and L. major promastigotes), when each parasite in culture was exposed to different concentrations of a group of synthetic peptides with previously reported antimicrobial properties, which were synthesized based on their naturally occurring reported sequences. Dermaseptin, Pr-2 and Pr-3 showed inhibitory activity on the growth of L. panamensis promastigotes, while Andropin and Cecropin A (with a selectivity index of 4 and 40, respectively) showed specific activity against intracellular forms of this species. The activities of Andropin and Cecropin A were exclusively against the intracellular forms of the parasite, therefore indicating the relevance of these two peptides as potential antileishmanial agents. In the case of L. major promastigotes, Melittin and Dermaseptin showed inhibitory activity, the latter also showed a selectivity index of 8 against intracellular forms. These findings suggest Andropin, Cecropin A and Dermaseptin as potential therapeutic tools to treat New and Old World cutaneous leishmaniasis.  相似文献   

8.
9.
Oxytocin (OT) is an exciting potential therapeutic agent, but it is highly sensitive to modification and suffers extensive degradation at elevated temperature and in vivo. Here we report studies towards OT analogs with favorable selectivity, affinity and potency towards the oxytocin receptor (OTR), in addition to improving stability of the peptide by bridging the disulfide region with substituted dibromo-xylene analogs. We found a sensitive structure-activity relationship in which meta-cyclized analogs (dOTmeta) gave highest affinity (50?nM Ki), selectivity (34-fold), and agonist potency (34?nM EC50, 87-fold selectivity) towards OTR. Surprisingly, ortho-cyclized analogs demonstrated OTR and vasopressin V1a receptor subtype affinity (220?nM and 69?nM, respectively) and pharmacological activity (294?nM and 35?nM, respectively). V1a binding and selectivity for ortho-cyclized peptides could be improved 6-fold by substituting a neutral residue at position 8 with a basic amino acid, providing potent antagonists (14?nM IC50) that displayed no activation of the OTR. Furthermore, xylene-bridged analogs demonstrated increased stability compared to OT at elevated temperature, demonstrating promising therapeutic potential for these analogs which warrants further study.  相似文献   

10.
To combine the potency of trimetrexate (TMQ) or piritrexim (PTX) with the species selectivity of trimethoprim (TMP), target based design was carried out with the X-ray crystal structure of human dihydrofolate reductase (hDHFR) and the homology model of Pneumocystis jirovecii DHFR (pjDHFR). Using variation of amino acids such as Met33/Phe31 (in pjDHFR/hDHFR) that affect the binding of inhibitors due to their distinct positive or negative steric effect at the active binding site of the inhibitor, we designed a series of substituted-pyrrolo[2,3-d]pyrimidines. The best analogs displayed better potency (IC50) than PTX and high selectivity for pjDHFR versus hDHFR, with 4 exhibiting a selectivity for pjDHFR of 24-fold.  相似文献   

11.
Cyclic peptides cyclo(-Gly-Asp-Glu-Lys-), cyclo(-Gly-Gly-Asp-Glu-Lys-) and cyclo(-Gly-Gly-Gly-Asp-Glu-Lys-) were synthesized as models of theβ-turn of nerve growth factor loop 4. The corresponding protected linear precursors were obtained in 52–83% yields by the solid-phase method with the use of the Fmoc/Bu t strategy and a chlorotrityl anchor group. The cyclization was carried out with benzotriazolyloxytris(dimethylamino)phosphonium (BOP) hexafluorophosphate, N-[(1H-benzotriazole-1-yl)-(dimethylamino)methylene]-N-methylmetanaminium-N-oxide (HBTU) hexafluorophosphate, and diphenylphosphorylazide (DPPA) at a dilution of 10?3 M. The distribution of reaction products was studied for each cyclopeptide in dependence on the type of the coupling agent. The use of DPPA was shown to completely inhibit the formation of cyclodimers in the synthesis of five-and six-membered cyclopeptides; however, in the case of a four-membered peptide, an additional tenfold dilution of the reaction mixture was necessary to achieve the effect. The identification of several byproducts during the synthesis showed that the elongation of the polypeptide chain using the BOP reagent can be complicated by substantial racemization, and the cleavage of the chlorotrityl anchor group by 0.5% TFA in dichloromethane proceeds with insufficient selectivity and is accompanied by the premature Boc deblocking of the lysine side function.  相似文献   

12.
Drug resistance in Gram-negative bacteria, such as Acinetobacter baumannii, is emerging as a significant healthcare problem. New antibiotics with a novel mechanism of action are urgently needed to overcome the drug resistance. Methionine aminopeptidase (MetAP) carries out an essential cotranslational methionine excision in many bacteria and is a potential target to develop such novel antibiotics. Two putative MetAP genes were identified in A. baumannii genome, but whether they actually function as MetAP enzymes was not known. Therefore, we established an efficient E. coli expression system for their production as soluble and metal-free proteins for biochemical characterization. We demonstrated that both could carry out the metal-dependent catalysis and could be activated by divalent metal ions with the order Fe(II) ≈ Ni(II) > Co(II) > Mn(II) for both. By using a set of metalloform-selective inhibitors discovered on other MetAP enzymes, potency and metalloform selectivity on the A. baumannii MetAP proteins were observed. The similarity of their catalysis and inhibition to other MetAP enzymes confirmed that both may function as competent MetAP enzymes in A. baumannii and either or both may serve as the potential drug target.  相似文献   

13.
Peptidomimetics are designed to overcome the poor pharmacokinetics and pharmacodynamics associated with the native peptide or protein on which they are based. The design of peptidomimetics starts from developing structure-activity relationships of the native ligand-target pair that identify the key residues that are responsible for the biological effect of the native peptide or protein. Then minimization of the structure and introduction of constraints are applied to create the core active site that can interact with the target with high affinity and selectivity. Developing peptidomimetics is not trivial and often challenging, particularly when peptides’ interaction mechanism with their target is complex. This review will discuss the challenges of developing peptidomimetics of therapeutically important insulin superfamily peptides, particularly those which have two chains (A and B) and three disulfide bonds and whose receptors are known, namely insulin, H2 relaxin, H3 relaxin, INSL3 and INSL5.  相似文献   

14.
Bis-cystine cyclic peptides are a new kind of molecules with potential use as cavitands, transporters or antagonists of target ligands. Studies aimed at establishing their conformational profiles may prove useful in understanding their characteristics and potentiate their use in molecular design. The present investigation reports the results of a computational study devoted to establishing the conformational preferences of model bis-cystine cyclic peptides and the properties in common with their linear analogs. For this purpose a study of four model compounds: (Ac-Cys-X-Cys-NHMe)2 and (Ac-Cys-X-X-Cys-NHMe)2 with X = Ala, Val, was performed. The goal of the study was to explore the importance of the conformational nature of the central residues, the effect of the number of them, and the loss of conformational freedom after cyclization on model molecules. Accordingly, the conformational space and the dynamic behaviour of the four cyclic peptides as well as the corresponding linear analogs was carefully explored. The results indicate the existence of structural patterns that might be useful for the use of this kind of molecule in de novo molecular design  相似文献   

15.
Numerous studies have investigated dietary approaches to prevent chronic lifestyle-related diseases, including hypertension. Spent brewer’s yeast is the second largest byproduct originated by the brewing industry and it deserves considerable attention because of its high nutritional value, ca. 40% of its dry mass is rich in protein which can be hydrolyzed into biologically active peptides. To upgrade this byproduct, the aim of this study was initially in vitro assessment of biological properties, e.g. ACE inhibition and antioxidant activity, and then, the in vivo effect in short-term oral antihypertensive effect of hydrolyzed yeast fractions on a well characterized model to study hypertension - Spontaneously Hypertensive Rats (SHR). Here, it was demonstrated that the fraction with molecular weight below 3 kDa containing tri and tetra- peptides with hydrophobic amino acid residues – SPQW, PWW and RYW, causes the most noticeable decrease in systolic, diastolic and mean blood pressure of SHR and shows highest antioxidant effect. These properties highlight the potential use of yeast extract as nutraceutical or functional food ingredient for the management and treatment of hypertension with antioxidant effect.  相似文献   

16.
The lipophilic amino acid, (S)-2-aminoundecanoic acid, was synthesized and incorporated at a number of specific positions within the peptide sequence of anoplin. These lipophilic anoplin analogs showed to be more active against Escherichia coli and Staphylococcus aureus compared to native anoplin, while the EC50-value of hemolysis was at least one order of magnitude lower than the MIC values. This was in sharp contrast to the N-acylated anoplin derivative, where a gain in activity also led to a complete loss of selectivity. Thus, the incorporation of a lipophilic amino acid residue into anoplin enhanced the antimicrobial activity, while selectivity towards microbial membranes was retained.  相似文献   

17.
A collection of various Staphylococci was screened for their anti-Legionella activity. Nine of the tested strains were found to secrete anti-Legionella compounds. The culture supernatants of the strains, described in the literature to produce hemolytic peptides, were successfully submitted to a two step purification process. All the purified compounds, except one, corresponded to previously described hemolytic peptides and were not known for their anti-Legionella activity. By comparison of the minimal inhibitory concentrations, minimal permeabilization concentrations, decrease in the number of cultivable bacteria, hemolytic activity and selectivity, the purified peptides could be separated in two groups. First group, with warnericin RK as a leader, corresponds to the more hemolytic and bactericidal peptides. The peptides of the second group, represented by the PSMα from Staphylococcus epidermidis, appeared bacteriostatic and poorly hemolytic.  相似文献   

18.
19.
Looking into DNA recognition: zinc finger binding specificity   总被引:5,自引:2,他引:3       下载免费PDF全文
We present a quantitative, theoretical analysis of the recognition mechanisms used by two zinc finger proteins: Zif268, which selectively binds to GC-rich sequences, and a Zif268 mutant, which binds to a TATA box site. This analysis is based on a recently developed method (ADAPT), which allows binding specificity to be analyzed via the calculation of complexation energies for all possible DNA target sequences. The results obtained with the zinc finger proteins show that, although both mainly select their targets using direct, pairwise protein–DNA interactions, they also use sequence-dependent DNA deformation to enhance their selectivity. A new extension of our methodology enables us to determine the quantitative contribution of these two components and also to measure the contributions of individual residues to overall specificity. The results show that indirect recognition is particularly important in the case of the TATA box binding mutant, accounting for 30% of the total selectivity. The residue-by-residue analysis of the protein–DNA interaction energy indicates that the existence of amino acid–base contacts does not necessarily imply sequence selectivity, and that side chains without contacts can nevertheless contribute to defining the protein's target sequence.  相似文献   

20.
Internally quenched cathepsin L (Cat L) substrate ABZ-Bip-Arg-Ala-Gln-Tyr(3-NO2)-NH2 with high specificity constant (kcat/KM = 2.6 × 107 M−1 s−1) was synthesized. The resultant compound displayed high selectivity over other members of the cathepsin family (B, S, X, V, C, K, H, F, D, and A). Activity of Cat L at picomolar (pM) concentrations was found using this substrate. Moreover, it was established that the presence of the selective Cat L inhibitor suppressed the proteolysis of the substrate to a non-detectable level. Incubation of the synthesized compound with a cell lysate of healthy and cancer cell lines indicated significant differences in Cat L activity. Based on the obtained results, it is proposed that this substrate could be used for selective monitoring of Cat L activity in biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号