首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The macromolecular reguirements for the initiation and maintenance of macronuclear DNA replication were studied in heat synchronized Tetrahymena pyriformis GL-C. Previous work had established that macronuclear S periods could occur in a consecutive fashion without intervening cell divisions during a multiple heat shock treatment, as well as immediately following the synchronized cell divisions. Cycloheximide treatment prior to or during the S period which follows the first synchronized cell division resulted in abolition of the initiation of DNA synthesis or an almost immediate cessation of DNA synthesis in progress. Temporary inhibition of DNA synthesis occurred when cycloheximide was added late in the S period. Treatment with actinomycin D was found to block the initiation of DNA synthesis but did not appreciably affect the continuation of the S period. It was concluded that RNA synthesis was required for the initiation but not the maintenance of DNA replication, whereas protein synthesis was necessary for both processes. The dependency of the initiation of an S period on prior RNA and protein synthesis was also shown to exist when a second consecutive S period was initiated without a preceding cell division. Treatment with actinomycin or cycloheximide prior to a supernumerary S period during a multiple heat shock treatment completely abolished the initiation of DNA synthesis. In T. pyriformis the synthesis of RNA and protein related to the initiation of the S period is tightly coupled to each cycle of DNA replication.  相似文献   

2.
The mechanism of coordination between DNA replication and cell division was studied in Tetrahymena pyriformis GL-C by manipulation of the timing of these events with heat shocks and inhibition of DNA synthesis. Preliminary experiments showed that the inhibitor combination methotrexate and uridine (M + U) was an effective inhibitor of DNA synthesis. Inhibition of the progression of DNA synthesis with M + U in exponentially growing cells, in which one S period usually occurs between two successive divisions, or in heat-shocked cells, when successive S periods are known to occur between divisions, resulted in the complete suppression of the following division. In further experiments in which the division activities were reassociated with the DNA synthetic cycle by premature termination of the heat-shock treatment, it was shown that (a) the completion of one S period during the treatment was sufficient for cell division, (b) the beginning of division events suppressed the initiation of further S periods, and (c) if further S periods were initiated while the heat-shock treatment was continued, division preparations could not begin until the necessary portion of the S period was completed, even though DNA had previously been duplicated. It was concluded that a temporal incompatibility exists between DNA synthesis and division which may reflect a coupling mechanism which insures their coordination during the normal cell cycle.  相似文献   

3.
The effect of supraoptimal temperature on macronuclear DNA synthesis in Tetrahymena was studied by radioautography during prolonged heat and heat-shock synchronization treatments. Prolonged heat treatments (34°C) delayed the initiation of S, but did not appreciably delay DNA synthesis in progress. Return to optimal temperature (28°C) 50 or 100 min later resulted in initiation of S, in delayed cells, at a rate greater than in controls. During the synchronization treatment, most cells were unable to enter S during a heat shock, but initiated S with a slight delay during the following intershock period. These cells were not appreciably delayed in completion of S by subsequent heat shocks. Supraoptimal temperature appears to affect the DNA synthetic cycle near the G1 to S transition. Cells subjected to the heat-shock treatment in early G1 all participated in one S period, and many underwent a succession of two S periods. DNA synthesis occurred in about 50% of the cells between EST and the first synchronous division, with the likelihood of DNA synthesis becoming greater the longer the interval between these two events. In some cells no detectable DNA synthesis occurred between EST and the second synchronous division. It was concluded that a precise temporal alternation of DNA replication and cell division is not obligatory in Tetrahymena.  相似文献   

4.
DNA replication and the nuclear membrane   总被引:2,自引:0,他引:2  
To investigate the relationship between the nuclear membrane and DNA replication, Chinese hamster cells were labeled with tritiated thymidine and examined by electron microscope autoradiography. Unsynchronized cells were labeled for periods ranging from 0.5 to 20 minutes. There was no relative increase in the frequency of membrane-associated grains with the shorter labeling times, indicating that the replication point is not necessarily close to the nuclear membrane. When cells were synchronized to the beginning of the S period with mitotic selection and hydroxyurea, the percentage of membrane-associated grains was very low, indicating that DNA synthesis is not initiated at the nuclear membrane. When cells synchronized by mitotic selection were labeled at various times throughout the cell cycle, the percentage of peripheral grains was low in early S period and became progressively higher toward late S period as heterochromatin began to replicate. The labeling of Unsynchronized Microtus agrestis cells indicated that much of the peripheral labeling is due to the replication of intercallary heterochromatin. The results indicate that there is no association between the nuclear membrane and DNA replication.  相似文献   

5.
The relationship between replication of simian virus 40 (SV40) DNA and the various periods of the host-cell cycle was investigated in synchronized CV(1) cells. Cells synchronized through a double excess thymidine procedure were infected with SV40 at the beginning or the middle of S, or in G(2). The first viral progeny DNA molecules were in all instances detected approximately 20 h after release from the thymidine block, independent of the time of infection. The length of the early, prereplicative phase of the virus growth cycle therefore depended upon the period of the cell cycle at which the cells were infected. Infection with SV40 was also performed on cells obtained in early G(1) through selective detachment of cells in metaphase. As long as the cells were in G(1) at the time of infection, the first viral progeny DNA molecules were detected during the S period immediately following, whereas if infection took place once the cells had entered S, no progeny DNA molecule could be detected until the S period of the next cell cycle. These results suggest that the infected cell has to pass through a critical stage situated in late G(1) or early S before SV40 DNA replication can eventually be initiated.  相似文献   

6.
Populations of Tetrahymena pyriformis were synchronized by 30 min heat shocks at 34 °C separated by 160 min intervals at the normal growth temperature. The cells initiate DNA synthesis immediately after the cellular division, and the S period of the population lasts about 80 min. It was found that DNA replication is a prerequisite for the following synchronous division. Inhibition of the DNA synthesis in early S by starvation of the cells for thymidine prevents the forthcoming division. However, inhibition in the latter half of S does not prevent the subsequent division. Thus the cells have synthesized enough DNA to permit cell division before the end of a normal S period. These results are discussed in relation to the organization of the genome replication in the highly polyploid macronucleus.  相似文献   

7.
Inhibition of DNA synthesis in F9 embryonal carcinoma cells with high thymidine induces differentiation similar to that induced with retinoic acid (RA). The presence of differentiated cells is evident after 15 h of treatment with 2 mM thymidine, during which period DNA synthesis is inhibited 99%. The addition of RA during the period of high thymidine treatment does not increase the amount of differentiation seen at the end of the 15-h treatment, but does increase the amount seen after thymidine is removed. The inhibition of proliferation by low serum concentration does not induce differentiation in the absence of RA. In partially synchronized cultures of F9 cells, the addition of RA alters the pattern of DNA replication during the first third of S phase. If RA is present during this part of S phase, differentiation is evident both morphologically and biochemically during the following cell cycle. Addition of RA during the second half of S phase does not lead to obvious differentiation until after the next cell cycle. These results suggest that particular events during the early replication period of F9 cells are targets for RA action in induction of differentiation of F9 cells.  相似文献   

8.
Human NHIK 3025 cells, synchronized by mitotic selection, were given 2 mM thymidine, which inhibited DNA synthesis without reducing the rate of protein accumulation. After removal of the thymidine the cells proceeded towards mitosis and cell division, with an S duration 2 hours shorter than, but a G2 and M duration nearly identical to that of the control cells. If cycloheximide (1.25 m?M) was present together with thymidine, no net protein accumulation took place during the treatment, and the subsequent duration of S, G2, and M was similar to that of the untreated cells. The shortening of S seen after treatment with thymidine alone would therefore indicate that the rate of DNA synthesis depended on the amount of some preaccumulated protein. The postreplicative period in thymidine-treated cells was lengthened by cycloheximide treatment although the protein content had already been doubled. This suggests that proteins required for the traverse of this part of the cell cycle might have to be synthesized after completion of DNA replication. Shortly after removal of thymidine, the rate of protein accumulation declined markedly, indicating the existence of some mechanism for negative control of cell mass. In addition, the daughters of thymidine-treated cells had their cell cycle shortened by 2 hours. As a result, the cells had returned to balanced growth already in the first cell cycle following the induction of unbalanced growth. In conclusion, our experiments suggest that NHIK 3025 cells might require a minimum time in order to traverse the cell cycle, which is independent of cell mass.  相似文献   

9.
MKT-1, a virus nonproducer lymphoblastoid cell line established from a Marek's disease tumor, was synchronized by double thymidine block to determine the sequence of events in the synthesis of cellular and latent marek's disease virus DNA. Cellular DNA synthesis was measured by incorporation of [3H]thymidine, whereas viral DNA synthesis was determined by DNA-DNA reassociation kinetics. The results of these studies indicate that the resident Marek's disease viral DNA in MKT-1 cells replicates during the early S phase of the cell cycle, before the onset of active cellular DNA synthesis. This observation is similar to that seen in the replication of resident Epstein-Barr virus DNA in synchronized Raji cells.  相似文献   

10.
Regulation of thymidine kinase synthesis in human cells   总被引:18,自引:0,他引:18  
  相似文献   

11.
D B Thomas  C A Lingwood 《Cell》1975,5(1):37-42
Further evidence is presented in support of a model for growth control in which commitment for cell division is determined by an event in the preceding cell cycle. A study was made of conditions affecting synchronous growth following treatment of murine mastocytoma cells with excess thymidine at different phases of the cell cycle. Cells were synchronized by a physical procedure involving velocity sedimentation in a zonal rotor. Pulse treatment of such cultures with thymidine at times corresponding to the S, G2, and M periods had no effect on further growth. However, addition at G1, although having no immediate effect, arrested cell growth in the next cell cycle. This temporal effect may account for the decay of synchrony observed during double thymidine blockade or thymidine-FUdR blockade. When the time interval between two such blocks was 7 hr or less, P815Y cells were arrested after one synchronous division. At this critical time a majority of cells were at, or near, G1. It is suggested that thymidine exerts a hitherto unrecognized effect at the G1 interval.  相似文献   

12.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

13.
The effects of inhibition of protein and RNA synthesis on initiation of chromosome replication in Escherichia coliBr were determined by measuring rates of DNA synthesis during the division cycle before and after addition of chloramphenicol and rifampicin. The ability of cells to initiate a round of replication depended upon the pattern of chromosome replication during the division cycle. Initiation in the presence of chloramphenicol (200 μ/ml) and rifampicin (100 gmg/ml) was observed only in slowly growing cells which normally initiated a new round between the end of the previous round and the subsequent division (i.e. in the D period of the division cycle). The cells that initiated were in the D period at the time of addition of the drugs. Rapidly growing cells which normally initiated before the D period and slowly growing cells which normally initiated after the D period did not initiate in the presence of the drugs. The contrasting effects of the drugs in cells possessing different chromosome replication patterns, and the coupling between septum-crosswall formation (the D period) and initiation suggest that the timing of initiation of chromosome replication in E. coli is controlled by the cell envelope.  相似文献   

14.
The effects of sodium butyrate on [3H]thymidine incorporation and cell growth characteristics in randomly growing and synchronized HeLa S3 cells have been examined in an attempt to determine what effects, if any, butyrate has on S phase cells. Whereas 5 mM sodium butyrate rapidly inhibits [5H]thymidine incorporation in a randomly growing cell populations, it has no effect on incorporation during the S phase in cells synchronized by double thymidine block techniques. This lack of effect does not result from an impaired ability of the S phase cells to take up butyrate, since butyrate administration during this period leads to histone hyperacetylation that is identical with that seen with butyrate treatment of randomly growing cells. Furthermore, the ability to induce such hyperacetylation with butyrate during an apparently normal progression through S phase indicates that histone hyperacetylation probably has no effect on the overall process of DNA replication. Temporal patterns of [3H]thymidine incorporation and cell growth following release from a 24-h exposure to butyrate confirm blockage of cell growth in the G1 phase of the cell cycle. Thus, the inhibition by butyrate of [3H]thymidine incorporation in randomly growing HeLa S3 cell populations can be accounted for solely on the basis of a G1 phase block, with no inhibitory effects on cells already engaged in DNA synthesis or cells beyond the G1 phase block at the time of butyrate administration.  相似文献   

15.
The rate of DNA synthesis in the course of the division cycle in root meristem ofAllium cepa growing under constant temperature and aeration conditions has been studied by means of treatment with AdR, as a specific inhibitor of the synthesis, as well as by the incorporation of tritiated thymidine. The one-hour treatment with AdR or tritiated thymidine was given at various hours in the course of the interphase of a synchronous population of binucleate cells induced by caffeine. In the case of AdR, sensitivity to the inhibition of DNA synthesis was studied by recording the delays produced by the treatment in the appearance of biprophases and bitelophases. The selection by the use of caffeine, of spontaneously synchronous populations of cells going through the telophase and becoming binucleate and the detection of the first biprophases in the subsequent mitosis provide a highly synchronized system with which to study the incorporation of tritiated thymidine during the interphase. The curves representing sensitivity to the inhibition of DNA synthesis by AdR and the rate of tritiated thymidine incorporation coincide, so that we can regard the delays, under our conditions, as proportional to the rate of DNA synthesis at the moment of the AdR treatment. This rate, in the S period, was found to be variable by both methods, being higher in the first and the last thirds of the S period (S1 and S3) and lower in the middle third (S2).  相似文献   

16.
SYNOPSIS. Heat shock and stationary-phase conditions both cause fusion of nucleoli. In both cases the process is reversed when the cell is returned to normal physiological growth conditions. Fusion of nucleoli during the cell cycle of logarithmically growing cells was not observed. Likewise, fusion of nucleoli was not observed when the Padilla and Cameron(8) method of synchronization was used. The macronuclei of cells synchronized by the 1 cold-shock per cycle method(8) more closely resembled macronuclei of log-phase cells than did the macronuclei of cells synchronized by the Scherbaum and Zeuthen(12) heat-shock method.  相似文献   

17.
Vaccinia Virus Infection of Synchronized Pig Kidney Cells   总被引:8,自引:8,他引:0       下载免费PDF全文
Vaccinia virus replication was studied in pig kidney (PK-15) cells synchronized by excess thymidine treatment. It was found that virus replication with concomitant inhibition of mitosis can occur at any period in the life cycle of the cell except for the narrow span of time from late prophase through telophase. Cells infected at this time continue to divide, and vaccinia does not replicate until cell division is complete.  相似文献   

18.
Bacillus subtilis strain Marburg was grown exponentially with a doubling time of 65 min. To follow the time course of various cell cycle events, cells were collected by agar filtration and were then classified according to length. The DNA replication cycle was determined by a quantitative analysis of radioautograms of tritiated thymidine pulse labeled cells. The DNA replication period was found to be 45 min. This period is preceded and followed by periods without DNA synthesis of about 10 min.The morphology and segregation of nucleoplasmic bodies was studied in thin sections. B. subtilis contains two sets of genomes. DNA replication and DNA segregation seem to go hand in hand and DNA segregation is completed shortly after termination of DNA replication.Cell division and cell separation were investigated in whole mount preparations (agar filtration) and in thin sections. Cell division starts about 20 min after cell birth; cell separation starts at about 45 min and before completion of the septum.  相似文献   

19.
侯连生  庞延斌 《动物学报》1991,37(3):325-331
冠突伪尾柱虫(Pseudvurostyla cristata) 含约70枚大核。我们用显微手术横切G1期细胞,得前后两块相等断片;分别培养。60小时后,断片再生完成。在再生过程中,随细胞体积增大,大核数目也增加。大核的数目和细胞体积存在着一定的均衡关系。在细胞无性分裂过程中,许多大核改组后,融合成一个融合大核。这个融合大核具两个仔虫的大核数目和DNA量。我们用显微手术得到含融合大核的后断片。在后断片再生后恢复的虫体内,我们发现本应分配到两个仔虫中去的大核数目,被限制在一个虫体的大核数目上。这说明了细胞质可以影响和调节大核的数目。并还证明了这种虫体大核DNA量较正常虫的大核DNA量约多一倍。其中大部分虫体分裂时,大核不经改组就开始融合和分裂;从而使DNA量回复正常。同讨还发现小部分虫体通过排出大核多余核物质方式来调节大核DNA量。这些现象说明了细胞核质之间存在着一种调节相对平衡和相互协调的机制。  相似文献   

20.
The rate of thymidine incorporation into cells of Salmonella typhimurium growing in different media has been measured. In glucose-minimal medium, deoxyribonucleic acid (DNA) replication occurs during the first two-thirds of the division cycle; the final one-third of the division cycle was devoid of DNA replication. The measured doubling time of S. typhimurium in this medium is approximately 48 min, indicating that C (the time for a round of replication) and D (the time between termination and cell division) are approximately 32 and 16 min, respectively. At slower growth rates the pattern of replication is the same as glucose minimal medium. At faster growth rates the "gap" in DNA synthesis disappears. At rapid growth rates evidence for multiple forks is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号