首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of Nodule Development in Soybean by Nitrate or Reduced Nitrogen   总被引:5,自引:1,他引:4  
Imsande, J. 1986. Inhibition of nodule development in soybeanby nitrate or reduced nitrogen.—J. exp. Bot. 37: 348–355. Nodulation of hydroponically grown soybean plants [Glycine max(L.) Merr.] is inhibited by continuous growth in the presenceof 4· mol m–3 KNO3 The presence of 4·0 molm–3 ‘starter nitrate’ for 3-6 d during noduledevelopment, however, subsequently stimulates nodule dry weightaccumulation and nitrogenase activity. These stimulations occureven though 4· mol m–3 nitrate temporarily delaysnodule development, i.e. the late steps of nodule developmentare reversibly inhibited by a short-term exposure to 4·0mol m–3 nitrate. On the other hand, treatment with 4·0mol m–3 nitrate in excess of 14 d significantly reducesnodule dry weight Thus, extended growth in the presence of 4·0mol m–3 KNO3 seems to block both early and late stepsof nodule development. Nodulation of hydroponically grown soybeansis also inhibited by continuous growth in the presence of 2·0mol m–3 (NH4)2SO4 This inhibition is not caused by acidityof the growth medium. On the other hand, nodule development6 d after inoculation with Rhizoblum japonicum is not delayedby a 7-d exposure to 2·0 mol m–3 (NH4)2SO4 butis partially inhibited by a prolonged exposure to (NH4)2SO4Because repression of nodulation by 4·0 mol m–3KNO3 is more severe than that by 2·0 mol m–3 (NH4)2SO4and because ammonium taken up by the soybean plant is not activelyoxidized to nitrate, it is suggested that there are at leasttwo mechanisms by which nitrate utilization represses noduleformation in soybean. Key words: Glycine max, nitrogen, nitrogen fixation, nodulation  相似文献   

2.
Seedlings of cotton (Gossypium hirsutum L. cv. Acala SJ-2) weregrown in modified Hoagland nutrient solution with various combinationsof NaCl and CaCl2. Marking experiments and numerical analysiswere conducted to characterize the spatial and temporal patternsof cotton root growth at varied Na/Ca ratios. At 1 mol m–3Ca, 150 mol m–3 NaCl reduced overall root elongation rateto 60% of the control, while increasing Ca to 10 mol m–3at the same NaCl concentration restored the elongation rateto 80% of the control. Analysis of the spatial distributionof elongation revealed that the presence of 150 mol m–3NaCl in the medium shortened the growth zone by about 2 mm fromthe approximate 10 mm in the control and also reduced the relativeelemental elongation rate (i.e. the longitudinal strain rate,defined as the derivatives of displacement velocity of a cellularparticle with respect to position on root axis). Supply of 10mol m–3 Ca at the high salt condition restored partiallythe relative elemental elongation rate, but not the length ofthe growth zone. Compared to the control, the growth trajectoriesshowed that at 1 mol m–3 CaCl2 it took more time for acellular particle to move through the growth zone at 150 molm–3 NaCl, while at 10 mol m–3 CaCl it took lesstime and there was no difference between the NaCl treatments Key words: Gossypium hirsutum, salinity stress, root growth kinematics  相似文献   

3.
Salt Tolerance in the Succulent, Coastal Halophyte, Sarcocornia natalensis   总被引:2,自引:0,他引:2  
The effects of 0, 50, 100, 200, 300, 400 and 500 mol m–3NaCl on growth and ion accumulation in the succulent, coastalhalophyte Sarcocornia natalensis (Bunge ex Ung.-Sternb.) A.J. Scott were investigated. Increase in salinity from 0 to 300 mol m–3 NaCl stimulatedproduction of fresh, dry, and organic dry mass, increased succulenceand shifted resource allocation from roots to shoots. Growthwas optimal at 300 mol m–3 and decreased with furtherincrease in salinity. Water contributed to a large proportion of the increase in freshmass. Inorganic ions, especially Na+ and Cl– contributedsubstantially to the dry mass. At 300 mol m–3 NaCl inorganicions contributed to 37% of total dry mass and NaCl concentrationin the shoots was 482 mol m–3. Expressed sap osmotic potentialsdecreased from –2.10 to –3.95 MPa as salinity increasedfrom 0 to 300 mol m–3 NaCl. Massive accumulation of inorganicions, especially Na+ and Cl, accounted for 86% of theosmotic adjustment at 300 mol m–3 NaCl. Salinity treatments decreased the concentrations of K+ in shoots.Plant Na+ :K+ ratios increased steadily with salinity and reacheda maximum of 16.6 at 400 mol m3 NaCl. It is suggested that the exceptional salt tolerance of S. natalensisis achieved by massive inorganic ion accumulation which providessufficient solutes for osmoregulation, increased water fluxand turgor-induced growth. Key words: Sarcocornia natalensis, salt tolerance, halophyte  相似文献   

4.
The effects of excess salinity and oxygen deficiency on growthand solute relations in Zea mays L. cv. Pioneer 3906 were examinedin greenhouse experiments. The roots of plants 14 d old growingin nutrient solution containing additions of NaCl in the range1.0–200 mol m–3 were either exposed to a severedeficiency of O2 by bubbling with nitrogen gas (N2 treatment),or maintained with a supply of air (controls), for a periodof 1–7 d. The threshold NaCl concentration resulting inappreciable inhibition of leaf extension, and shoot f. wt gainin controls was between 10 and 25 mol m–3. At 25 mol m–3NaCl the ratio of Na+/K+ transported to shoots was about 20times greater than in plants in 1.0 mol m–3 NaCl. Theeffect of addition of NaCl to the nutrient solution was to enhanceNa+ movement but simultaneously depress the rate of K+ transportto shoots (per g f. wt roots). Interactions between NaCl levels and aeration treatment wereshown by analyses of variance to be statistically significantfor leaf extension, shoot and root f. wt gains, Na+ and K+ concentrationsin shoots and roots. When roots were N2-treated, shoot and rootgrowth were depressed, the effect of aeration treatment beinggreatest at NaCl concentrations of 50 mol m–3 or less.Additionally, N2-treatment greatly accelerated Na- transportto shoots while depressing K+ transport still further, so thatat 10 mol m–3 NaCl the ratio Na+/K+ acquired by the shootswas 230 times greater than in controls. Over the concentrationrange 1.0 to 50 mol m–3 NaCl, the ratio Na+/K+ transportedto shoots by anoxic roots increased by a factor of 860. Mechanisms controlling changes in solute flux to the shoot,and the significance in relation to plant tolerance of excesssalts or oxygen deficiency are discussed. Anaerobic, corn, flooding, maize, oxygen-deficiency, salinity  相似文献   

5.
Rhizobium-inoculatcd plants of Phaseolus vulgaris L. were grownwith different N-sources (nitrate, ammonium, urea) and differentconcentrations of urea. The distribution of growth between plantparts varied with N-sources. Nitrate and ammonium were moreinhibitory to nodulation than urea, which at 40 mol m–3N had no effect. Urease activity varied in amount and locationover a range of urea concentrations. At higher concentrations,more urea was transported to and increased urease activity wasfound in the shoot Lower levels of activity in plants relianton N2-fixation were consistent with a ureide-degradation pathwaynot involving urea. Moderate doses of urea could be assimilatedconcomitantly with N2-fixation. At higher levels of appliedurea, nodulation and ureide transport to the shoots were reduced,although increased growth could not be maintained at concentrationsof applied urea greater than 6.0 mol m–3 urea N. Key words: Phaseolus vulgaris, growth, nitrogen source, urease  相似文献   

6.
The aim of this study was to investigate changes in cell wallchemical composition and polymer size in the root tip of intactcotton seedlings (Gossypium hirsutum L. cv. Acala SJ-2) grownin saline environments, in order to relate the interaction betweenhigh salinity and root growth to possible changes in cell wallmetabolism. Cotton seedlings were grown in modified Hoagland nutrient solutionwith various combinations of NaCl and CaCl2. Cell walls werefractionated into four fractions (pectin, hemicellulose 1 and2, cellulose), and analysed for their total sugar content, neutralsugar composition and size of polysaccharides. At 1 mol m–3Ca, 150 mol m–3 NaCl resulted in a significant increasein the cell wall uronic acid content, but a reduction in cellulosecontent on a per unit dry weight basis. Supplemental Ca overcamethe inhibitory effect of high Na on cellulose content. The neutralsugar composition of the cell wall fractions showed no majorchanges caused by varied Na/Ca ratios. Determinations of polysaccharidepolymer size showed that high Na at 1 mol m–3 Ca led toan increase in the amount of polysaccharides of intermediatemolecular size and a decrease in that of small size in the hemicellulose1 fraction, indicating a possible inhibition of polysaccharidedegradation by high Na. This change was not observed in the10 mol m–3 Ca treatments. The results reveal a relationshipbetween the effects of high salinity on root growth and cellwall metabolism, particularly in regard to cellulose biosynthesis Key words: Gossypium hirsutum, salinity, root, cell wall  相似文献   

7.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

8.
Following 20 d of exposure to 75 or 150 mol m–3 NaCl Sorghumbicolor (L.) Moench plants become capable of growing in mediumcontaining 300 mol m–3 NaCl. Control plants, which havenot been pretreated, or plants pretreated for less than 20 ddie within 2 weeks when exposed to 300 mol m–3 NaCl. Weconsider this induction of a capacity to survive in and toleratea high NaCl concentration as an adaptation to salinity. We suggestthat adaptation to salinity is more than osmotic adjustmentand that it takes longer to develop than osmotic adjustment.Concomitantly with the appearance of the ability to grow inhigh salinity, adaptation also comprises the development ofa capacity to regulate internal Na+ and Cl concentrations,even when external salinity is high. Shoot mean relative growthrates are similar for both control plants and for adapted plantsgrowing in 300 mol m–3 NaCl, although their shoot Na+and Cl concentrations are quite different. Based on thesedata, we propose that adaptation of Sorghum to high salinityresults from a modulation of genome expression occurring duringextended exposure to non-lethal NaCl concentrations. Key words: Sorghum bicolor (L.) Moench, NaCl, salt tolerance, adaptation to salinity  相似文献   

9.
In studies of Trifolium repens nitrogen nutrition, the controlof nutrient solution pH using dipolar buffers, was evaluatedin tube culture under sterile conditions. Five buffers; MES,ADA, ACES, BES and MOPS with pK2s (20 °C) of 6.15, 6.60,6.90, 7.15 and 7.20 respectively, at a concentration of 2.0mol m–3, were provided to inoculated Trifolium repensgrowing in nutrient solution containing 7.13 mol m–3 nitrogenas (NH4)2SO4. Initial pH of each solution was adjusted to theappropriate buffer pK2 Two buffers, ADA and ACES completelyinhibited plant growth. The remaining buffers had little effectin limiting pH change, although plant dry matter was higherand nodule numbers lower in the presence of these buffers. MESand MOPS were supplied to nutrient solutions with and without7.13 mol m–3 (NH4)2SO4, at concentrations ranging from0–12 mol m–3. MES at 9 mol m–3 and 12 molm–3 reduced growth of plants reliant on the symbiosisfor providing nitrogen. The provision of MES to plants providedwith NH4+ significantly increased plant yield and reduced nodulenumber at all concentrations. MOPS did not affect plant yieldor nodule number. The use of dipolar buffers in legume nitrogennutrition studies is considered in terms of buffering capacity,and the side effects on plant growth and symbiotic development. Key words: Ammonium, Dipolar buffer, Nitrogen nutrition, pH control, Symbiosis, Trifolium repens  相似文献   

10.
The effects of different NaCl concentrations on the growth andnitrogen fixation activity of white lupin (Lupinus albus [L.])was studied over a 6 d period. Plant growth parameters, photosynthesisand shoot respiration were unaffected by NaCl concentrationsup to 150 mol m–3. However, nitrogenase activity decreasedwith increased NaCl concentration up to 100 mol m–3, whilstthe O2 diffusion resistance increased with 100 mol m–3NaCl, but showed no further change when 150 mol m–3 NaClwas applied for 6 d. Increases in NaCl concentration decreasednodular starch content while increasing sucrose content, suggestingan osmotic regulation. These changes were associated with a77% decrease in sucrose synthase activity. The effect on theO2 diffusion resistance was paralleled by changes in glycoproteincontent of the nodules, as determined by immunogold localizationand ELISA. X-ray microanalysis studies of nodules showed that,following a 6 d exposure to 150 mol m–3 NaCl, Na+ ionswere largely excluded from the infected zone, whilst only lowlevels of Cl- ions penetrated into this region. Na+ entry intoroots and leaves was also at a low level. Leghaemoglobin contentdecreased with saline stress, as did superoxide dismutase; whichdecreased by 36% following exposure to 100 mol m–3 saltfor 6 d. These results are discussed in relation to the relativesalt tolerance of the Multolupa/ISLU-16 symbiosis. Key words: Salt stress, nodules, nitrogen fixation, oxygen diffusion, carbohydrates, Lupinus albus  相似文献   

11.
We have developed a cell suspension culture from alligator weed(Alternanthera philoxeroides [Mart.] Griseb), a C3 member ofthe Amaranthaceae. Intact plants of alligator weed can growat 400 mol m–3 NaCl. Growth of alligator weed suspensionswas compared to growth of tobacco (Nicotiana tabacum L. cv.Wisconsin 38) suspensions after subculture to 200 mol m–3NaCl. Fresh weight and cell density of salt-treated alligatorweed suspensions more than doubled by 7 d after subculture,but the fresh weight of salt-treated tobacco suspensions didnot double during the 21 d experiment. Correspondingly, cellviability dropped from about 90% to 77% in alligator weed andto 41% in tobacco, at 1 d after subculture to 200 mol m–3NaCl. The symplastic volume of alligator weed cells declined36% by 2 h after subculture to 200 mol m–3 NaCl, but cellcontents became iso-osmotic with the media at this point. Between2 h and 6 h there was a further decrease in osmotic potential,an increase in turgor potential and a partial recovery of symplasticvolume. Turgor potential was similar to that in control cellsby 24 h, indicating significant osmotic adjustment. Turgor potentialsremained similar in both treatments from 24 h through 21 d butthe average symplastic volume of salt-treated cells was 11 %less than in control cells. Therefore, alligator weed suspensioncells exhibit a rapid recovery of water balance and cell growthafter an abrupt and substantial increase in salinity. Key words: Cell culture, growth, osmotic adjustment, salinity, turgor potential  相似文献   

12.
Cotyledons of faba bean (Vicia faba L. cv. Fiord) were removedto determine whether an apparent delay in nodulation of thiscultivar could be attributed to an inhibitor from these organs.Cotyledons were left intact or excised from seedling plants14 and 18 d after sowing and plants grown with or without 2·5mm NO3. Seedling growth was depressed when cotyledons were removed onday 14 but not when removed on day 18. Removal of the cotyledonsat day 14 reduced nodule number and nodule weight in the absenceof NO3, but in the presence of NO2, nodule numberwas unaffected and only nodule weight was reduced. Cotyledonremoval at day 18 increased both nodule number and nodule weightwith +NO3 but not with –NO2. Acetylene reduction(AR) was markedly depressed by NO3. Cotyledon removalat day 14 decreased AR but removal at day 18 resulted in anincrease in AR. We suggest from these results that faba beancotyledons have an inhibitory effect on nodule activity andon nodulation and this interacts with NO3. This can beexplained through a ‘feed-back’ regulation of N2fixation by soluble N in the seedling. Vicia faba, faba bean, nodule number, nodulation, nodule activity, acetylene reduction, N2 fixation, cotyledon removal, nitrate  相似文献   

13.
Nucleotide metabolism was studied in apical 5.0 mm root tipsof corn plants (Zea mays L., cv. Pioneer 3906) hydroponicallycultured for 7 d and then salinized for 19 d at a rate calculatedto reduce the osmotic potential (o) of the solutions by O.1MPad–1 to a final o = -0.4 MPa. Saline treatments withtwo different molar ratios of Ca2+/Na+ were employed, viz.,0–03 (2.5 mol m–3 CaCl2 + 86.5 mol m–3 NaCl)for the NaCl treatment and 0.73 (31.5 mol m–3 CaCl2 +43.1 mol m–3 NaCl) for the NaCl + CaCl2 treatment. Bothsalt treatments reduced root growth by more than 30%. The capacityof roots to provide purine nucleotides either by de novo synthesisor by re-utilization of existing bases, e.g. salvage of hypoxanthineto adenine nucleotides, was not affected by either salt treatment.However, catabolism of hypoxanthine was accelerated more than3.5-fold by both salt treatments, demonstrating an increasedcapacity for purine catabolism which would shift the normal1: 1 ratio of synthesis: degradation of purine nucleotides observedfor the roots of healthy control plants to less than 0.2 duringsalt stress. The ratio of pyrimidine nucleotide synthesis: degradationwas also reduced. In this case, the unfavourable shift towardnucleotide degradation resulted because both salt treatmentsreduced salvage capacity by more than 25%, but had no compensatingeffect on de novo synthesis or catabolism of pyrimidines. Key words: Salinity, osmotic potential, nucleotide metabolism  相似文献   

14.
Growth-chamber studies were conducted to evaluate nitrogen assimilationby three hypernodulated soybean [Glycine max (L.) Merr.] mutants(NOD1–3, NOD2–4, NOD3–7) and the Williamsparent. Seeds were inoculated at planting and transplanted atday 7 to nutrient solution with 1 mol m–3 urea (optimizesnodule formation) or 5 mol m–3 NO3 (inhibits noduleformation). At 25 d after planting, separate plants were exposedto 15NO2 or 15NO3 for 3 to 48 h to evaluate N2 fixationand NO3 assimilation. Plant growth was less for hypernodulatedmutants than for Williams with both NO3 and urea nutrition.The major portion of symbiotically fixed 15N was rapidly assimilated(30 min) into an ethanol-soluble fraction, but by 24 h aftertreatment the ethanolinsoluble fraction in each plant part wasmost strongly labelled. Distribution patterns of 15N among organswere very similar among lines for both N growth treatments aftera 24 h 15N2 fixation period; approximate distributions were40% in nodules, 12% in roots, 14% in stems, and 34% in leaves.With urea-grown plants the totalmg 15N fixed plant–1 24h–1 was 1·18 (Williams), 1·40 (N0D1-3),107 (NOD2-4), and 0·80 (NOD3-7). The 5 mol m-3 NO3- treatmentresulted in a 95 to 97% decrease in nodule mass and 15N2 fixationby Williams, while the three mutants retained 30 to 40% of thenodule mass and 17 to 19% of the 15N2 fixation of respectiveurea-grown controls. The hypernodulated mutants, which had restrictedroot growth, absorbed less 15NO3- than Williams, irrespectiveof prior N growthcondition. The 15N from 15NO3- was primarilyretained in the soluble fraction of all plant parts through24 h. The 15N incorporation studies confirmed that nodule developmentis less sensitive to external NO3- in mutant lines than in theWilliams parent, and provide evidence that subsequent metabolismand distribution within the plant was not different among lines.These results further confirm that the hypernodulated mutantsof Williams are similar in many respects to the hyper- or supernodulatedmutants in the Bragg background, and suggest that a common mutationalevent affectingautoregulatory control of nodulation has beentargeted. Key words: Glycine max (L.) Merr., soybean, N2fixation, nitrate assimilation, nodulation mutants, 15N isotope  相似文献   

15.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

16.
When grown in a nutrient solution containing combined nitrogen(NH4NO3), Lotus pedunculatus and L. tenuis seedlings inoculatedwith a fast-growing strain of Rhizoblum (NZP2037) did neitherdevelop root nodules nor develop flavolans in their roots. Incontrast, the roots of nodulated seedlings growing in a nitrogen-freenutrient solution contained flavolans. Flavolan synthesis coincidedwith root nodule development on these plants. When added as a single dose, high concentrations of NH4NO3 (5and 10 mg N per plant) stimulated the growth of L. pedunculatusplants but suppressed nodulation and nitrogen fixation. In contrastthe continued supply of a low concentration of NH4NO3 (1?0 mgN d–1 per plant) stimulated nitrogen fixation by up to500%. This large increase in nitrogen fixation was associatedwith a large increase in nodule fresh weight per plant, a doublingof nodule nitrogenase activity, and a lowering of the flavolancontent of the plant roots. The close relationship between nitrogendeficiency, nodule development, and flavolan synthesis in L.pedunculatus meant that it was not possible (by nitrogen pretreatmentof plants) to alter the ineffective nodule response of a Rhizobiumstrain (NZP2213) sensitive to the flavolan present in the rootsof this plant.  相似文献   

17.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

18.
Nitrate reductase activity (NRA, in vivo assay) and nitrate(NO-3) content of root and shoot and NO-3 and reduced nitrogencontent of xylem sap were measured in five temperate cerealssupplied with a range of NO-3 concentrations (0·1–20mol m–3) and three temperate pasture grasses suppliedwith 0·5 or 5 0 mol m–3 NO-3 For one cereal (Hordeumvulgare L ), in vitro NRA was also determined The effect ofexternal NO-3 concentration on the partitioning of NO-3 assimilationbetween root and shoot was assessed All measurements indicatedthat the root was the major site of NO3 assimilation in Avenasatwa L, Hordeum vulgare L, Secale cereale L, Tnticum aestivumL and x Triticosecale Wittm supplied with 0·1 to 1·0mol m–3 NO-3 and that for all cereals, shoot assimilationincreased in importance as applied NO-3 concentration increasedfrom 1.0 to 20 mol m–3 At 5.0–20 mol m–3 NO3,the data indicated that the shoot played an important if notmajor role in NO-3 assimilation in all cereals studied Measurementson Lolium multiflorum Lam and L perenne L indicated that theroot was the main site of NO-3 assimilation at 0.5 mol m–3NO-3 but shoot assimilation was predominant at 5.0 mol m–3NO-3 Both NRA distribution data and xylem sap analysis indicatedthat shoot assimilation was predominant in Dactylis glomerataL supplied with 0.5 or 5.0 mol m–3 NO-3 Avena sativa L., oats, Hordeum vulgare L., barley, Secale cereale L., rye, x Triticosecale Wittm., triticale, Triticum aestivum L., wheat, Dactylis glomerata L., cocksfoot, Lolium multiflorum Lam., Italian ryegrass, Lolium perenne L., perennial ryegrass, nitrate, nitrate assimilation, nitrate reductase activity, xylem sap  相似文献   

19.
The red mangrove (Rhizophora mangle L.) in southern Floridaoccurs frequently in two distinct growth forms, tall and scrubplants, with the scrub form usually found in coastal inlandareas having a higher fluctuation of soil water salinity. Inthe present study, effects of constant and fluctuating salinitieson leaf gas exchange and plant growth of red mangrove seedlingswere investigated under greenhouse conditions. Both constantand fluctuating salinity treatments significantly affected leafgas exchange and plant growth of red mangrove seedlings. Seedlingssubjected to the fluctuating salinity with the mean of both100 and 250 mol m–3 NaCl showed significantly lower photosynthesisand plant growth than those subjected to the corresponding constantsalinity with the same mean. The photosynthetic and growth ratesof the seedlings under these fluctuating treatments were aslow as, or even lower than those expected if they were growingunder the high constant salinity of their respective fluctuationtreatments. Seedlings subjected to the fluctuating salinitywith the mean of 500 mol m–3 NaCl, however, demonstratedslightly higher CO2 assimilation rate and stomatal conductance,but the same plant growth rates as those under the constant500 mol m–3 NaCl treatment. These results suggest that,in general, fluctuating salinity has significant negative effectson photosynthesis and plant growth relative to constant salinitywith the same mean. If this finding can be applicable to fieldsituations, the low photosynthesis and plant growth observedpreviously in several scrub mangrove forests probably can beattributed in part to the salinity fluctuation of soil waterin these mangrove forests. Key words: Fluctuating salinity, photosynthesis, growth, growth forms, mangroves  相似文献   

20.
Ricinus communis L. (castor bean) plants were grown in the absence(control) and in the presence of 100molm–3NaCl with areciprocal split-root system, in which K+ was supplied to oneand NO3 to the other part of the root system. In theseplants shoot and, to a lesser extent, total root growth wereinhibited compared to plants with non-split roots. Without andwith NaCl, growth of roots receiving NO3 but noK+ (‘minusK/plus N-roots’) was substantially more vigorous thanunder the reverse conditions (‘plus K/minus N-roots1).100mol m–3 NaCl inhibited growth of minus K/plus N-roots1to the same extent as that of non-split roots, indicating thatexternally supplied K+ was not required for root growth undersaline conditions. In growth media without added K+ the rootdepleted the external low K + levels resulting from chemicalsdown to a minimum value Cmln (1.0 to 1.4 mmol m–3); inthe presence of 100 mol m–3 NaCl, Cmin, was higher (10–18mmol m–3) and resulted from an initial net loss of K +.Cmin, was pH-dependent The distribution of K+, Na+ and Mg2+along the root was measured. In meristematic root tissues, K+ concentrations were scarcely affected by external K+ or byNaCl, where Na + concentrations were low, but somewhat elevatedat low external K+ and/or high NaCl. In differentiated, vacuolatedtissues K + concentrations were low and Na+ concentrations high,if K + was not supplied externally and/or NaCl was present.The longitudinal distribution of ions within the root was usedto estimate cytoplasmic and vacuolar ion concentrations. Thesedata showed a narrow homoeostasis of cytoplasmic K+ concentrations(100–140 mol m–3) independent of external K + supplyeven in the presence of 100 mol m –3 NaCl. CytoplasmicNa + concentrations were maintained at remarkably low levels.Hence, external K+ concentrations above Cmin, were not requiredfor maintaining K/Na selectivity, i.e. for controlling Na+ entry.The results are discussed with regard to mechanisms of K/Naselectivity and to the importance of phloem import of K+ forsalt tolerance of roots and for cytoplasmic K+ homoeostasis. Key words: Ricinus communis, nitrate, potassium, root (split-root), salt tolerance, phloem transport  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号